Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
michael@0 | 1 | /* |
michael@0 | 2 | * Copyright 2006 The Android Open Source Project |
michael@0 | 3 | * |
michael@0 | 4 | * Use of this source code is governed by a BSD-style license that can be |
michael@0 | 5 | * found in the LICENSE file. |
michael@0 | 6 | */ |
michael@0 | 7 | |
michael@0 | 8 | #ifndef SkPoint_DEFINED |
michael@0 | 9 | #define SkPoint_DEFINED |
michael@0 | 10 | |
michael@0 | 11 | #include "SkMath.h" |
michael@0 | 12 | #include "SkScalar.h" |
michael@0 | 13 | |
michael@0 | 14 | /** \struct SkIPoint |
michael@0 | 15 | |
michael@0 | 16 | SkIPoint holds two 32 bit integer coordinates |
michael@0 | 17 | */ |
michael@0 | 18 | struct SkIPoint { |
michael@0 | 19 | int32_t fX, fY; |
michael@0 | 20 | |
michael@0 | 21 | static SkIPoint Make(int32_t x, int32_t y) { |
michael@0 | 22 | SkIPoint pt; |
michael@0 | 23 | pt.set(x, y); |
michael@0 | 24 | return pt; |
michael@0 | 25 | } |
michael@0 | 26 | |
michael@0 | 27 | int32_t x() const { return fX; } |
michael@0 | 28 | int32_t y() const { return fY; } |
michael@0 | 29 | void setX(int32_t x) { fX = x; } |
michael@0 | 30 | void setY(int32_t y) { fY = y; } |
michael@0 | 31 | |
michael@0 | 32 | /** |
michael@0 | 33 | * Returns true iff fX and fY are both zero. |
michael@0 | 34 | */ |
michael@0 | 35 | bool isZero() const { return (fX | fY) == 0; } |
michael@0 | 36 | |
michael@0 | 37 | /** |
michael@0 | 38 | * Set both fX and fY to zero. Same as set(0, 0) |
michael@0 | 39 | */ |
michael@0 | 40 | void setZero() { fX = fY = 0; } |
michael@0 | 41 | |
michael@0 | 42 | /** Set the x and y values of the point. */ |
michael@0 | 43 | void set(int32_t x, int32_t y) { fX = x; fY = y; } |
michael@0 | 44 | |
michael@0 | 45 | /** Rotate the point clockwise, writing the new point into dst |
michael@0 | 46 | It is legal for dst == this |
michael@0 | 47 | */ |
michael@0 | 48 | void rotateCW(SkIPoint* dst) const; |
michael@0 | 49 | |
michael@0 | 50 | /** Rotate the point clockwise, writing the new point back into the point |
michael@0 | 51 | */ |
michael@0 | 52 | |
michael@0 | 53 | void rotateCW() { this->rotateCW(this); } |
michael@0 | 54 | |
michael@0 | 55 | /** Rotate the point counter-clockwise, writing the new point into dst. |
michael@0 | 56 | It is legal for dst == this |
michael@0 | 57 | */ |
michael@0 | 58 | void rotateCCW(SkIPoint* dst) const; |
michael@0 | 59 | |
michael@0 | 60 | /** Rotate the point counter-clockwise, writing the new point back into |
michael@0 | 61 | the point |
michael@0 | 62 | */ |
michael@0 | 63 | void rotateCCW() { this->rotateCCW(this); } |
michael@0 | 64 | |
michael@0 | 65 | /** Negate the X and Y coordinates of the point. |
michael@0 | 66 | */ |
michael@0 | 67 | void negate() { fX = -fX; fY = -fY; } |
michael@0 | 68 | |
michael@0 | 69 | /** Return a new point whose X and Y coordinates are the negative of the |
michael@0 | 70 | original point's |
michael@0 | 71 | */ |
michael@0 | 72 | SkIPoint operator-() const { |
michael@0 | 73 | SkIPoint neg; |
michael@0 | 74 | neg.fX = -fX; |
michael@0 | 75 | neg.fY = -fY; |
michael@0 | 76 | return neg; |
michael@0 | 77 | } |
michael@0 | 78 | |
michael@0 | 79 | /** Add v's coordinates to this point's */ |
michael@0 | 80 | void operator+=(const SkIPoint& v) { |
michael@0 | 81 | fX += v.fX; |
michael@0 | 82 | fY += v.fY; |
michael@0 | 83 | } |
michael@0 | 84 | |
michael@0 | 85 | /** Subtract v's coordinates from this point's */ |
michael@0 | 86 | void operator-=(const SkIPoint& v) { |
michael@0 | 87 | fX -= v.fX; |
michael@0 | 88 | fY -= v.fY; |
michael@0 | 89 | } |
michael@0 | 90 | |
michael@0 | 91 | /** Returns true if the point's coordinates equal (x,y) */ |
michael@0 | 92 | bool equals(int32_t x, int32_t y) const { |
michael@0 | 93 | return fX == x && fY == y; |
michael@0 | 94 | } |
michael@0 | 95 | |
michael@0 | 96 | friend bool operator==(const SkIPoint& a, const SkIPoint& b) { |
michael@0 | 97 | return a.fX == b.fX && a.fY == b.fY; |
michael@0 | 98 | } |
michael@0 | 99 | |
michael@0 | 100 | friend bool operator!=(const SkIPoint& a, const SkIPoint& b) { |
michael@0 | 101 | return a.fX != b.fX || a.fY != b.fY; |
michael@0 | 102 | } |
michael@0 | 103 | |
michael@0 | 104 | /** Returns a new point whose coordinates are the difference between |
michael@0 | 105 | a and b (i.e. a - b) |
michael@0 | 106 | */ |
michael@0 | 107 | friend SkIPoint operator-(const SkIPoint& a, const SkIPoint& b) { |
michael@0 | 108 | SkIPoint v; |
michael@0 | 109 | v.set(a.fX - b.fX, a.fY - b.fY); |
michael@0 | 110 | return v; |
michael@0 | 111 | } |
michael@0 | 112 | |
michael@0 | 113 | /** Returns a new point whose coordinates are the sum of a and b (a + b) |
michael@0 | 114 | */ |
michael@0 | 115 | friend SkIPoint operator+(const SkIPoint& a, const SkIPoint& b) { |
michael@0 | 116 | SkIPoint v; |
michael@0 | 117 | v.set(a.fX + b.fX, a.fY + b.fY); |
michael@0 | 118 | return v; |
michael@0 | 119 | } |
michael@0 | 120 | |
michael@0 | 121 | /** Returns the dot product of a and b, treating them as 2D vectors |
michael@0 | 122 | */ |
michael@0 | 123 | static int32_t DotProduct(const SkIPoint& a, const SkIPoint& b) { |
michael@0 | 124 | return a.fX * b.fX + a.fY * b.fY; |
michael@0 | 125 | } |
michael@0 | 126 | |
michael@0 | 127 | /** Returns the cross product of a and b, treating them as 2D vectors |
michael@0 | 128 | */ |
michael@0 | 129 | static int32_t CrossProduct(const SkIPoint& a, const SkIPoint& b) { |
michael@0 | 130 | return a.fX * b.fY - a.fY * b.fX; |
michael@0 | 131 | } |
michael@0 | 132 | }; |
michael@0 | 133 | |
michael@0 | 134 | struct SK_API SkPoint { |
michael@0 | 135 | SkScalar fX, fY; |
michael@0 | 136 | |
michael@0 | 137 | static SkPoint Make(SkScalar x, SkScalar y) { |
michael@0 | 138 | SkPoint pt; |
michael@0 | 139 | pt.set(x, y); |
michael@0 | 140 | return pt; |
michael@0 | 141 | } |
michael@0 | 142 | |
michael@0 | 143 | SkScalar x() const { return fX; } |
michael@0 | 144 | SkScalar y() const { return fY; } |
michael@0 | 145 | |
michael@0 | 146 | /** |
michael@0 | 147 | * Returns true iff fX and fY are both zero. |
michael@0 | 148 | */ |
michael@0 | 149 | bool isZero() const { return (0 == fX) & (0 == fY); } |
michael@0 | 150 | |
michael@0 | 151 | /** Set the point's X and Y coordinates */ |
michael@0 | 152 | void set(SkScalar x, SkScalar y) { fX = x; fY = y; } |
michael@0 | 153 | |
michael@0 | 154 | /** Set the point's X and Y coordinates by automatically promoting (x,y) to |
michael@0 | 155 | SkScalar values. |
michael@0 | 156 | */ |
michael@0 | 157 | void iset(int32_t x, int32_t y) { |
michael@0 | 158 | fX = SkIntToScalar(x); |
michael@0 | 159 | fY = SkIntToScalar(y); |
michael@0 | 160 | } |
michael@0 | 161 | |
michael@0 | 162 | /** Set the point's X and Y coordinates by automatically promoting p's |
michael@0 | 163 | coordinates to SkScalar values. |
michael@0 | 164 | */ |
michael@0 | 165 | void iset(const SkIPoint& p) { |
michael@0 | 166 | fX = SkIntToScalar(p.fX); |
michael@0 | 167 | fY = SkIntToScalar(p.fY); |
michael@0 | 168 | } |
michael@0 | 169 | |
michael@0 | 170 | void setAbs(const SkPoint& pt) { |
michael@0 | 171 | fX = SkScalarAbs(pt.fX); |
michael@0 | 172 | fY = SkScalarAbs(pt.fY); |
michael@0 | 173 | } |
michael@0 | 174 | |
michael@0 | 175 | // counter-clockwise fan |
michael@0 | 176 | void setIRectFan(int l, int t, int r, int b) { |
michael@0 | 177 | SkPoint* v = this; |
michael@0 | 178 | v[0].set(SkIntToScalar(l), SkIntToScalar(t)); |
michael@0 | 179 | v[1].set(SkIntToScalar(l), SkIntToScalar(b)); |
michael@0 | 180 | v[2].set(SkIntToScalar(r), SkIntToScalar(b)); |
michael@0 | 181 | v[3].set(SkIntToScalar(r), SkIntToScalar(t)); |
michael@0 | 182 | } |
michael@0 | 183 | void setIRectFan(int l, int t, int r, int b, size_t stride); |
michael@0 | 184 | |
michael@0 | 185 | // counter-clockwise fan |
michael@0 | 186 | void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b) { |
michael@0 | 187 | SkPoint* v = this; |
michael@0 | 188 | v[0].set(l, t); |
michael@0 | 189 | v[1].set(l, b); |
michael@0 | 190 | v[2].set(r, b); |
michael@0 | 191 | v[3].set(r, t); |
michael@0 | 192 | } |
michael@0 | 193 | void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, size_t stride); |
michael@0 | 194 | |
michael@0 | 195 | static void Offset(SkPoint points[], int count, const SkPoint& offset) { |
michael@0 | 196 | Offset(points, count, offset.fX, offset.fY); |
michael@0 | 197 | } |
michael@0 | 198 | |
michael@0 | 199 | static void Offset(SkPoint points[], int count, SkScalar dx, SkScalar dy) { |
michael@0 | 200 | for (int i = 0; i < count; ++i) { |
michael@0 | 201 | points[i].offset(dx, dy); |
michael@0 | 202 | } |
michael@0 | 203 | } |
michael@0 | 204 | |
michael@0 | 205 | void offset(SkScalar dx, SkScalar dy) { |
michael@0 | 206 | fX += dx; |
michael@0 | 207 | fY += dy; |
michael@0 | 208 | } |
michael@0 | 209 | |
michael@0 | 210 | /** Return the euclidian distance from (0,0) to the point |
michael@0 | 211 | */ |
michael@0 | 212 | SkScalar length() const { return SkPoint::Length(fX, fY); } |
michael@0 | 213 | SkScalar distanceToOrigin() const { return this->length(); } |
michael@0 | 214 | |
michael@0 | 215 | /** |
michael@0 | 216 | * Return true if the computed length of the vector is >= the internal |
michael@0 | 217 | * tolerance (used to avoid dividing by tiny values). |
michael@0 | 218 | */ |
michael@0 | 219 | static bool CanNormalize(SkScalar dx, SkScalar dy) { |
michael@0 | 220 | // Simple enough (and performance critical sometimes) so we inline it. |
michael@0 | 221 | return (dx*dx + dy*dy) > (SK_ScalarNearlyZero * SK_ScalarNearlyZero); |
michael@0 | 222 | } |
michael@0 | 223 | |
michael@0 | 224 | bool canNormalize() const { |
michael@0 | 225 | return CanNormalize(fX, fY); |
michael@0 | 226 | } |
michael@0 | 227 | |
michael@0 | 228 | /** Set the point (vector) to be unit-length in the same direction as it |
michael@0 | 229 | already points. If the point has a degenerate length (i.e. nearly 0) |
michael@0 | 230 | then return false and do nothing; otherwise return true. |
michael@0 | 231 | */ |
michael@0 | 232 | bool normalize(); |
michael@0 | 233 | |
michael@0 | 234 | /** Set the point (vector) to be unit-length in the same direction as the |
michael@0 | 235 | x,y params. If the vector (x,y) has a degenerate length (i.e. nearly 0) |
michael@0 | 236 | then return false and do nothing, otherwise return true. |
michael@0 | 237 | */ |
michael@0 | 238 | bool setNormalize(SkScalar x, SkScalar y); |
michael@0 | 239 | |
michael@0 | 240 | /** Scale the point (vector) to have the specified length, and return that |
michael@0 | 241 | length. If the original length is degenerately small (nearly zero), |
michael@0 | 242 | do nothing and return false, otherwise return true. |
michael@0 | 243 | */ |
michael@0 | 244 | bool setLength(SkScalar length); |
michael@0 | 245 | |
michael@0 | 246 | /** Set the point (vector) to have the specified length in the same |
michael@0 | 247 | direction as (x,y). If the vector (x,y) has a degenerate length |
michael@0 | 248 | (i.e. nearly 0) then return false and do nothing, otherwise return true. |
michael@0 | 249 | */ |
michael@0 | 250 | bool setLength(SkScalar x, SkScalar y, SkScalar length); |
michael@0 | 251 | |
michael@0 | 252 | /** Same as setLength, but favoring speed over accuracy. |
michael@0 | 253 | */ |
michael@0 | 254 | bool setLengthFast(SkScalar length); |
michael@0 | 255 | |
michael@0 | 256 | /** Same as setLength, but favoring speed over accuracy. |
michael@0 | 257 | */ |
michael@0 | 258 | bool setLengthFast(SkScalar x, SkScalar y, SkScalar length); |
michael@0 | 259 | |
michael@0 | 260 | /** Scale the point's coordinates by scale, writing the answer into dst. |
michael@0 | 261 | It is legal for dst == this. |
michael@0 | 262 | */ |
michael@0 | 263 | void scale(SkScalar scale, SkPoint* dst) const; |
michael@0 | 264 | |
michael@0 | 265 | /** Scale the point's coordinates by scale, writing the answer back into |
michael@0 | 266 | the point. |
michael@0 | 267 | */ |
michael@0 | 268 | void scale(SkScalar value) { this->scale(value, this); } |
michael@0 | 269 | |
michael@0 | 270 | /** Rotate the point clockwise by 90 degrees, writing the answer into dst. |
michael@0 | 271 | It is legal for dst == this. |
michael@0 | 272 | */ |
michael@0 | 273 | void rotateCW(SkPoint* dst) const; |
michael@0 | 274 | |
michael@0 | 275 | /** Rotate the point clockwise by 90 degrees, writing the answer back into |
michael@0 | 276 | the point. |
michael@0 | 277 | */ |
michael@0 | 278 | void rotateCW() { this->rotateCW(this); } |
michael@0 | 279 | |
michael@0 | 280 | /** Rotate the point counter-clockwise by 90 degrees, writing the answer |
michael@0 | 281 | into dst. It is legal for dst == this. |
michael@0 | 282 | */ |
michael@0 | 283 | void rotateCCW(SkPoint* dst) const; |
michael@0 | 284 | |
michael@0 | 285 | /** Rotate the point counter-clockwise by 90 degrees, writing the answer |
michael@0 | 286 | back into the point. |
michael@0 | 287 | */ |
michael@0 | 288 | void rotateCCW() { this->rotateCCW(this); } |
michael@0 | 289 | |
michael@0 | 290 | /** Negate the point's coordinates |
michael@0 | 291 | */ |
michael@0 | 292 | void negate() { |
michael@0 | 293 | fX = -fX; |
michael@0 | 294 | fY = -fY; |
michael@0 | 295 | } |
michael@0 | 296 | |
michael@0 | 297 | /** Returns a new point whose coordinates are the negative of the point's |
michael@0 | 298 | */ |
michael@0 | 299 | SkPoint operator-() const { |
michael@0 | 300 | SkPoint neg; |
michael@0 | 301 | neg.fX = -fX; |
michael@0 | 302 | neg.fY = -fY; |
michael@0 | 303 | return neg; |
michael@0 | 304 | } |
michael@0 | 305 | |
michael@0 | 306 | /** Add v's coordinates to the point's |
michael@0 | 307 | */ |
michael@0 | 308 | void operator+=(const SkPoint& v) { |
michael@0 | 309 | fX += v.fX; |
michael@0 | 310 | fY += v.fY; |
michael@0 | 311 | } |
michael@0 | 312 | |
michael@0 | 313 | /** Subtract v's coordinates from the point's |
michael@0 | 314 | */ |
michael@0 | 315 | void operator-=(const SkPoint& v) { |
michael@0 | 316 | fX -= v.fX; |
michael@0 | 317 | fY -= v.fY; |
michael@0 | 318 | } |
michael@0 | 319 | |
michael@0 | 320 | /** |
michael@0 | 321 | * Returns true if both X and Y are finite (not infinity or NaN) |
michael@0 | 322 | */ |
michael@0 | 323 | bool isFinite() const { |
michael@0 | 324 | SkScalar accum = 0; |
michael@0 | 325 | accum *= fX; |
michael@0 | 326 | accum *= fY; |
michael@0 | 327 | |
michael@0 | 328 | // accum is either NaN or it is finite (zero). |
michael@0 | 329 | SkASSERT(0 == accum || !(accum == accum)); |
michael@0 | 330 | |
michael@0 | 331 | // value==value will be true iff value is not NaN |
michael@0 | 332 | // TODO: is it faster to say !accum or accum==accum? |
michael@0 | 333 | return accum == accum; |
michael@0 | 334 | } |
michael@0 | 335 | |
michael@0 | 336 | /** |
michael@0 | 337 | * Returns true if the point's coordinates equal (x,y) |
michael@0 | 338 | */ |
michael@0 | 339 | bool equals(SkScalar x, SkScalar y) const { |
michael@0 | 340 | return fX == x && fY == y; |
michael@0 | 341 | } |
michael@0 | 342 | |
michael@0 | 343 | friend bool operator==(const SkPoint& a, const SkPoint& b) { |
michael@0 | 344 | return a.fX == b.fX && a.fY == b.fY; |
michael@0 | 345 | } |
michael@0 | 346 | |
michael@0 | 347 | friend bool operator!=(const SkPoint& a, const SkPoint& b) { |
michael@0 | 348 | return a.fX != b.fX || a.fY != b.fY; |
michael@0 | 349 | } |
michael@0 | 350 | |
michael@0 | 351 | /** Return true if this point and the given point are far enough apart |
michael@0 | 352 | such that a vector between them would be non-degenerate. |
michael@0 | 353 | |
michael@0 | 354 | WARNING: Unlike the explicit tolerance version, |
michael@0 | 355 | this method does not use componentwise comparison. Instead, it |
michael@0 | 356 | uses a comparison designed to match judgments elsewhere regarding |
michael@0 | 357 | degeneracy ("points A and B are so close that the vector between them |
michael@0 | 358 | is essentially zero"). |
michael@0 | 359 | */ |
michael@0 | 360 | bool equalsWithinTolerance(const SkPoint& p) const { |
michael@0 | 361 | return !CanNormalize(fX - p.fX, fY - p.fY); |
michael@0 | 362 | } |
michael@0 | 363 | |
michael@0 | 364 | /** WARNING: There is no guarantee that the result will reflect judgments |
michael@0 | 365 | elsewhere regarding degeneracy ("points A and B are so close that the |
michael@0 | 366 | vector between them is essentially zero"). |
michael@0 | 367 | */ |
michael@0 | 368 | bool equalsWithinTolerance(const SkPoint& p, SkScalar tol) const { |
michael@0 | 369 | return SkScalarNearlyZero(fX - p.fX, tol) |
michael@0 | 370 | && SkScalarNearlyZero(fY - p.fY, tol); |
michael@0 | 371 | } |
michael@0 | 372 | |
michael@0 | 373 | /** Returns a new point whose coordinates are the difference between |
michael@0 | 374 | a's and b's (a - b) |
michael@0 | 375 | */ |
michael@0 | 376 | friend SkPoint operator-(const SkPoint& a, const SkPoint& b) { |
michael@0 | 377 | SkPoint v; |
michael@0 | 378 | v.set(a.fX - b.fX, a.fY - b.fY); |
michael@0 | 379 | return v; |
michael@0 | 380 | } |
michael@0 | 381 | |
michael@0 | 382 | /** Returns a new point whose coordinates are the sum of a's and b's (a + b) |
michael@0 | 383 | */ |
michael@0 | 384 | friend SkPoint operator+(const SkPoint& a, const SkPoint& b) { |
michael@0 | 385 | SkPoint v; |
michael@0 | 386 | v.set(a.fX + b.fX, a.fY + b.fY); |
michael@0 | 387 | return v; |
michael@0 | 388 | } |
michael@0 | 389 | |
michael@0 | 390 | /** Returns the euclidian distance from (0,0) to (x,y) |
michael@0 | 391 | */ |
michael@0 | 392 | static SkScalar Length(SkScalar x, SkScalar y); |
michael@0 | 393 | |
michael@0 | 394 | /** Normalize pt, returning its previous length. If the prev length is too |
michael@0 | 395 | small (degenerate), return 0 and leave pt unchanged. This uses the same |
michael@0 | 396 | tolerance as CanNormalize. |
michael@0 | 397 | |
michael@0 | 398 | Note that this method may be significantly more expensive than |
michael@0 | 399 | the non-static normalize(), because it has to return the previous length |
michael@0 | 400 | of the point. If you don't need the previous length, call the |
michael@0 | 401 | non-static normalize() method instead. |
michael@0 | 402 | */ |
michael@0 | 403 | static SkScalar Normalize(SkPoint* pt); |
michael@0 | 404 | |
michael@0 | 405 | /** Returns the euclidian distance between a and b |
michael@0 | 406 | */ |
michael@0 | 407 | static SkScalar Distance(const SkPoint& a, const SkPoint& b) { |
michael@0 | 408 | return Length(a.fX - b.fX, a.fY - b.fY); |
michael@0 | 409 | } |
michael@0 | 410 | |
michael@0 | 411 | /** Returns the dot product of a and b, treating them as 2D vectors |
michael@0 | 412 | */ |
michael@0 | 413 | static SkScalar DotProduct(const SkPoint& a, const SkPoint& b) { |
michael@0 | 414 | return a.fX * b.fX + a.fY * b.fY; |
michael@0 | 415 | } |
michael@0 | 416 | |
michael@0 | 417 | /** Returns the cross product of a and b, treating them as 2D vectors |
michael@0 | 418 | */ |
michael@0 | 419 | static SkScalar CrossProduct(const SkPoint& a, const SkPoint& b) { |
michael@0 | 420 | return a.fX * b.fY - a.fY * b.fX; |
michael@0 | 421 | } |
michael@0 | 422 | |
michael@0 | 423 | SkScalar cross(const SkPoint& vec) const { |
michael@0 | 424 | return CrossProduct(*this, vec); |
michael@0 | 425 | } |
michael@0 | 426 | |
michael@0 | 427 | SkScalar dot(const SkPoint& vec) const { |
michael@0 | 428 | return DotProduct(*this, vec); |
michael@0 | 429 | } |
michael@0 | 430 | |
michael@0 | 431 | SkScalar lengthSqd() const { |
michael@0 | 432 | return DotProduct(*this, *this); |
michael@0 | 433 | } |
michael@0 | 434 | |
michael@0 | 435 | SkScalar distanceToSqd(const SkPoint& pt) const { |
michael@0 | 436 | SkScalar dx = fX - pt.fX; |
michael@0 | 437 | SkScalar dy = fY - pt.fY; |
michael@0 | 438 | return dx * dx + dy * dy; |
michael@0 | 439 | } |
michael@0 | 440 | |
michael@0 | 441 | /** |
michael@0 | 442 | * The side of a point relative to a line. If the line is from a to b then |
michael@0 | 443 | * the values are consistent with the sign of (b-a) cross (pt-a) |
michael@0 | 444 | */ |
michael@0 | 445 | enum Side { |
michael@0 | 446 | kLeft_Side = -1, |
michael@0 | 447 | kOn_Side = 0, |
michael@0 | 448 | kRight_Side = 1 |
michael@0 | 449 | }; |
michael@0 | 450 | |
michael@0 | 451 | /** |
michael@0 | 452 | * Returns the squared distance to the infinite line between two pts. Also |
michael@0 | 453 | * optionally returns the side of the line that the pt falls on (looking |
michael@0 | 454 | * along line from a to b) |
michael@0 | 455 | */ |
michael@0 | 456 | SkScalar distanceToLineBetweenSqd(const SkPoint& a, |
michael@0 | 457 | const SkPoint& b, |
michael@0 | 458 | Side* side = NULL) const; |
michael@0 | 459 | |
michael@0 | 460 | /** |
michael@0 | 461 | * Returns the distance to the infinite line between two pts. Also |
michael@0 | 462 | * optionally returns the side of the line that the pt falls on (looking |
michael@0 | 463 | * along the line from a to b) |
michael@0 | 464 | */ |
michael@0 | 465 | SkScalar distanceToLineBetween(const SkPoint& a, |
michael@0 | 466 | const SkPoint& b, |
michael@0 | 467 | Side* side = NULL) const { |
michael@0 | 468 | return SkScalarSqrt(this->distanceToLineBetweenSqd(a, b, side)); |
michael@0 | 469 | } |
michael@0 | 470 | |
michael@0 | 471 | /** |
michael@0 | 472 | * Returns the squared distance to the line segment between pts a and b |
michael@0 | 473 | */ |
michael@0 | 474 | SkScalar distanceToLineSegmentBetweenSqd(const SkPoint& a, |
michael@0 | 475 | const SkPoint& b) const; |
michael@0 | 476 | |
michael@0 | 477 | /** |
michael@0 | 478 | * Returns the distance to the line segment between pts a and b. |
michael@0 | 479 | */ |
michael@0 | 480 | SkScalar distanceToLineSegmentBetween(const SkPoint& a, |
michael@0 | 481 | const SkPoint& b) const { |
michael@0 | 482 | return SkScalarSqrt(this->distanceToLineSegmentBetweenSqd(a, b)); |
michael@0 | 483 | } |
michael@0 | 484 | |
michael@0 | 485 | /** |
michael@0 | 486 | * Make this vector be orthogonal to vec. Looking down vec the |
michael@0 | 487 | * new vector will point in direction indicated by side (which |
michael@0 | 488 | * must be kLeft_Side or kRight_Side). |
michael@0 | 489 | */ |
michael@0 | 490 | void setOrthog(const SkPoint& vec, Side side = kLeft_Side) { |
michael@0 | 491 | // vec could be this |
michael@0 | 492 | SkScalar tmp = vec.fX; |
michael@0 | 493 | if (kRight_Side == side) { |
michael@0 | 494 | fX = -vec.fY; |
michael@0 | 495 | fY = tmp; |
michael@0 | 496 | } else { |
michael@0 | 497 | SkASSERT(kLeft_Side == side); |
michael@0 | 498 | fX = vec.fY; |
michael@0 | 499 | fY = -tmp; |
michael@0 | 500 | } |
michael@0 | 501 | } |
michael@0 | 502 | |
michael@0 | 503 | /** |
michael@0 | 504 | * cast-safe way to treat the point as an array of (2) SkScalars. |
michael@0 | 505 | */ |
michael@0 | 506 | const SkScalar* asScalars() const { return &fX; } |
michael@0 | 507 | }; |
michael@0 | 508 | |
michael@0 | 509 | typedef SkPoint SkVector; |
michael@0 | 510 | |
michael@0 | 511 | #endif |