gfx/skia/trunk/include/core/SkRegion.h

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1
michael@0 2 /*
michael@0 3 * Copyright 2005 The Android Open Source Project
michael@0 4 *
michael@0 5 * Use of this source code is governed by a BSD-style license that can be
michael@0 6 * found in the LICENSE file.
michael@0 7 */
michael@0 8
michael@0 9
michael@0 10 #ifndef SkRegion_DEFINED
michael@0 11 #define SkRegion_DEFINED
michael@0 12
michael@0 13 #include "SkRect.h"
michael@0 14
michael@0 15 class SkPath;
michael@0 16 class SkRgnBuilder;
michael@0 17
michael@0 18 namespace android {
michael@0 19 class Region;
michael@0 20 }
michael@0 21
michael@0 22 #define SkRegion_gEmptyRunHeadPtr ((SkRegion::RunHead*)-1)
michael@0 23 #define SkRegion_gRectRunHeadPtr 0
michael@0 24
michael@0 25 /** \class SkRegion
michael@0 26
michael@0 27 The SkRegion class encapsulates the geometric region used to specify
michael@0 28 clipping areas for drawing.
michael@0 29 */
michael@0 30 class SK_API SkRegion {
michael@0 31 public:
michael@0 32 typedef int32_t RunType;
michael@0 33 enum {
michael@0 34 kRunTypeSentinel = 0x7FFFFFFF
michael@0 35 };
michael@0 36
michael@0 37 SkRegion();
michael@0 38 SkRegion(const SkRegion&);
michael@0 39 explicit SkRegion(const SkIRect&);
michael@0 40 ~SkRegion();
michael@0 41
michael@0 42 SkRegion& operator=(const SkRegion&);
michael@0 43
michael@0 44 /**
michael@0 45 * Return true if the two regions are equal. i.e. The enclose exactly
michael@0 46 * the same area.
michael@0 47 */
michael@0 48 bool operator==(const SkRegion& other) const;
michael@0 49
michael@0 50 /**
michael@0 51 * Return true if the two regions are not equal.
michael@0 52 */
michael@0 53 bool operator!=(const SkRegion& other) const {
michael@0 54 return !(*this == other);
michael@0 55 }
michael@0 56
michael@0 57 /**
michael@0 58 * Replace this region with the specified region, and return true if the
michael@0 59 * resulting region is non-empty.
michael@0 60 */
michael@0 61 bool set(const SkRegion& src) {
michael@0 62 SkASSERT(&src);
michael@0 63 *this = src;
michael@0 64 return !this->isEmpty();
michael@0 65 }
michael@0 66
michael@0 67 /**
michael@0 68 * Swap the contents of this and the specified region. This operation
michael@0 69 * is gauarenteed to never fail.
michael@0 70 */
michael@0 71 void swap(SkRegion&);
michael@0 72
michael@0 73 /** Return true if this region is empty */
michael@0 74 bool isEmpty() const { return fRunHead == SkRegion_gEmptyRunHeadPtr; }
michael@0 75
michael@0 76 /** Return true if this region is a single, non-empty rectangle */
michael@0 77 bool isRect() const { return fRunHead == SkRegion_gRectRunHeadPtr; }
michael@0 78
michael@0 79 /** Return true if this region consists of more than 1 rectangular area */
michael@0 80 bool isComplex() const { return !this->isEmpty() && !this->isRect(); }
michael@0 81
michael@0 82 /**
michael@0 83 * Return the bounds of this region. If the region is empty, returns an
michael@0 84 * empty rectangle.
michael@0 85 */
michael@0 86 const SkIRect& getBounds() const { return fBounds; }
michael@0 87
michael@0 88 /**
michael@0 89 * Returns a value that grows approximately linearly with the number of
michael@0 90 * intervals comprised in the region. Empty region will return 0, Rect
michael@0 91 * will return 1, Complex will return a value > 1.
michael@0 92 *
michael@0 93 * Use this to compare two regions, where the larger count likely
michael@0 94 * indicates a more complex region.
michael@0 95 */
michael@0 96 int computeRegionComplexity() const;
michael@0 97
michael@0 98 /**
michael@0 99 * Returns true if the region is non-empty, and if so, appends the
michael@0 100 * boundary(s) of the region to the specified path.
michael@0 101 * If the region is empty, returns false, and path is left unmodified.
michael@0 102 */
michael@0 103 bool getBoundaryPath(SkPath* path) const;
michael@0 104
michael@0 105 /**
michael@0 106 * Set the region to be empty, and return false, since the resulting
michael@0 107 * region is empty
michael@0 108 */
michael@0 109 bool setEmpty();
michael@0 110
michael@0 111 /**
michael@0 112 * If rect is non-empty, set this region to that rectangle and return true,
michael@0 113 * otherwise set this region to empty and return false.
michael@0 114 */
michael@0 115 bool setRect(const SkIRect&);
michael@0 116
michael@0 117 /**
michael@0 118 * If left < right and top < bottom, set this region to that rectangle and
michael@0 119 * return true, otherwise set this region to empty and return false.
michael@0 120 */
michael@0 121 bool setRect(int32_t left, int32_t top, int32_t right, int32_t bottom);
michael@0 122
michael@0 123 /**
michael@0 124 * Set this region to the union of an array of rects. This is generally
michael@0 125 * faster than calling region.op(rect, kUnion_Op) in a loop. If count is
michael@0 126 * 0, then this region is set to the empty region.
michael@0 127 * @return true if the resulting region is non-empty
michael@0 128 */
michael@0 129 bool setRects(const SkIRect rects[], int count);
michael@0 130
michael@0 131 /**
michael@0 132 * Set this region to the specified region, and return true if it is
michael@0 133 * non-empty.
michael@0 134 */
michael@0 135 bool setRegion(const SkRegion&);
michael@0 136
michael@0 137 /**
michael@0 138 * Set this region to the area described by the path, clipped.
michael@0 139 * Return true if the resulting region is non-empty.
michael@0 140 * This produces a region that is identical to the pixels that would be
michael@0 141 * drawn by the path (with no antialiasing) with the specified clip.
michael@0 142 */
michael@0 143 bool setPath(const SkPath&, const SkRegion& clip);
michael@0 144
michael@0 145 /**
michael@0 146 * Returns true if the specified rectangle has a non-empty intersection
michael@0 147 * with this region.
michael@0 148 */
michael@0 149 bool intersects(const SkIRect&) const;
michael@0 150
michael@0 151 /**
michael@0 152 * Returns true if the specified region has a non-empty intersection
michael@0 153 * with this region.
michael@0 154 */
michael@0 155 bool intersects(const SkRegion&) const;
michael@0 156
michael@0 157 /**
michael@0 158 * Return true if the specified x,y coordinate is inside the region.
michael@0 159 */
michael@0 160 bool contains(int32_t x, int32_t y) const;
michael@0 161
michael@0 162 /**
michael@0 163 * Return true if the specified rectangle is completely inside the region.
michael@0 164 * This works for simple (rectangular) and complex regions, and always
michael@0 165 * returns the correct result. Note: if either this region or the rectangle
michael@0 166 * is empty, contains() returns false.
michael@0 167 */
michael@0 168 bool contains(const SkIRect&) const;
michael@0 169
michael@0 170 /**
michael@0 171 * Return true if the specified region is completely inside the region.
michael@0 172 * This works for simple (rectangular) and complex regions, and always
michael@0 173 * returns the correct result. Note: if either region is empty, contains()
michael@0 174 * returns false.
michael@0 175 */
michael@0 176 bool contains(const SkRegion&) const;
michael@0 177
michael@0 178 /**
michael@0 179 * Return true if this region is a single rectangle (not complex) and the
michael@0 180 * specified rectangle is contained by this region. Returning false is not
michael@0 181 * a guarantee that the rectangle is not contained by this region, but
michael@0 182 * return true is a guarantee that the rectangle is contained by this region.
michael@0 183 */
michael@0 184 bool quickContains(const SkIRect& r) const {
michael@0 185 return this->quickContains(r.fLeft, r.fTop, r.fRight, r.fBottom);
michael@0 186 }
michael@0 187
michael@0 188 /**
michael@0 189 * Return true if this region is a single rectangle (not complex) and the
michael@0 190 * specified rectangle is contained by this region. Returning false is not
michael@0 191 * a guarantee that the rectangle is not contained by this region, but
michael@0 192 * return true is a guarantee that the rectangle is contained by this
michael@0 193 * region.
michael@0 194 */
michael@0 195 bool quickContains(int32_t left, int32_t top, int32_t right,
michael@0 196 int32_t bottom) const {
michael@0 197 SkASSERT(this->isEmpty() == fBounds.isEmpty()); // valid region
michael@0 198
michael@0 199 return left < right && top < bottom &&
michael@0 200 fRunHead == SkRegion_gRectRunHeadPtr && // this->isRect()
michael@0 201 /* fBounds.contains(left, top, right, bottom); */
michael@0 202 fBounds.fLeft <= left && fBounds.fTop <= top &&
michael@0 203 fBounds.fRight >= right && fBounds.fBottom >= bottom;
michael@0 204 }
michael@0 205
michael@0 206 /**
michael@0 207 * Return true if this region is empty, or if the specified rectangle does
michael@0 208 * not intersect the region. Returning false is not a guarantee that they
michael@0 209 * intersect, but returning true is a guarantee that they do not.
michael@0 210 */
michael@0 211 bool quickReject(const SkIRect& rect) const {
michael@0 212 return this->isEmpty() || rect.isEmpty() ||
michael@0 213 !SkIRect::Intersects(fBounds, rect);
michael@0 214 }
michael@0 215
michael@0 216 /**
michael@0 217 * Return true if this region, or rgn, is empty, or if their bounds do not
michael@0 218 * intersect. Returning false is not a guarantee that they intersect, but
michael@0 219 * returning true is a guarantee that they do not.
michael@0 220 */
michael@0 221 bool quickReject(const SkRegion& rgn) const {
michael@0 222 return this->isEmpty() || rgn.isEmpty() ||
michael@0 223 !SkIRect::Intersects(fBounds, rgn.fBounds);
michael@0 224 }
michael@0 225
michael@0 226 /** Translate the region by the specified (dx, dy) amount. */
michael@0 227 void translate(int dx, int dy) { this->translate(dx, dy, this); }
michael@0 228
michael@0 229 /**
michael@0 230 * Translate the region by the specified (dx, dy) amount, writing the
michael@0 231 * resulting region into dst. Note: it is legal to pass this region as the
michael@0 232 * dst parameter, effectively translating the region in place. If dst is
michael@0 233 * null, nothing happens.
michael@0 234 */
michael@0 235 void translate(int dx, int dy, SkRegion* dst) const;
michael@0 236
michael@0 237 /**
michael@0 238 * The logical operations that can be performed when combining two regions.
michael@0 239 */
michael@0 240 enum Op {
michael@0 241 kDifference_Op, //!< subtract the op region from the first region
michael@0 242 kIntersect_Op, //!< intersect the two regions
michael@0 243 kUnion_Op, //!< union (inclusive-or) the two regions
michael@0 244 kXOR_Op, //!< exclusive-or the two regions
michael@0 245 /** subtract the first region from the op region */
michael@0 246 kReverseDifference_Op,
michael@0 247 kReplace_Op //!< replace the dst region with the op region
michael@0 248 };
michael@0 249
michael@0 250 /**
michael@0 251 * Set this region to the result of applying the Op to this region and the
michael@0 252 * specified rectangle: this = (this op rect).
michael@0 253 * Return true if the resulting region is non-empty.
michael@0 254 */
michael@0 255 bool op(const SkIRect& rect, Op op) { return this->op(*this, rect, op); }
michael@0 256
michael@0 257 /**
michael@0 258 * Set this region to the result of applying the Op to this region and the
michael@0 259 * specified rectangle: this = (this op rect).
michael@0 260 * Return true if the resulting region is non-empty.
michael@0 261 */
michael@0 262 bool op(int left, int top, int right, int bottom, Op op) {
michael@0 263 SkIRect rect;
michael@0 264 rect.set(left, top, right, bottom);
michael@0 265 return this->op(*this, rect, op);
michael@0 266 }
michael@0 267
michael@0 268 /**
michael@0 269 * Set this region to the result of applying the Op to this region and the
michael@0 270 * specified region: this = (this op rgn).
michael@0 271 * Return true if the resulting region is non-empty.
michael@0 272 */
michael@0 273 bool op(const SkRegion& rgn, Op op) { return this->op(*this, rgn, op); }
michael@0 274
michael@0 275 /**
michael@0 276 * Set this region to the result of applying the Op to the specified
michael@0 277 * rectangle and region: this = (rect op rgn).
michael@0 278 * Return true if the resulting region is non-empty.
michael@0 279 */
michael@0 280 bool op(const SkIRect& rect, const SkRegion& rgn, Op);
michael@0 281
michael@0 282 /**
michael@0 283 * Set this region to the result of applying the Op to the specified
michael@0 284 * region and rectangle: this = (rgn op rect).
michael@0 285 * Return true if the resulting region is non-empty.
michael@0 286 */
michael@0 287 bool op(const SkRegion& rgn, const SkIRect& rect, Op);
michael@0 288
michael@0 289 /**
michael@0 290 * Set this region to the result of applying the Op to the specified
michael@0 291 * regions: this = (rgna op rgnb).
michael@0 292 * Return true if the resulting region is non-empty.
michael@0 293 */
michael@0 294 bool op(const SkRegion& rgna, const SkRegion& rgnb, Op op);
michael@0 295
michael@0 296 #ifdef SK_BUILD_FOR_ANDROID
michael@0 297 /** Returns a new char* containing the list of rectangles in this region
michael@0 298 */
michael@0 299 char* toString();
michael@0 300 #endif
michael@0 301
michael@0 302 /**
michael@0 303 * Returns the sequence of rectangles, sorted in Y and X, that make up
michael@0 304 * this region.
michael@0 305 */
michael@0 306 class SK_API Iterator {
michael@0 307 public:
michael@0 308 Iterator() : fRgn(NULL), fDone(true) {}
michael@0 309 Iterator(const SkRegion&);
michael@0 310 // if we have a region, reset to it and return true, else return false
michael@0 311 bool rewind();
michael@0 312 // reset the iterator, using the new region
michael@0 313 void reset(const SkRegion&);
michael@0 314 bool done() const { return fDone; }
michael@0 315 void next();
michael@0 316 const SkIRect& rect() const { return fRect; }
michael@0 317 // may return null
michael@0 318 const SkRegion* rgn() const { return fRgn; }
michael@0 319
michael@0 320 private:
michael@0 321 const SkRegion* fRgn;
michael@0 322 const RunType* fRuns;
michael@0 323 SkIRect fRect;
michael@0 324 bool fDone;
michael@0 325 };
michael@0 326
michael@0 327 /**
michael@0 328 * Returns the sequence of rectangles, sorted in Y and X, that make up
michael@0 329 * this region intersected with the specified clip rectangle.
michael@0 330 */
michael@0 331 class SK_API Cliperator {
michael@0 332 public:
michael@0 333 Cliperator(const SkRegion&, const SkIRect& clip);
michael@0 334 bool done() { return fDone; }
michael@0 335 void next();
michael@0 336 const SkIRect& rect() const { return fRect; }
michael@0 337
michael@0 338 private:
michael@0 339 Iterator fIter;
michael@0 340 SkIRect fClip;
michael@0 341 SkIRect fRect;
michael@0 342 bool fDone;
michael@0 343 };
michael@0 344
michael@0 345 /**
michael@0 346 * Returns the sequence of runs that make up this region for the specified
michael@0 347 * Y scanline, clipped to the specified left and right X values.
michael@0 348 */
michael@0 349 class Spanerator {
michael@0 350 public:
michael@0 351 Spanerator(const SkRegion&, int y, int left, int right);
michael@0 352 bool next(int* left, int* right);
michael@0 353
michael@0 354 private:
michael@0 355 const SkRegion::RunType* fRuns;
michael@0 356 int fLeft, fRight;
michael@0 357 bool fDone;
michael@0 358 };
michael@0 359
michael@0 360 /**
michael@0 361 * Write the region to the buffer, and return the number of bytes written.
michael@0 362 * If buffer is NULL, it still returns the number of bytes.
michael@0 363 */
michael@0 364 size_t writeToMemory(void* buffer) const;
michael@0 365 /**
michael@0 366 * Initializes the region from the buffer
michael@0 367 *
michael@0 368 * @param buffer Memory to read from
michael@0 369 * @param length Amount of memory available in the buffer
michael@0 370 * @return number of bytes read (must be a multiple of 4) or
michael@0 371 * 0 if there was not enough memory available
michael@0 372 */
michael@0 373 size_t readFromMemory(const void* buffer, size_t length);
michael@0 374
michael@0 375 /**
michael@0 376 * Returns a reference to a global empty region. Just a convenience for
michael@0 377 * callers that need a const empty region.
michael@0 378 */
michael@0 379 static const SkRegion& GetEmptyRegion();
michael@0 380
michael@0 381 SkDEBUGCODE(void dump() const;)
michael@0 382 SkDEBUGCODE(void validate() const;)
michael@0 383 SkDEBUGCODE(static void UnitTest();)
michael@0 384
michael@0 385 // expose this to allow for regression test on complex regions
michael@0 386 SkDEBUGCODE(bool debugSetRuns(const RunType runs[], int count);)
michael@0 387
michael@0 388 private:
michael@0 389 enum {
michael@0 390 kOpCount = kReplace_Op + 1
michael@0 391 };
michael@0 392
michael@0 393 enum {
michael@0 394 // T
michael@0 395 // [B N L R S]
michael@0 396 // S
michael@0 397 kRectRegionRuns = 7
michael@0 398 };
michael@0 399
michael@0 400 friend class android::Region; // needed for marshalling efficiently
michael@0 401
michael@0 402 struct RunHead;
michael@0 403
michael@0 404 // allocate space for count runs
michael@0 405 void allocateRuns(int count);
michael@0 406 void allocateRuns(int count, int ySpanCount, int intervalCount);
michael@0 407 void allocateRuns(const RunHead& src);
michael@0 408
michael@0 409 SkIRect fBounds;
michael@0 410 RunHead* fRunHead;
michael@0 411
michael@0 412 void freeRuns();
michael@0 413
michael@0 414 /**
michael@0 415 * Return the runs from this region, consing up fake runs if the region
michael@0 416 * is empty or a rect. In those 2 cases, we use tmpStorage to hold the
michael@0 417 * run data.
michael@0 418 */
michael@0 419 const RunType* getRuns(RunType tmpStorage[], int* intervals) const;
michael@0 420
michael@0 421 // This is called with runs[] that do not yet have their interval-count
michael@0 422 // field set on each scanline. That is computed as part of this call
michael@0 423 // (inside ComputeRunBounds).
michael@0 424 bool setRuns(RunType runs[], int count);
michael@0 425
michael@0 426 int count_runtype_values(int* itop, int* ibot) const;
michael@0 427
michael@0 428 static void BuildRectRuns(const SkIRect& bounds,
michael@0 429 RunType runs[kRectRegionRuns]);
michael@0 430
michael@0 431 // If the runs define a simple rect, return true and set bounds to that
michael@0 432 // rect. If not, return false and ignore bounds.
michael@0 433 static bool RunsAreARect(const SkRegion::RunType runs[], int count,
michael@0 434 SkIRect* bounds);
michael@0 435
michael@0 436 /**
michael@0 437 * If the last arg is null, just return if the result is non-empty,
michael@0 438 * else store the result in the last arg.
michael@0 439 */
michael@0 440 static bool Oper(const SkRegion&, const SkRegion&, SkRegion::Op, SkRegion*);
michael@0 441
michael@0 442 friend struct RunHead;
michael@0 443 friend class Iterator;
michael@0 444 friend class Spanerator;
michael@0 445 friend class SkRgnBuilder;
michael@0 446 friend class SkFlatRegion;
michael@0 447 };
michael@0 448
michael@0 449 #endif

mercurial