gfx/skia/trunk/include/core/SkRefCnt.h

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1
michael@0 2 /*
michael@0 3 * Copyright 2006 The Android Open Source Project
michael@0 4 *
michael@0 5 * Use of this source code is governed by a BSD-style license that can be
michael@0 6 * found in the LICENSE file.
michael@0 7 */
michael@0 8
michael@0 9
michael@0 10 #ifndef SkRefCnt_DEFINED
michael@0 11 #define SkRefCnt_DEFINED
michael@0 12
michael@0 13 #include "SkDynamicAnnotations.h"
michael@0 14 #include "SkThread.h"
michael@0 15 #include "SkInstCnt.h"
michael@0 16 #include "SkTemplates.h"
michael@0 17
michael@0 18 /** \class SkRefCntBase
michael@0 19
michael@0 20 SkRefCntBase is the base class for objects that may be shared by multiple
michael@0 21 objects. When an existing owner wants to share a reference, it calls ref().
michael@0 22 When an owner wants to release its reference, it calls unref(). When the
michael@0 23 shared object's reference count goes to zero as the result of an unref()
michael@0 24 call, its (virtual) destructor is called. It is an error for the
michael@0 25 destructor to be called explicitly (or via the object going out of scope on
michael@0 26 the stack or calling delete) if getRefCnt() > 1.
michael@0 27 */
michael@0 28 class SK_API SkRefCntBase : public SkNoncopyable {
michael@0 29 public:
michael@0 30 SK_DECLARE_INST_COUNT_ROOT(SkRefCntBase)
michael@0 31
michael@0 32 /** Default construct, initializing the reference count to 1.
michael@0 33 */
michael@0 34 SkRefCntBase() : fRefCnt(1) {}
michael@0 35
michael@0 36 /** Destruct, asserting that the reference count is 1.
michael@0 37 */
michael@0 38 virtual ~SkRefCntBase() {
michael@0 39 #ifdef SK_DEBUG
michael@0 40 SkASSERT(fRefCnt == 1);
michael@0 41 fRefCnt = 0; // illegal value, to catch us if we reuse after delete
michael@0 42 #endif
michael@0 43 }
michael@0 44
michael@0 45 /** Return the reference count. Use only for debugging. */
michael@0 46 int32_t getRefCnt() const { return fRefCnt; }
michael@0 47
michael@0 48 /** May return true if the caller is the only owner.
michael@0 49 * Ensures that all previous owner's actions are complete.
michael@0 50 */
michael@0 51 bool unique() const {
michael@0 52 // We believe we're reading fRefCnt in a safe way here, so we stifle the TSAN warning about
michael@0 53 // an unproctected read. Generally, don't read fRefCnt, and don't stifle this warning.
michael@0 54 bool const unique = (1 == SK_ANNOTATE_UNPROTECTED_READ(fRefCnt));
michael@0 55 if (unique) {
michael@0 56 // Acquire barrier (L/SL), if not provided by load of fRefCnt.
michael@0 57 // Prevents user's 'unique' code from happening before decrements.
michael@0 58 //TODO: issue the barrier.
michael@0 59 }
michael@0 60 return unique;
michael@0 61 }
michael@0 62
michael@0 63 /** Increment the reference count. Must be balanced by a call to unref().
michael@0 64 */
michael@0 65 void ref() const {
michael@0 66 SkASSERT(fRefCnt > 0);
michael@0 67 sk_atomic_inc(&fRefCnt); // No barrier required.
michael@0 68 }
michael@0 69
michael@0 70 /** Decrement the reference count. If the reference count is 1 before the
michael@0 71 decrement, then delete the object. Note that if this is the case, then
michael@0 72 the object needs to have been allocated via new, and not on the stack.
michael@0 73 */
michael@0 74 void unref() const {
michael@0 75 SkASSERT(fRefCnt > 0);
michael@0 76 // Release barrier (SL/S), if not provided below.
michael@0 77 if (sk_atomic_dec(&fRefCnt) == 1) {
michael@0 78 // Acquire barrier (L/SL), if not provided above.
michael@0 79 // Prevents code in dispose from happening before the decrement.
michael@0 80 sk_membar_acquire__after_atomic_dec();
michael@0 81 internal_dispose();
michael@0 82 }
michael@0 83 }
michael@0 84
michael@0 85 #ifdef SK_DEBUG
michael@0 86 void validate() const {
michael@0 87 SkASSERT(fRefCnt > 0);
michael@0 88 }
michael@0 89 #endif
michael@0 90
michael@0 91 protected:
michael@0 92 /**
michael@0 93 * Allow subclasses to call this if they've overridden internal_dispose
michael@0 94 * so they can reset fRefCnt before the destructor is called. Should only
michael@0 95 * be called right before calling through to inherited internal_dispose()
michael@0 96 * or before calling the destructor.
michael@0 97 */
michael@0 98 void internal_dispose_restore_refcnt_to_1() const {
michael@0 99 #ifdef SK_DEBUG
michael@0 100 SkASSERT(0 == fRefCnt);
michael@0 101 fRefCnt = 1;
michael@0 102 #endif
michael@0 103 }
michael@0 104
michael@0 105 private:
michael@0 106 /**
michael@0 107 * Called when the ref count goes to 0.
michael@0 108 */
michael@0 109 virtual void internal_dispose() const {
michael@0 110 this->internal_dispose_restore_refcnt_to_1();
michael@0 111 SkDELETE(this);
michael@0 112 }
michael@0 113
michael@0 114 // The following friends are those which override internal_dispose()
michael@0 115 // and conditionally call SkRefCnt::internal_dispose().
michael@0 116 friend class GrTexture;
michael@0 117 friend class SkWeakRefCnt;
michael@0 118
michael@0 119 mutable int32_t fRefCnt;
michael@0 120
michael@0 121 typedef SkNoncopyable INHERITED;
michael@0 122 };
michael@0 123
michael@0 124 #ifdef SK_REF_CNT_MIXIN_INCLUDE
michael@0 125 // It is the responsibility of the following include to define the type SkRefCnt.
michael@0 126 // This SkRefCnt should normally derive from SkRefCntBase.
michael@0 127 #include SK_REF_CNT_MIXIN_INCLUDE
michael@0 128 #else
michael@0 129 class SK_API SkRefCnt : public SkRefCntBase { };
michael@0 130 #endif
michael@0 131
michael@0 132 ///////////////////////////////////////////////////////////////////////////////
michael@0 133
michael@0 134 /** Helper macro to safely assign one SkRefCnt[TS]* to another, checking for
michael@0 135 null in on each side of the assignment, and ensuring that ref() is called
michael@0 136 before unref(), in case the two pointers point to the same object.
michael@0 137 */
michael@0 138 #define SkRefCnt_SafeAssign(dst, src) \
michael@0 139 do { \
michael@0 140 if (src) src->ref(); \
michael@0 141 if (dst) dst->unref(); \
michael@0 142 dst = src; \
michael@0 143 } while (0)
michael@0 144
michael@0 145
michael@0 146 /** Call obj->ref() and return obj. The obj must not be NULL.
michael@0 147 */
michael@0 148 template <typename T> static inline T* SkRef(T* obj) {
michael@0 149 SkASSERT(obj);
michael@0 150 obj->ref();
michael@0 151 return obj;
michael@0 152 }
michael@0 153
michael@0 154 /** Check if the argument is non-null, and if so, call obj->ref() and return obj.
michael@0 155 */
michael@0 156 template <typename T> static inline T* SkSafeRef(T* obj) {
michael@0 157 if (obj) {
michael@0 158 obj->ref();
michael@0 159 }
michael@0 160 return obj;
michael@0 161 }
michael@0 162
michael@0 163 /** Check if the argument is non-null, and if so, call obj->unref()
michael@0 164 */
michael@0 165 template <typename T> static inline void SkSafeUnref(T* obj) {
michael@0 166 if (obj) {
michael@0 167 obj->unref();
michael@0 168 }
michael@0 169 }
michael@0 170
michael@0 171 template<typename T> static inline void SkSafeSetNull(T*& obj) {
michael@0 172 if (NULL != obj) {
michael@0 173 obj->unref();
michael@0 174 obj = NULL;
michael@0 175 }
michael@0 176 }
michael@0 177
michael@0 178 ///////////////////////////////////////////////////////////////////////////////
michael@0 179
michael@0 180 /**
michael@0 181 * Utility class that simply unref's its argument in the destructor.
michael@0 182 */
michael@0 183 template <typename T> class SkAutoTUnref : SkNoncopyable {
michael@0 184 public:
michael@0 185 explicit SkAutoTUnref(T* obj = NULL) : fObj(obj) {}
michael@0 186 ~SkAutoTUnref() { SkSafeUnref(fObj); }
michael@0 187
michael@0 188 T* get() const { return fObj; }
michael@0 189
michael@0 190 T* reset(T* obj) {
michael@0 191 SkSafeUnref(fObj);
michael@0 192 fObj = obj;
michael@0 193 return obj;
michael@0 194 }
michael@0 195
michael@0 196 void swap(SkAutoTUnref* other) {
michael@0 197 T* tmp = fObj;
michael@0 198 fObj = other->fObj;
michael@0 199 other->fObj = tmp;
michael@0 200 }
michael@0 201
michael@0 202 /**
michael@0 203 * Return the hosted object (which may be null), transferring ownership.
michael@0 204 * The reference count is not modified, and the internal ptr is set to NULL
michael@0 205 * so unref() will not be called in our destructor. A subsequent call to
michael@0 206 * detach() will do nothing and return null.
michael@0 207 */
michael@0 208 T* detach() {
michael@0 209 T* obj = fObj;
michael@0 210 fObj = NULL;
michael@0 211 return obj;
michael@0 212 }
michael@0 213
michael@0 214 /**
michael@0 215 * BlockRef<B> is a type which inherits from B, cannot be created,
michael@0 216 * cannot be deleted, and makes ref and unref private.
michael@0 217 */
michael@0 218 template<typename B> class BlockRef : public B {
michael@0 219 private:
michael@0 220 BlockRef();
michael@0 221 ~BlockRef();
michael@0 222 void ref() const;
michael@0 223 void unref() const;
michael@0 224 };
michael@0 225
michael@0 226 /** If T is const, the type returned from operator-> will also be const. */
michael@0 227 typedef typename SkTConstType<BlockRef<T>, SkTIsConst<T>::value>::type BlockRefType;
michael@0 228
michael@0 229 /**
michael@0 230 * SkAutoTUnref assumes ownership of the ref. As a result, it is an error
michael@0 231 * for the user to ref or unref through SkAutoTUnref. Therefore
michael@0 232 * SkAutoTUnref::operator-> returns BlockRef<T>*. This prevents use of
michael@0 233 * skAutoTUnrefInstance->ref() and skAutoTUnrefInstance->unref().
michael@0 234 */
michael@0 235 BlockRefType *operator->() const {
michael@0 236 return static_cast<BlockRefType*>(fObj);
michael@0 237 }
michael@0 238 operator T*() { return fObj; }
michael@0 239
michael@0 240 private:
michael@0 241 T* fObj;
michael@0 242 };
michael@0 243 // Can't use the #define trick below to guard a bare SkAutoTUnref(...) because it's templated. :(
michael@0 244
michael@0 245 class SkAutoUnref : public SkAutoTUnref<SkRefCnt> {
michael@0 246 public:
michael@0 247 SkAutoUnref(SkRefCnt* obj) : SkAutoTUnref<SkRefCnt>(obj) {}
michael@0 248 };
michael@0 249 #define SkAutoUnref(...) SK_REQUIRE_LOCAL_VAR(SkAutoUnref)
michael@0 250
michael@0 251 class SkAutoRef : SkNoncopyable {
michael@0 252 public:
michael@0 253 SkAutoRef(SkRefCnt* obj) : fObj(obj) { SkSafeRef(obj); }
michael@0 254 ~SkAutoRef() { SkSafeUnref(fObj); }
michael@0 255 private:
michael@0 256 SkRefCnt* fObj;
michael@0 257 };
michael@0 258 #define SkAutoRef(...) SK_REQUIRE_LOCAL_VAR(SkAutoRef)
michael@0 259
michael@0 260 /** Wrapper class for SkRefCnt pointers. This manages ref/unref of a pointer to
michael@0 261 a SkRefCnt (or subclass) object.
michael@0 262 */
michael@0 263 template <typename T> class SkRefPtr {
michael@0 264 public:
michael@0 265 SkRefPtr() : fObj(NULL) {}
michael@0 266 SkRefPtr(T* obj) : fObj(obj) { SkSafeRef(fObj); }
michael@0 267 SkRefPtr(const SkRefPtr& o) : fObj(o.fObj) { SkSafeRef(fObj); }
michael@0 268 ~SkRefPtr() { SkSafeUnref(fObj); }
michael@0 269
michael@0 270 SkRefPtr& operator=(const SkRefPtr& rp) {
michael@0 271 SkRefCnt_SafeAssign(fObj, rp.fObj);
michael@0 272 return *this;
michael@0 273 }
michael@0 274 SkRefPtr& operator=(T* obj) {
michael@0 275 SkRefCnt_SafeAssign(fObj, obj);
michael@0 276 return *this;
michael@0 277 }
michael@0 278
michael@0 279 T* get() const { return fObj; }
michael@0 280 T& operator*() const { return *fObj; }
michael@0 281 T* operator->() const { return fObj; }
michael@0 282
michael@0 283 typedef T* SkRefPtr::*unspecified_bool_type;
michael@0 284 operator unspecified_bool_type() const {
michael@0 285 return fObj ? &SkRefPtr::fObj : NULL;
michael@0 286 }
michael@0 287
michael@0 288 private:
michael@0 289 T* fObj;
michael@0 290 };
michael@0 291
michael@0 292 #endif

mercurial