Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
michael@0 | 1 | |
michael@0 | 2 | /* |
michael@0 | 3 | * Copyright 2006 The Android Open Source Project |
michael@0 | 4 | * |
michael@0 | 5 | * Use of this source code is governed by a BSD-style license that can be |
michael@0 | 6 | * found in the LICENSE file. |
michael@0 | 7 | */ |
michael@0 | 8 | |
michael@0 | 9 | |
michael@0 | 10 | #ifndef SkRect_DEFINED |
michael@0 | 11 | #define SkRect_DEFINED |
michael@0 | 12 | |
michael@0 | 13 | #include "SkPoint.h" |
michael@0 | 14 | #include "SkSize.h" |
michael@0 | 15 | |
michael@0 | 16 | /** \struct SkIRect |
michael@0 | 17 | |
michael@0 | 18 | SkIRect holds four 32 bit integer coordinates for a rectangle |
michael@0 | 19 | */ |
michael@0 | 20 | struct SK_API SkIRect { |
michael@0 | 21 | int32_t fLeft, fTop, fRight, fBottom; |
michael@0 | 22 | |
michael@0 | 23 | static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() { |
michael@0 | 24 | SkIRect r; |
michael@0 | 25 | r.setEmpty(); |
michael@0 | 26 | return r; |
michael@0 | 27 | } |
michael@0 | 28 | |
michael@0 | 29 | static SkIRect SK_WARN_UNUSED_RESULT MakeLargest() { |
michael@0 | 30 | SkIRect r; |
michael@0 | 31 | r.setLargest(); |
michael@0 | 32 | return r; |
michael@0 | 33 | } |
michael@0 | 34 | |
michael@0 | 35 | static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) { |
michael@0 | 36 | SkIRect r; |
michael@0 | 37 | r.set(0, 0, w, h); |
michael@0 | 38 | return r; |
michael@0 | 39 | } |
michael@0 | 40 | |
michael@0 | 41 | static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) { |
michael@0 | 42 | SkIRect r; |
michael@0 | 43 | r.set(0, 0, size.width(), size.height()); |
michael@0 | 44 | return r; |
michael@0 | 45 | } |
michael@0 | 46 | |
michael@0 | 47 | static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) { |
michael@0 | 48 | SkIRect rect; |
michael@0 | 49 | rect.set(l, t, r, b); |
michael@0 | 50 | return rect; |
michael@0 | 51 | } |
michael@0 | 52 | |
michael@0 | 53 | static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) { |
michael@0 | 54 | SkIRect r; |
michael@0 | 55 | r.set(x, y, x + w, y + h); |
michael@0 | 56 | return r; |
michael@0 | 57 | } |
michael@0 | 58 | |
michael@0 | 59 | int left() const { return fLeft; } |
michael@0 | 60 | int top() const { return fTop; } |
michael@0 | 61 | int right() const { return fRight; } |
michael@0 | 62 | int bottom() const { return fBottom; } |
michael@0 | 63 | |
michael@0 | 64 | /** return the left edge of the rect */ |
michael@0 | 65 | int x() const { return fLeft; } |
michael@0 | 66 | /** return the top edge of the rect */ |
michael@0 | 67 | int y() const { return fTop; } |
michael@0 | 68 | /** |
michael@0 | 69 | * Returns the rectangle's width. This does not check for a valid rect |
michael@0 | 70 | * (i.e. left <= right) so the result may be negative. |
michael@0 | 71 | */ |
michael@0 | 72 | int width() const { return fRight - fLeft; } |
michael@0 | 73 | |
michael@0 | 74 | /** |
michael@0 | 75 | * Returns the rectangle's height. This does not check for a valid rect |
michael@0 | 76 | * (i.e. top <= bottom) so the result may be negative. |
michael@0 | 77 | */ |
michael@0 | 78 | int height() const { return fBottom - fTop; } |
michael@0 | 79 | |
michael@0 | 80 | /** |
michael@0 | 81 | * Since the center of an integer rect may fall on a factional value, this |
michael@0 | 82 | * method is defined to return (right + left) >> 1. |
michael@0 | 83 | * |
michael@0 | 84 | * This is a specific "truncation" of the average, which is different than |
michael@0 | 85 | * (right + left) / 2 when the sum is negative. |
michael@0 | 86 | */ |
michael@0 | 87 | int centerX() const { return (fRight + fLeft) >> 1; } |
michael@0 | 88 | |
michael@0 | 89 | /** |
michael@0 | 90 | * Since the center of an integer rect may fall on a factional value, this |
michael@0 | 91 | * method is defined to return (bottom + top) >> 1 |
michael@0 | 92 | * |
michael@0 | 93 | * This is a specific "truncation" of the average, which is different than |
michael@0 | 94 | * (bottom + top) / 2 when the sum is negative. |
michael@0 | 95 | */ |
michael@0 | 96 | int centerY() const { return (fBottom + fTop) >> 1; } |
michael@0 | 97 | |
michael@0 | 98 | /** |
michael@0 | 99 | * Return true if the rectangle's width or height are <= 0 |
michael@0 | 100 | */ |
michael@0 | 101 | bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } |
michael@0 | 102 | |
michael@0 | 103 | bool isLargest() const { return SK_MinS32 == fLeft && |
michael@0 | 104 | SK_MinS32 == fTop && |
michael@0 | 105 | SK_MaxS32 == fRight && |
michael@0 | 106 | SK_MaxS32 == fBottom; } |
michael@0 | 107 | |
michael@0 | 108 | friend bool operator==(const SkIRect& a, const SkIRect& b) { |
michael@0 | 109 | return !memcmp(&a, &b, sizeof(a)); |
michael@0 | 110 | } |
michael@0 | 111 | |
michael@0 | 112 | friend bool operator!=(const SkIRect& a, const SkIRect& b) { |
michael@0 | 113 | return !(a == b); |
michael@0 | 114 | } |
michael@0 | 115 | |
michael@0 | 116 | bool is16Bit() const { |
michael@0 | 117 | return SkIsS16(fLeft) && SkIsS16(fTop) && |
michael@0 | 118 | SkIsS16(fRight) && SkIsS16(fBottom); |
michael@0 | 119 | } |
michael@0 | 120 | |
michael@0 | 121 | /** Set the rectangle to (0,0,0,0) |
michael@0 | 122 | */ |
michael@0 | 123 | void setEmpty() { memset(this, 0, sizeof(*this)); } |
michael@0 | 124 | |
michael@0 | 125 | void set(int32_t left, int32_t top, int32_t right, int32_t bottom) { |
michael@0 | 126 | fLeft = left; |
michael@0 | 127 | fTop = top; |
michael@0 | 128 | fRight = right; |
michael@0 | 129 | fBottom = bottom; |
michael@0 | 130 | } |
michael@0 | 131 | // alias for set(l, t, r, b) |
michael@0 | 132 | void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) { |
michael@0 | 133 | this->set(left, top, right, bottom); |
michael@0 | 134 | } |
michael@0 | 135 | |
michael@0 | 136 | void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) { |
michael@0 | 137 | fLeft = x; |
michael@0 | 138 | fTop = y; |
michael@0 | 139 | fRight = x + width; |
michael@0 | 140 | fBottom = y + height; |
michael@0 | 141 | } |
michael@0 | 142 | |
michael@0 | 143 | /** |
michael@0 | 144 | * Make the largest representable rectangle |
michael@0 | 145 | */ |
michael@0 | 146 | void setLargest() { |
michael@0 | 147 | fLeft = fTop = SK_MinS32; |
michael@0 | 148 | fRight = fBottom = SK_MaxS32; |
michael@0 | 149 | } |
michael@0 | 150 | |
michael@0 | 151 | /** |
michael@0 | 152 | * Make the largest representable rectangle, but inverted (e.g. fLeft will |
michael@0 | 153 | * be max 32bit and right will be min 32bit). |
michael@0 | 154 | */ |
michael@0 | 155 | void setLargestInverted() { |
michael@0 | 156 | fLeft = fTop = SK_MaxS32; |
michael@0 | 157 | fRight = fBottom = SK_MinS32; |
michael@0 | 158 | } |
michael@0 | 159 | |
michael@0 | 160 | /** Offset set the rectangle by adding dx to its left and right, |
michael@0 | 161 | and adding dy to its top and bottom. |
michael@0 | 162 | */ |
michael@0 | 163 | void offset(int32_t dx, int32_t dy) { |
michael@0 | 164 | fLeft += dx; |
michael@0 | 165 | fTop += dy; |
michael@0 | 166 | fRight += dx; |
michael@0 | 167 | fBottom += dy; |
michael@0 | 168 | } |
michael@0 | 169 | |
michael@0 | 170 | void offset(const SkIPoint& delta) { |
michael@0 | 171 | this->offset(delta.fX, delta.fY); |
michael@0 | 172 | } |
michael@0 | 173 | |
michael@0 | 174 | /** |
michael@0 | 175 | * Offset this rect such its new x() and y() will equal newX and newY. |
michael@0 | 176 | */ |
michael@0 | 177 | void offsetTo(int32_t newX, int32_t newY) { |
michael@0 | 178 | fRight += newX - fLeft; |
michael@0 | 179 | fBottom += newY - fTop; |
michael@0 | 180 | fLeft = newX; |
michael@0 | 181 | fTop = newY; |
michael@0 | 182 | } |
michael@0 | 183 | |
michael@0 | 184 | /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards, |
michael@0 | 185 | making the rectangle narrower. If dx is negative, then the sides are moved outwards, |
michael@0 | 186 | making the rectangle wider. The same holds true for dy and the top and bottom. |
michael@0 | 187 | */ |
michael@0 | 188 | void inset(int32_t dx, int32_t dy) { |
michael@0 | 189 | fLeft += dx; |
michael@0 | 190 | fTop += dy; |
michael@0 | 191 | fRight -= dx; |
michael@0 | 192 | fBottom -= dy; |
michael@0 | 193 | } |
michael@0 | 194 | |
michael@0 | 195 | /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are |
michael@0 | 196 | moved outwards, making the rectangle wider. If dx is negative, then the |
michael@0 | 197 | sides are moved inwards, making the rectangle narrower. The same holds |
michael@0 | 198 | true for dy and the top and bottom. |
michael@0 | 199 | */ |
michael@0 | 200 | void outset(int32_t dx, int32_t dy) { this->inset(-dx, -dy); } |
michael@0 | 201 | |
michael@0 | 202 | bool quickReject(int l, int t, int r, int b) const { |
michael@0 | 203 | return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b; |
michael@0 | 204 | } |
michael@0 | 205 | |
michael@0 | 206 | /** Returns true if (x,y) is inside the rectangle and the rectangle is not |
michael@0 | 207 | empty. The left and top are considered to be inside, while the right |
michael@0 | 208 | and bottom are not. Thus for the rectangle (0, 0, 5, 10), the |
michael@0 | 209 | points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not. |
michael@0 | 210 | */ |
michael@0 | 211 | bool contains(int32_t x, int32_t y) const { |
michael@0 | 212 | return (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) && |
michael@0 | 213 | (unsigned)(y - fTop) < (unsigned)(fBottom - fTop); |
michael@0 | 214 | } |
michael@0 | 215 | |
michael@0 | 216 | /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle. |
michael@0 | 217 | If either rectangle is empty, contains() returns false. |
michael@0 | 218 | */ |
michael@0 | 219 | bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const { |
michael@0 | 220 | return left < right && top < bottom && !this->isEmpty() && // check for empties |
michael@0 | 221 | fLeft <= left && fTop <= top && |
michael@0 | 222 | fRight >= right && fBottom >= bottom; |
michael@0 | 223 | } |
michael@0 | 224 | |
michael@0 | 225 | /** Returns true if the specified rectangle r is inside or equal to this rectangle. |
michael@0 | 226 | */ |
michael@0 | 227 | bool contains(const SkIRect& r) const { |
michael@0 | 228 | return !r.isEmpty() && !this->isEmpty() && // check for empties |
michael@0 | 229 | fLeft <= r.fLeft && fTop <= r.fTop && |
michael@0 | 230 | fRight >= r.fRight && fBottom >= r.fBottom; |
michael@0 | 231 | } |
michael@0 | 232 | |
michael@0 | 233 | /** Return true if this rectangle contains the specified rectangle. |
michael@0 | 234 | For speed, this method does not check if either this or the specified |
michael@0 | 235 | rectangles are empty, and if either is, its return value is undefined. |
michael@0 | 236 | In the debugging build however, we assert that both this and the |
michael@0 | 237 | specified rectangles are non-empty. |
michael@0 | 238 | */ |
michael@0 | 239 | bool containsNoEmptyCheck(int32_t left, int32_t top, |
michael@0 | 240 | int32_t right, int32_t bottom) const { |
michael@0 | 241 | SkASSERT(fLeft < fRight && fTop < fBottom); |
michael@0 | 242 | SkASSERT(left < right && top < bottom); |
michael@0 | 243 | |
michael@0 | 244 | return fLeft <= left && fTop <= top && |
michael@0 | 245 | fRight >= right && fBottom >= bottom; |
michael@0 | 246 | } |
michael@0 | 247 | |
michael@0 | 248 | bool containsNoEmptyCheck(const SkIRect& r) const { |
michael@0 | 249 | return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom); |
michael@0 | 250 | } |
michael@0 | 251 | |
michael@0 | 252 | /** If r intersects this rectangle, return true and set this rectangle to that |
michael@0 | 253 | intersection, otherwise return false and do not change this rectangle. |
michael@0 | 254 | If either rectangle is empty, do nothing and return false. |
michael@0 | 255 | */ |
michael@0 | 256 | bool intersect(const SkIRect& r) { |
michael@0 | 257 | SkASSERT(&r); |
michael@0 | 258 | return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom); |
michael@0 | 259 | } |
michael@0 | 260 | |
michael@0 | 261 | /** If rectangles a and b intersect, return true and set this rectangle to |
michael@0 | 262 | that intersection, otherwise return false and do not change this |
michael@0 | 263 | rectangle. If either rectangle is empty, do nothing and return false. |
michael@0 | 264 | */ |
michael@0 | 265 | bool intersect(const SkIRect& a, const SkIRect& b) { |
michael@0 | 266 | SkASSERT(&a && &b); |
michael@0 | 267 | |
michael@0 | 268 | if (!a.isEmpty() && !b.isEmpty() && |
michael@0 | 269 | a.fLeft < b.fRight && b.fLeft < a.fRight && |
michael@0 | 270 | a.fTop < b.fBottom && b.fTop < a.fBottom) { |
michael@0 | 271 | fLeft = SkMax32(a.fLeft, b.fLeft); |
michael@0 | 272 | fTop = SkMax32(a.fTop, b.fTop); |
michael@0 | 273 | fRight = SkMin32(a.fRight, b.fRight); |
michael@0 | 274 | fBottom = SkMin32(a.fBottom, b.fBottom); |
michael@0 | 275 | return true; |
michael@0 | 276 | } |
michael@0 | 277 | return false; |
michael@0 | 278 | } |
michael@0 | 279 | |
michael@0 | 280 | /** If rectangles a and b intersect, return true and set this rectangle to |
michael@0 | 281 | that intersection, otherwise return false and do not change this |
michael@0 | 282 | rectangle. For speed, no check to see if a or b are empty is performed. |
michael@0 | 283 | If either is, then the return result is undefined. In the debug build, |
michael@0 | 284 | we assert that both rectangles are non-empty. |
michael@0 | 285 | */ |
michael@0 | 286 | bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) { |
michael@0 | 287 | SkASSERT(&a && &b); |
michael@0 | 288 | SkASSERT(!a.isEmpty() && !b.isEmpty()); |
michael@0 | 289 | |
michael@0 | 290 | if (a.fLeft < b.fRight && b.fLeft < a.fRight && |
michael@0 | 291 | a.fTop < b.fBottom && b.fTop < a.fBottom) { |
michael@0 | 292 | fLeft = SkMax32(a.fLeft, b.fLeft); |
michael@0 | 293 | fTop = SkMax32(a.fTop, b.fTop); |
michael@0 | 294 | fRight = SkMin32(a.fRight, b.fRight); |
michael@0 | 295 | fBottom = SkMin32(a.fBottom, b.fBottom); |
michael@0 | 296 | return true; |
michael@0 | 297 | } |
michael@0 | 298 | return false; |
michael@0 | 299 | } |
michael@0 | 300 | |
michael@0 | 301 | /** If the rectangle specified by left,top,right,bottom intersects this rectangle, |
michael@0 | 302 | return true and set this rectangle to that intersection, |
michael@0 | 303 | otherwise return false and do not change this rectangle. |
michael@0 | 304 | If either rectangle is empty, do nothing and return false. |
michael@0 | 305 | */ |
michael@0 | 306 | bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) { |
michael@0 | 307 | if (left < right && top < bottom && !this->isEmpty() && |
michael@0 | 308 | fLeft < right && left < fRight && fTop < bottom && top < fBottom) { |
michael@0 | 309 | if (fLeft < left) fLeft = left; |
michael@0 | 310 | if (fTop < top) fTop = top; |
michael@0 | 311 | if (fRight > right) fRight = right; |
michael@0 | 312 | if (fBottom > bottom) fBottom = bottom; |
michael@0 | 313 | return true; |
michael@0 | 314 | } |
michael@0 | 315 | return false; |
michael@0 | 316 | } |
michael@0 | 317 | |
michael@0 | 318 | /** Returns true if a and b are not empty, and they intersect |
michael@0 | 319 | */ |
michael@0 | 320 | static bool Intersects(const SkIRect& a, const SkIRect& b) { |
michael@0 | 321 | return !a.isEmpty() && !b.isEmpty() && // check for empties |
michael@0 | 322 | a.fLeft < b.fRight && b.fLeft < a.fRight && |
michael@0 | 323 | a.fTop < b.fBottom && b.fTop < a.fBottom; |
michael@0 | 324 | } |
michael@0 | 325 | |
michael@0 | 326 | /** |
michael@0 | 327 | * Returns true if a and b intersect. debug-asserts that neither are empty. |
michael@0 | 328 | */ |
michael@0 | 329 | static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) { |
michael@0 | 330 | SkASSERT(!a.isEmpty()); |
michael@0 | 331 | SkASSERT(!b.isEmpty()); |
michael@0 | 332 | return a.fLeft < b.fRight && b.fLeft < a.fRight && |
michael@0 | 333 | a.fTop < b.fBottom && b.fTop < a.fBottom; |
michael@0 | 334 | } |
michael@0 | 335 | |
michael@0 | 336 | /** Update this rectangle to enclose itself and the specified rectangle. |
michael@0 | 337 | If this rectangle is empty, just set it to the specified rectangle. If the specified |
michael@0 | 338 | rectangle is empty, do nothing. |
michael@0 | 339 | */ |
michael@0 | 340 | void join(int32_t left, int32_t top, int32_t right, int32_t bottom); |
michael@0 | 341 | |
michael@0 | 342 | /** Update this rectangle to enclose itself and the specified rectangle. |
michael@0 | 343 | If this rectangle is empty, just set it to the specified rectangle. If the specified |
michael@0 | 344 | rectangle is empty, do nothing. |
michael@0 | 345 | */ |
michael@0 | 346 | void join(const SkIRect& r) { |
michael@0 | 347 | this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); |
michael@0 | 348 | } |
michael@0 | 349 | |
michael@0 | 350 | /** Swap top/bottom or left/right if there are flipped. |
michael@0 | 351 | This can be called if the edges are computed separately, |
michael@0 | 352 | and may have crossed over each other. |
michael@0 | 353 | When this returns, left <= right && top <= bottom |
michael@0 | 354 | */ |
michael@0 | 355 | void sort(); |
michael@0 | 356 | |
michael@0 | 357 | static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() { |
michael@0 | 358 | static const SkIRect gEmpty = { 0, 0, 0, 0 }; |
michael@0 | 359 | return gEmpty; |
michael@0 | 360 | } |
michael@0 | 361 | }; |
michael@0 | 362 | |
michael@0 | 363 | /** \struct SkRect |
michael@0 | 364 | */ |
michael@0 | 365 | struct SK_API SkRect { |
michael@0 | 366 | SkScalar fLeft, fTop, fRight, fBottom; |
michael@0 | 367 | |
michael@0 | 368 | static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() { |
michael@0 | 369 | SkRect r; |
michael@0 | 370 | r.setEmpty(); |
michael@0 | 371 | return r; |
michael@0 | 372 | } |
michael@0 | 373 | |
michael@0 | 374 | static SkRect SK_WARN_UNUSED_RESULT MakeLargest() { |
michael@0 | 375 | SkRect r; |
michael@0 | 376 | r.setLargest(); |
michael@0 | 377 | return r; |
michael@0 | 378 | } |
michael@0 | 379 | |
michael@0 | 380 | static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) { |
michael@0 | 381 | SkRect r; |
michael@0 | 382 | r.set(0, 0, w, h); |
michael@0 | 383 | return r; |
michael@0 | 384 | } |
michael@0 | 385 | |
michael@0 | 386 | static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) { |
michael@0 | 387 | SkRect r; |
michael@0 | 388 | r.set(0, 0, size.width(), size.height()); |
michael@0 | 389 | return r; |
michael@0 | 390 | } |
michael@0 | 391 | |
michael@0 | 392 | static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) { |
michael@0 | 393 | SkRect rect; |
michael@0 | 394 | rect.set(l, t, r, b); |
michael@0 | 395 | return rect; |
michael@0 | 396 | } |
michael@0 | 397 | |
michael@0 | 398 | static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) { |
michael@0 | 399 | SkRect r; |
michael@0 | 400 | r.set(x, y, x + w, y + h); |
michael@0 | 401 | return r; |
michael@0 | 402 | } |
michael@0 | 403 | |
michael@0 | 404 | SK_ATTR_DEPRECATED("use Make()") |
michael@0 | 405 | static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) { |
michael@0 | 406 | SkRect r; |
michael@0 | 407 | r.set(SkIntToScalar(irect.fLeft), |
michael@0 | 408 | SkIntToScalar(irect.fTop), |
michael@0 | 409 | SkIntToScalar(irect.fRight), |
michael@0 | 410 | SkIntToScalar(irect.fBottom)); |
michael@0 | 411 | return r; |
michael@0 | 412 | } |
michael@0 | 413 | |
michael@0 | 414 | static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) { |
michael@0 | 415 | SkRect r; |
michael@0 | 416 | r.set(SkIntToScalar(irect.fLeft), |
michael@0 | 417 | SkIntToScalar(irect.fTop), |
michael@0 | 418 | SkIntToScalar(irect.fRight), |
michael@0 | 419 | SkIntToScalar(irect.fBottom)); |
michael@0 | 420 | return r; |
michael@0 | 421 | } |
michael@0 | 422 | |
michael@0 | 423 | /** |
michael@0 | 424 | * Return true if the rectangle's width or height are <= 0 |
michael@0 | 425 | */ |
michael@0 | 426 | bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } |
michael@0 | 427 | |
michael@0 | 428 | bool isLargest() const { return SK_ScalarMin == fLeft && |
michael@0 | 429 | SK_ScalarMin == fTop && |
michael@0 | 430 | SK_ScalarMax == fRight && |
michael@0 | 431 | SK_ScalarMax == fBottom; } |
michael@0 | 432 | |
michael@0 | 433 | /** |
michael@0 | 434 | * Returns true iff all values in the rect are finite. If any are |
michael@0 | 435 | * infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this |
michael@0 | 436 | * returns false. |
michael@0 | 437 | */ |
michael@0 | 438 | bool isFinite() const { |
michael@0 | 439 | float accum = 0; |
michael@0 | 440 | accum *= fLeft; |
michael@0 | 441 | accum *= fTop; |
michael@0 | 442 | accum *= fRight; |
michael@0 | 443 | accum *= fBottom; |
michael@0 | 444 | |
michael@0 | 445 | // accum is either NaN or it is finite (zero). |
michael@0 | 446 | SkASSERT(0 == accum || !(accum == accum)); |
michael@0 | 447 | |
michael@0 | 448 | // value==value will be true iff value is not NaN |
michael@0 | 449 | // TODO: is it faster to say !accum or accum==accum? |
michael@0 | 450 | return accum == accum; |
michael@0 | 451 | } |
michael@0 | 452 | |
michael@0 | 453 | SkScalar x() const { return fLeft; } |
michael@0 | 454 | SkScalar y() const { return fTop; } |
michael@0 | 455 | SkScalar left() const { return fLeft; } |
michael@0 | 456 | SkScalar top() const { return fTop; } |
michael@0 | 457 | SkScalar right() const { return fRight; } |
michael@0 | 458 | SkScalar bottom() const { return fBottom; } |
michael@0 | 459 | SkScalar width() const { return fRight - fLeft; } |
michael@0 | 460 | SkScalar height() const { return fBottom - fTop; } |
michael@0 | 461 | SkScalar centerX() const { return SkScalarHalf(fLeft + fRight); } |
michael@0 | 462 | SkScalar centerY() const { return SkScalarHalf(fTop + fBottom); } |
michael@0 | 463 | |
michael@0 | 464 | friend bool operator==(const SkRect& a, const SkRect& b) { |
michael@0 | 465 | return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); |
michael@0 | 466 | } |
michael@0 | 467 | |
michael@0 | 468 | friend bool operator!=(const SkRect& a, const SkRect& b) { |
michael@0 | 469 | return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); |
michael@0 | 470 | } |
michael@0 | 471 | |
michael@0 | 472 | /** return the 4 points that enclose the rectangle (top-left, top-right, bottom-right, |
michael@0 | 473 | bottom-left). TODO: Consider adding param to control whether quad is CW or CCW. |
michael@0 | 474 | */ |
michael@0 | 475 | void toQuad(SkPoint quad[4]) const; |
michael@0 | 476 | |
michael@0 | 477 | /** Set this rectangle to the empty rectangle (0,0,0,0) |
michael@0 | 478 | */ |
michael@0 | 479 | void setEmpty() { memset(this, 0, sizeof(*this)); } |
michael@0 | 480 | |
michael@0 | 481 | void set(const SkIRect& src) { |
michael@0 | 482 | fLeft = SkIntToScalar(src.fLeft); |
michael@0 | 483 | fTop = SkIntToScalar(src.fTop); |
michael@0 | 484 | fRight = SkIntToScalar(src.fRight); |
michael@0 | 485 | fBottom = SkIntToScalar(src.fBottom); |
michael@0 | 486 | } |
michael@0 | 487 | |
michael@0 | 488 | void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { |
michael@0 | 489 | fLeft = left; |
michael@0 | 490 | fTop = top; |
michael@0 | 491 | fRight = right; |
michael@0 | 492 | fBottom = bottom; |
michael@0 | 493 | } |
michael@0 | 494 | // alias for set(l, t, r, b) |
michael@0 | 495 | void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { |
michael@0 | 496 | this->set(left, top, right, bottom); |
michael@0 | 497 | } |
michael@0 | 498 | |
michael@0 | 499 | /** Initialize the rect with the 4 specified integers. The routine handles |
michael@0 | 500 | converting them to scalars (by calling SkIntToScalar) |
michael@0 | 501 | */ |
michael@0 | 502 | void iset(int left, int top, int right, int bottom) { |
michael@0 | 503 | fLeft = SkIntToScalar(left); |
michael@0 | 504 | fTop = SkIntToScalar(top); |
michael@0 | 505 | fRight = SkIntToScalar(right); |
michael@0 | 506 | fBottom = SkIntToScalar(bottom); |
michael@0 | 507 | } |
michael@0 | 508 | |
michael@0 | 509 | /** |
michael@0 | 510 | * Set this rectangle to be left/top at 0,0, and have the specified width |
michael@0 | 511 | * and height (automatically converted to SkScalar). |
michael@0 | 512 | */ |
michael@0 | 513 | void isetWH(int width, int height) { |
michael@0 | 514 | fLeft = fTop = 0; |
michael@0 | 515 | fRight = SkIntToScalar(width); |
michael@0 | 516 | fBottom = SkIntToScalar(height); |
michael@0 | 517 | } |
michael@0 | 518 | |
michael@0 | 519 | /** Set this rectangle to be the bounds of the array of points. |
michael@0 | 520 | If the array is empty (count == 0), then set this rectangle |
michael@0 | 521 | to the empty rectangle (0,0,0,0) |
michael@0 | 522 | */ |
michael@0 | 523 | void set(const SkPoint pts[], int count) { |
michael@0 | 524 | // set() had been checking for non-finite values, so keep that behavior |
michael@0 | 525 | // for now. Now that we have setBoundsCheck(), we may decide to make |
michael@0 | 526 | // set() be simpler/faster, and not check for those. |
michael@0 | 527 | (void)this->setBoundsCheck(pts, count); |
michael@0 | 528 | } |
michael@0 | 529 | |
michael@0 | 530 | // alias for set(pts, count) |
michael@0 | 531 | void setBounds(const SkPoint pts[], int count) { |
michael@0 | 532 | (void)this->setBoundsCheck(pts, count); |
michael@0 | 533 | } |
michael@0 | 534 | |
michael@0 | 535 | /** |
michael@0 | 536 | * Compute the bounds of the array of points, and set this rect to that |
michael@0 | 537 | * bounds and return true... unless a non-finite value is encountered, |
michael@0 | 538 | * in which case this rect is set to empty and false is returned. |
michael@0 | 539 | */ |
michael@0 | 540 | bool setBoundsCheck(const SkPoint pts[], int count); |
michael@0 | 541 | |
michael@0 | 542 | void set(const SkPoint& p0, const SkPoint& p1) { |
michael@0 | 543 | fLeft = SkMinScalar(p0.fX, p1.fX); |
michael@0 | 544 | fRight = SkMaxScalar(p0.fX, p1.fX); |
michael@0 | 545 | fTop = SkMinScalar(p0.fY, p1.fY); |
michael@0 | 546 | fBottom = SkMaxScalar(p0.fY, p1.fY); |
michael@0 | 547 | } |
michael@0 | 548 | |
michael@0 | 549 | void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) { |
michael@0 | 550 | fLeft = x; |
michael@0 | 551 | fTop = y; |
michael@0 | 552 | fRight = x + width; |
michael@0 | 553 | fBottom = y + height; |
michael@0 | 554 | } |
michael@0 | 555 | |
michael@0 | 556 | void setWH(SkScalar width, SkScalar height) { |
michael@0 | 557 | fLeft = 0; |
michael@0 | 558 | fTop = 0; |
michael@0 | 559 | fRight = width; |
michael@0 | 560 | fBottom = height; |
michael@0 | 561 | } |
michael@0 | 562 | |
michael@0 | 563 | /** |
michael@0 | 564 | * Make the largest representable rectangle |
michael@0 | 565 | */ |
michael@0 | 566 | void setLargest() { |
michael@0 | 567 | fLeft = fTop = SK_ScalarMin; |
michael@0 | 568 | fRight = fBottom = SK_ScalarMax; |
michael@0 | 569 | } |
michael@0 | 570 | |
michael@0 | 571 | /** |
michael@0 | 572 | * Make the largest representable rectangle, but inverted (e.g. fLeft will |
michael@0 | 573 | * be max and right will be min). |
michael@0 | 574 | */ |
michael@0 | 575 | void setLargestInverted() { |
michael@0 | 576 | fLeft = fTop = SK_ScalarMax; |
michael@0 | 577 | fRight = fBottom = SK_ScalarMin; |
michael@0 | 578 | } |
michael@0 | 579 | |
michael@0 | 580 | /** Offset set the rectangle by adding dx to its left and right, |
michael@0 | 581 | and adding dy to its top and bottom. |
michael@0 | 582 | */ |
michael@0 | 583 | void offset(SkScalar dx, SkScalar dy) { |
michael@0 | 584 | fLeft += dx; |
michael@0 | 585 | fTop += dy; |
michael@0 | 586 | fRight += dx; |
michael@0 | 587 | fBottom += dy; |
michael@0 | 588 | } |
michael@0 | 589 | |
michael@0 | 590 | void offset(const SkPoint& delta) { |
michael@0 | 591 | this->offset(delta.fX, delta.fY); |
michael@0 | 592 | } |
michael@0 | 593 | |
michael@0 | 594 | /** |
michael@0 | 595 | * Offset this rect such its new x() and y() will equal newX and newY. |
michael@0 | 596 | */ |
michael@0 | 597 | void offsetTo(SkScalar newX, SkScalar newY) { |
michael@0 | 598 | fRight += newX - fLeft; |
michael@0 | 599 | fBottom += newY - fTop; |
michael@0 | 600 | fLeft = newX; |
michael@0 | 601 | fTop = newY; |
michael@0 | 602 | } |
michael@0 | 603 | |
michael@0 | 604 | /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are |
michael@0 | 605 | moved inwards, making the rectangle narrower. If dx is negative, then |
michael@0 | 606 | the sides are moved outwards, making the rectangle wider. The same holds |
michael@0 | 607 | true for dy and the top and bottom. |
michael@0 | 608 | */ |
michael@0 | 609 | void inset(SkScalar dx, SkScalar dy) { |
michael@0 | 610 | fLeft += dx; |
michael@0 | 611 | fTop += dy; |
michael@0 | 612 | fRight -= dx; |
michael@0 | 613 | fBottom -= dy; |
michael@0 | 614 | } |
michael@0 | 615 | |
michael@0 | 616 | /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are |
michael@0 | 617 | moved outwards, making the rectangle wider. If dx is negative, then the |
michael@0 | 618 | sides are moved inwards, making the rectangle narrower. The same holds |
michael@0 | 619 | true for dy and the top and bottom. |
michael@0 | 620 | */ |
michael@0 | 621 | void outset(SkScalar dx, SkScalar dy) { this->inset(-dx, -dy); } |
michael@0 | 622 | |
michael@0 | 623 | /** If this rectangle intersects r, return true and set this rectangle to that |
michael@0 | 624 | intersection, otherwise return false and do not change this rectangle. |
michael@0 | 625 | If either rectangle is empty, do nothing and return false. |
michael@0 | 626 | */ |
michael@0 | 627 | bool intersect(const SkRect& r); |
michael@0 | 628 | bool intersect2(const SkRect& r); |
michael@0 | 629 | |
michael@0 | 630 | /** If this rectangle intersects the rectangle specified by left, top, right, bottom, |
michael@0 | 631 | return true and set this rectangle to that intersection, otherwise return false |
michael@0 | 632 | and do not change this rectangle. |
michael@0 | 633 | If either rectangle is empty, do nothing and return false. |
michael@0 | 634 | */ |
michael@0 | 635 | bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); |
michael@0 | 636 | |
michael@0 | 637 | /** |
michael@0 | 638 | * Return true if this rectangle is not empty, and the specified sides of |
michael@0 | 639 | * a rectangle are not empty, and they intersect. |
michael@0 | 640 | */ |
michael@0 | 641 | bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const { |
michael@0 | 642 | return // first check that both are not empty |
michael@0 | 643 | left < right && top < bottom && |
michael@0 | 644 | fLeft < fRight && fTop < fBottom && |
michael@0 | 645 | // now check for intersection |
michael@0 | 646 | fLeft < right && left < fRight && |
michael@0 | 647 | fTop < bottom && top < fBottom; |
michael@0 | 648 | } |
michael@0 | 649 | |
michael@0 | 650 | /** If rectangles a and b intersect, return true and set this rectangle to |
michael@0 | 651 | * that intersection, otherwise return false and do not change this |
michael@0 | 652 | * rectangle. If either rectangle is empty, do nothing and return false. |
michael@0 | 653 | */ |
michael@0 | 654 | bool intersect(const SkRect& a, const SkRect& b); |
michael@0 | 655 | |
michael@0 | 656 | /** |
michael@0 | 657 | * Return true if rectangles a and b are not empty and intersect. |
michael@0 | 658 | */ |
michael@0 | 659 | static bool Intersects(const SkRect& a, const SkRect& b) { |
michael@0 | 660 | return !a.isEmpty() && !b.isEmpty() && |
michael@0 | 661 | a.fLeft < b.fRight && b.fLeft < a.fRight && |
michael@0 | 662 | a.fTop < b.fBottom && b.fTop < a.fBottom; |
michael@0 | 663 | } |
michael@0 | 664 | |
michael@0 | 665 | /** |
michael@0 | 666 | * Update this rectangle to enclose itself and the specified rectangle. |
michael@0 | 667 | * If this rectangle is empty, just set it to the specified rectangle. |
michael@0 | 668 | * If the specified rectangle is empty, do nothing. |
michael@0 | 669 | */ |
michael@0 | 670 | void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); |
michael@0 | 671 | |
michael@0 | 672 | /** Update this rectangle to enclose itself and the specified rectangle. |
michael@0 | 673 | If this rectangle is empty, just set it to the specified rectangle. If the specified |
michael@0 | 674 | rectangle is empty, do nothing. |
michael@0 | 675 | */ |
michael@0 | 676 | void join(const SkRect& r) { |
michael@0 | 677 | this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); |
michael@0 | 678 | } |
michael@0 | 679 | // alias for join() |
michael@0 | 680 | void growToInclude(const SkRect& r) { this->join(r); } |
michael@0 | 681 | |
michael@0 | 682 | /** |
michael@0 | 683 | * Grow the rect to include the specified (x,y). After this call, the |
michael@0 | 684 | * following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom. |
michael@0 | 685 | * |
michael@0 | 686 | * This is close, but not quite the same contract as contains(), since |
michael@0 | 687 | * contains() treats the left and top different from the right and bottom. |
michael@0 | 688 | * contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note |
michael@0 | 689 | * that contains(x,y) always returns false if the rect is empty. |
michael@0 | 690 | */ |
michael@0 | 691 | void growToInclude(SkScalar x, SkScalar y) { |
michael@0 | 692 | fLeft = SkMinScalar(x, fLeft); |
michael@0 | 693 | fRight = SkMaxScalar(x, fRight); |
michael@0 | 694 | fTop = SkMinScalar(y, fTop); |
michael@0 | 695 | fBottom = SkMaxScalar(y, fBottom); |
michael@0 | 696 | } |
michael@0 | 697 | |
michael@0 | 698 | /** Bulk version of growToInclude */ |
michael@0 | 699 | void growToInclude(const SkPoint pts[], int count) { |
michael@0 | 700 | this->growToInclude(pts, sizeof(SkPoint), count); |
michael@0 | 701 | } |
michael@0 | 702 | |
michael@0 | 703 | /** Bulk version of growToInclude with stride. */ |
michael@0 | 704 | void growToInclude(const SkPoint pts[], size_t stride, int count) { |
michael@0 | 705 | SkASSERT(count >= 0); |
michael@0 | 706 | SkASSERT(stride >= sizeof(SkPoint)); |
michael@0 | 707 | const SkPoint* end = (const SkPoint*)((intptr_t)pts + count * stride); |
michael@0 | 708 | for (; pts < end; pts = (const SkPoint*)((intptr_t)pts + stride)) { |
michael@0 | 709 | this->growToInclude(pts->fX, pts->fY); |
michael@0 | 710 | } |
michael@0 | 711 | } |
michael@0 | 712 | |
michael@0 | 713 | /** |
michael@0 | 714 | * Return true if this rectangle contains r, and if both rectangles are |
michael@0 | 715 | * not empty. |
michael@0 | 716 | */ |
michael@0 | 717 | bool contains(const SkRect& r) const { |
michael@0 | 718 | // todo: can we eliminate the this->isEmpty check? |
michael@0 | 719 | return !r.isEmpty() && !this->isEmpty() && |
michael@0 | 720 | fLeft <= r.fLeft && fTop <= r.fTop && |
michael@0 | 721 | fRight >= r.fRight && fBottom >= r.fBottom; |
michael@0 | 722 | } |
michael@0 | 723 | |
michael@0 | 724 | /** |
michael@0 | 725 | * Set the dst rectangle by rounding this rectangle's coordinates to their |
michael@0 | 726 | * nearest integer values using SkScalarRoundToInt. |
michael@0 | 727 | */ |
michael@0 | 728 | void round(SkIRect* dst) const { |
michael@0 | 729 | SkASSERT(dst); |
michael@0 | 730 | dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop), |
michael@0 | 731 | SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom)); |
michael@0 | 732 | } |
michael@0 | 733 | |
michael@0 | 734 | /** |
michael@0 | 735 | * Set the dst rectangle by rounding "out" this rectangle, choosing the |
michael@0 | 736 | * SkScalarFloor of top and left, and the SkScalarCeil of right and bottom. |
michael@0 | 737 | */ |
michael@0 | 738 | void roundOut(SkIRect* dst) const { |
michael@0 | 739 | SkASSERT(dst); |
michael@0 | 740 | dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop), |
michael@0 | 741 | SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom)); |
michael@0 | 742 | } |
michael@0 | 743 | |
michael@0 | 744 | /** |
michael@0 | 745 | * Expand this rectangle by rounding its coordinates "out", choosing the |
michael@0 | 746 | * floor of top and left, and the ceil of right and bottom. If this rect |
michael@0 | 747 | * is already on integer coordinates, then it will be unchanged. |
michael@0 | 748 | */ |
michael@0 | 749 | void roundOut() { |
michael@0 | 750 | this->set(SkScalarFloorToScalar(fLeft), |
michael@0 | 751 | SkScalarFloorToScalar(fTop), |
michael@0 | 752 | SkScalarCeilToScalar(fRight), |
michael@0 | 753 | SkScalarCeilToScalar(fBottom)); |
michael@0 | 754 | } |
michael@0 | 755 | |
michael@0 | 756 | /** |
michael@0 | 757 | * Set the dst rectangle by rounding "in" this rectangle, choosing the |
michael@0 | 758 | * ceil of top and left, and the floor of right and bottom. This does *not* |
michael@0 | 759 | * call sort(), so it is possible that the resulting rect is inverted... |
michael@0 | 760 | * e.g. left >= right or top >= bottom. Call isEmpty() to detect that. |
michael@0 | 761 | */ |
michael@0 | 762 | void roundIn(SkIRect* dst) const { |
michael@0 | 763 | SkASSERT(dst); |
michael@0 | 764 | dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop), |
michael@0 | 765 | SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom)); |
michael@0 | 766 | } |
michael@0 | 767 | |
michael@0 | 768 | /** |
michael@0 | 769 | * Return a new SkIRect which is contains the rounded coordinates of this |
michael@0 | 770 | * rect using SkScalarRoundToInt. |
michael@0 | 771 | */ |
michael@0 | 772 | SkIRect round() const { |
michael@0 | 773 | SkIRect ir; |
michael@0 | 774 | this->round(&ir); |
michael@0 | 775 | return ir; |
michael@0 | 776 | } |
michael@0 | 777 | |
michael@0 | 778 | /** |
michael@0 | 779 | * Swap top/bottom or left/right if there are flipped (i.e. if width() |
michael@0 | 780 | * or height() would have returned a negative value.) This should be called |
michael@0 | 781 | * if the edges are computed separately, and may have crossed over each |
michael@0 | 782 | * other. When this returns, left <= right && top <= bottom |
michael@0 | 783 | */ |
michael@0 | 784 | void sort(); |
michael@0 | 785 | |
michael@0 | 786 | /** |
michael@0 | 787 | * cast-safe way to treat the rect as an array of (4) SkScalars. |
michael@0 | 788 | */ |
michael@0 | 789 | const SkScalar* asScalars() const { return &fLeft; } |
michael@0 | 790 | }; |
michael@0 | 791 | |
michael@0 | 792 | #endif |