Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
michael@0 | 1 | /* |
michael@0 | 2 | * Copyright 2011 Google Inc. |
michael@0 | 3 | * |
michael@0 | 4 | * Use of this source code is governed by a BSD-style license that can be |
michael@0 | 5 | * found in the LICENSE file. |
michael@0 | 6 | */ |
michael@0 | 7 | |
michael@0 | 8 | #ifndef SkTArray_DEFINED |
michael@0 | 9 | #define SkTArray_DEFINED |
michael@0 | 10 | |
michael@0 | 11 | #include <new> |
michael@0 | 12 | #include "SkTypes.h" |
michael@0 | 13 | #include "SkTemplates.h" |
michael@0 | 14 | |
michael@0 | 15 | template <typename T, bool MEM_COPY = false> class SkTArray; |
michael@0 | 16 | |
michael@0 | 17 | namespace SkTArrayExt { |
michael@0 | 18 | |
michael@0 | 19 | template<typename T> |
michael@0 | 20 | inline void copy(SkTArray<T, true>* self, const T* array) { |
michael@0 | 21 | memcpy(self->fMemArray, array, self->fCount * sizeof(T)); |
michael@0 | 22 | } |
michael@0 | 23 | template<typename T> |
michael@0 | 24 | inline void copyAndDelete(SkTArray<T, true>* self, char* newMemArray) { |
michael@0 | 25 | memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T)); |
michael@0 | 26 | } |
michael@0 | 27 | |
michael@0 | 28 | template<typename T> |
michael@0 | 29 | inline void copy(SkTArray<T, false>* self, const T* array) { |
michael@0 | 30 | for (int i = 0; i < self->fCount; ++i) { |
michael@0 | 31 | SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i])); |
michael@0 | 32 | } |
michael@0 | 33 | } |
michael@0 | 34 | template<typename T> |
michael@0 | 35 | inline void copyAndDelete(SkTArray<T, false>* self, char* newMemArray) { |
michael@0 | 36 | for (int i = 0; i < self->fCount; ++i) { |
michael@0 | 37 | SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i])); |
michael@0 | 38 | self->fItemArray[i].~T(); |
michael@0 | 39 | } |
michael@0 | 40 | } |
michael@0 | 41 | |
michael@0 | 42 | } |
michael@0 | 43 | |
michael@0 | 44 | template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>*, int); |
michael@0 | 45 | |
michael@0 | 46 | /** When MEM_COPY is true T will be bit copied when moved. |
michael@0 | 47 | When MEM_COPY is false, T will be copy constructed / destructed. |
michael@0 | 48 | In all cases T's constructor will be called on allocation, |
michael@0 | 49 | and its destructor will be called from this object's destructor. |
michael@0 | 50 | */ |
michael@0 | 51 | template <typename T, bool MEM_COPY> class SkTArray { |
michael@0 | 52 | public: |
michael@0 | 53 | /** |
michael@0 | 54 | * Creates an empty array with no initial storage |
michael@0 | 55 | */ |
michael@0 | 56 | SkTArray() { |
michael@0 | 57 | fCount = 0; |
michael@0 | 58 | fReserveCount = gMIN_ALLOC_COUNT; |
michael@0 | 59 | fAllocCount = 0; |
michael@0 | 60 | fMemArray = NULL; |
michael@0 | 61 | fPreAllocMemArray = NULL; |
michael@0 | 62 | } |
michael@0 | 63 | |
michael@0 | 64 | /** |
michael@0 | 65 | * Creates an empty array that will preallocate space for reserveCount |
michael@0 | 66 | * elements. |
michael@0 | 67 | */ |
michael@0 | 68 | explicit SkTArray(int reserveCount) { |
michael@0 | 69 | this->init(NULL, 0, NULL, reserveCount); |
michael@0 | 70 | } |
michael@0 | 71 | |
michael@0 | 72 | /** |
michael@0 | 73 | * Copies one array to another. The new array will be heap allocated. |
michael@0 | 74 | */ |
michael@0 | 75 | explicit SkTArray(const SkTArray& array) { |
michael@0 | 76 | this->init(array.fItemArray, array.fCount, NULL, 0); |
michael@0 | 77 | } |
michael@0 | 78 | |
michael@0 | 79 | /** |
michael@0 | 80 | * Creates a SkTArray by copying contents of a standard C array. The new |
michael@0 | 81 | * array will be heap allocated. Be careful not to use this constructor |
michael@0 | 82 | * when you really want the (void*, int) version. |
michael@0 | 83 | */ |
michael@0 | 84 | SkTArray(const T* array, int count) { |
michael@0 | 85 | this->init(array, count, NULL, 0); |
michael@0 | 86 | } |
michael@0 | 87 | |
michael@0 | 88 | /** |
michael@0 | 89 | * assign copy of array to this |
michael@0 | 90 | */ |
michael@0 | 91 | SkTArray& operator =(const SkTArray& array) { |
michael@0 | 92 | for (int i = 0; i < fCount; ++i) { |
michael@0 | 93 | fItemArray[i].~T(); |
michael@0 | 94 | } |
michael@0 | 95 | fCount = 0; |
michael@0 | 96 | this->checkRealloc((int)array.count()); |
michael@0 | 97 | fCount = array.count(); |
michael@0 | 98 | SkTArrayExt::copy(this, static_cast<const T*>(array.fMemArray)); |
michael@0 | 99 | return *this; |
michael@0 | 100 | } |
michael@0 | 101 | |
michael@0 | 102 | virtual ~SkTArray() { |
michael@0 | 103 | for (int i = 0; i < fCount; ++i) { |
michael@0 | 104 | fItemArray[i].~T(); |
michael@0 | 105 | } |
michael@0 | 106 | if (fMemArray != fPreAllocMemArray) { |
michael@0 | 107 | sk_free(fMemArray); |
michael@0 | 108 | } |
michael@0 | 109 | } |
michael@0 | 110 | |
michael@0 | 111 | /** |
michael@0 | 112 | * Resets to count() == 0 |
michael@0 | 113 | */ |
michael@0 | 114 | void reset() { this->pop_back_n(fCount); } |
michael@0 | 115 | |
michael@0 | 116 | /** |
michael@0 | 117 | * Resets to count() = n newly constructed T objects. |
michael@0 | 118 | */ |
michael@0 | 119 | void reset(int n) { |
michael@0 | 120 | SkASSERT(n >= 0); |
michael@0 | 121 | for (int i = 0; i < fCount; ++i) { |
michael@0 | 122 | fItemArray[i].~T(); |
michael@0 | 123 | } |
michael@0 | 124 | // set fCount to 0 before calling checkRealloc so that no copy cons. are called. |
michael@0 | 125 | fCount = 0; |
michael@0 | 126 | this->checkRealloc(n); |
michael@0 | 127 | fCount = n; |
michael@0 | 128 | for (int i = 0; i < fCount; ++i) { |
michael@0 | 129 | SkNEW_PLACEMENT(fItemArray + i, T); |
michael@0 | 130 | } |
michael@0 | 131 | } |
michael@0 | 132 | |
michael@0 | 133 | /** |
michael@0 | 134 | * Resets to a copy of a C array. |
michael@0 | 135 | */ |
michael@0 | 136 | void reset(const T* array, int count) { |
michael@0 | 137 | for (int i = 0; i < fCount; ++i) { |
michael@0 | 138 | fItemArray[i].~T(); |
michael@0 | 139 | } |
michael@0 | 140 | int delta = count - fCount; |
michael@0 | 141 | this->checkRealloc(delta); |
michael@0 | 142 | fCount = count; |
michael@0 | 143 | for (int i = 0; i < count; ++i) { |
michael@0 | 144 | SkTArrayExt::copy(this, array); |
michael@0 | 145 | } |
michael@0 | 146 | } |
michael@0 | 147 | |
michael@0 | 148 | /** |
michael@0 | 149 | * Number of elements in the array. |
michael@0 | 150 | */ |
michael@0 | 151 | int count() const { return fCount; } |
michael@0 | 152 | |
michael@0 | 153 | /** |
michael@0 | 154 | * Is the array empty. |
michael@0 | 155 | */ |
michael@0 | 156 | bool empty() const { return !fCount; } |
michael@0 | 157 | |
michael@0 | 158 | /** |
michael@0 | 159 | * Adds 1 new default-constructed T value and returns in by reference. Note |
michael@0 | 160 | * the reference only remains valid until the next call that adds or removes |
michael@0 | 161 | * elements. |
michael@0 | 162 | */ |
michael@0 | 163 | T& push_back() { |
michael@0 | 164 | T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); |
michael@0 | 165 | SkNEW_PLACEMENT(newT, T); |
michael@0 | 166 | return *newT; |
michael@0 | 167 | } |
michael@0 | 168 | |
michael@0 | 169 | /** |
michael@0 | 170 | * Version of above that uses a copy constructor to initialize the new item |
michael@0 | 171 | */ |
michael@0 | 172 | T& push_back(const T& t) { |
michael@0 | 173 | T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); |
michael@0 | 174 | SkNEW_PLACEMENT_ARGS(newT, T, (t)); |
michael@0 | 175 | return *newT; |
michael@0 | 176 | } |
michael@0 | 177 | |
michael@0 | 178 | /** |
michael@0 | 179 | * Allocates n more default T values, and returns the address of the start |
michael@0 | 180 | * of that new range. Note: this address is only valid until the next API |
michael@0 | 181 | * call made on the array that might add or remove elements. |
michael@0 | 182 | */ |
michael@0 | 183 | T* push_back_n(int n) { |
michael@0 | 184 | SkASSERT(n >= 0); |
michael@0 | 185 | T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); |
michael@0 | 186 | for (int i = 0; i < n; ++i) { |
michael@0 | 187 | SkNEW_PLACEMENT(newTs + i, T); |
michael@0 | 188 | } |
michael@0 | 189 | return newTs; |
michael@0 | 190 | } |
michael@0 | 191 | |
michael@0 | 192 | /** |
michael@0 | 193 | * Version of above that uses a copy constructor to initialize all n items |
michael@0 | 194 | * to the same T. |
michael@0 | 195 | */ |
michael@0 | 196 | T* push_back_n(int n, const T& t) { |
michael@0 | 197 | SkASSERT(n >= 0); |
michael@0 | 198 | T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); |
michael@0 | 199 | for (int i = 0; i < n; ++i) { |
michael@0 | 200 | SkNEW_PLACEMENT_ARGS(newTs[i], T, (t)); |
michael@0 | 201 | } |
michael@0 | 202 | return newTs; |
michael@0 | 203 | } |
michael@0 | 204 | |
michael@0 | 205 | /** |
michael@0 | 206 | * Version of above that uses a copy constructor to initialize the n items |
michael@0 | 207 | * to separate T values. |
michael@0 | 208 | */ |
michael@0 | 209 | T* push_back_n(int n, const T t[]) { |
michael@0 | 210 | SkASSERT(n >= 0); |
michael@0 | 211 | this->checkRealloc(n); |
michael@0 | 212 | for (int i = 0; i < n; ++i) { |
michael@0 | 213 | SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i])); |
michael@0 | 214 | } |
michael@0 | 215 | fCount += n; |
michael@0 | 216 | return fItemArray + fCount - n; |
michael@0 | 217 | } |
michael@0 | 218 | |
michael@0 | 219 | /** |
michael@0 | 220 | * Removes the last element. Not safe to call when count() == 0. |
michael@0 | 221 | */ |
michael@0 | 222 | void pop_back() { |
michael@0 | 223 | SkASSERT(fCount > 0); |
michael@0 | 224 | --fCount; |
michael@0 | 225 | fItemArray[fCount].~T(); |
michael@0 | 226 | this->checkRealloc(0); |
michael@0 | 227 | } |
michael@0 | 228 | |
michael@0 | 229 | /** |
michael@0 | 230 | * Removes the last n elements. Not safe to call when count() < n. |
michael@0 | 231 | */ |
michael@0 | 232 | void pop_back_n(int n) { |
michael@0 | 233 | SkASSERT(n >= 0); |
michael@0 | 234 | SkASSERT(fCount >= n); |
michael@0 | 235 | fCount -= n; |
michael@0 | 236 | for (int i = 0; i < n; ++i) { |
michael@0 | 237 | fItemArray[fCount + i].~T(); |
michael@0 | 238 | } |
michael@0 | 239 | this->checkRealloc(0); |
michael@0 | 240 | } |
michael@0 | 241 | |
michael@0 | 242 | /** |
michael@0 | 243 | * Pushes or pops from the back to resize. Pushes will be default |
michael@0 | 244 | * initialized. |
michael@0 | 245 | */ |
michael@0 | 246 | void resize_back(int newCount) { |
michael@0 | 247 | SkASSERT(newCount >= 0); |
michael@0 | 248 | |
michael@0 | 249 | if (newCount > fCount) { |
michael@0 | 250 | this->push_back_n(newCount - fCount); |
michael@0 | 251 | } else if (newCount < fCount) { |
michael@0 | 252 | this->pop_back_n(fCount - newCount); |
michael@0 | 253 | } |
michael@0 | 254 | } |
michael@0 | 255 | |
michael@0 | 256 | T* begin() { |
michael@0 | 257 | return fItemArray; |
michael@0 | 258 | } |
michael@0 | 259 | const T* begin() const { |
michael@0 | 260 | return fItemArray; |
michael@0 | 261 | } |
michael@0 | 262 | T* end() { |
michael@0 | 263 | return fItemArray ? fItemArray + fCount : NULL; |
michael@0 | 264 | } |
michael@0 | 265 | const T* end() const { |
michael@0 | 266 | return fItemArray ? fItemArray + fCount : NULL;; |
michael@0 | 267 | } |
michael@0 | 268 | |
michael@0 | 269 | /** |
michael@0 | 270 | * Get the i^th element. |
michael@0 | 271 | */ |
michael@0 | 272 | T& operator[] (int i) { |
michael@0 | 273 | SkASSERT(i < fCount); |
michael@0 | 274 | SkASSERT(i >= 0); |
michael@0 | 275 | return fItemArray[i]; |
michael@0 | 276 | } |
michael@0 | 277 | |
michael@0 | 278 | const T& operator[] (int i) const { |
michael@0 | 279 | SkASSERT(i < fCount); |
michael@0 | 280 | SkASSERT(i >= 0); |
michael@0 | 281 | return fItemArray[i]; |
michael@0 | 282 | } |
michael@0 | 283 | |
michael@0 | 284 | /** |
michael@0 | 285 | * equivalent to operator[](0) |
michael@0 | 286 | */ |
michael@0 | 287 | T& front() { SkASSERT(fCount > 0); return fItemArray[0];} |
michael@0 | 288 | |
michael@0 | 289 | const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];} |
michael@0 | 290 | |
michael@0 | 291 | /** |
michael@0 | 292 | * equivalent to operator[](count() - 1) |
michael@0 | 293 | */ |
michael@0 | 294 | T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];} |
michael@0 | 295 | |
michael@0 | 296 | const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];} |
michael@0 | 297 | |
michael@0 | 298 | /** |
michael@0 | 299 | * equivalent to operator[](count()-1-i) |
michael@0 | 300 | */ |
michael@0 | 301 | T& fromBack(int i) { |
michael@0 | 302 | SkASSERT(i >= 0); |
michael@0 | 303 | SkASSERT(i < fCount); |
michael@0 | 304 | return fItemArray[fCount - i - 1]; |
michael@0 | 305 | } |
michael@0 | 306 | |
michael@0 | 307 | const T& fromBack(int i) const { |
michael@0 | 308 | SkASSERT(i >= 0); |
michael@0 | 309 | SkASSERT(i < fCount); |
michael@0 | 310 | return fItemArray[fCount - i - 1]; |
michael@0 | 311 | } |
michael@0 | 312 | |
michael@0 | 313 | bool operator==(const SkTArray<T, MEM_COPY>& right) const { |
michael@0 | 314 | int leftCount = this->count(); |
michael@0 | 315 | if (leftCount != right.count()) { |
michael@0 | 316 | return false; |
michael@0 | 317 | } |
michael@0 | 318 | for (int index = 0; index < leftCount; ++index) { |
michael@0 | 319 | if (fItemArray[index] != right.fItemArray[index]) { |
michael@0 | 320 | return false; |
michael@0 | 321 | } |
michael@0 | 322 | } |
michael@0 | 323 | return true; |
michael@0 | 324 | } |
michael@0 | 325 | |
michael@0 | 326 | bool operator!=(const SkTArray<T, MEM_COPY>& right) const { |
michael@0 | 327 | return !(*this == right); |
michael@0 | 328 | } |
michael@0 | 329 | |
michael@0 | 330 | protected: |
michael@0 | 331 | /** |
michael@0 | 332 | * Creates an empty array that will use the passed storage block until it |
michael@0 | 333 | * is insufficiently large to hold the entire array. |
michael@0 | 334 | */ |
michael@0 | 335 | template <int N> |
michael@0 | 336 | SkTArray(SkAlignedSTStorage<N,T>* storage) { |
michael@0 | 337 | this->init(NULL, 0, storage->get(), N); |
michael@0 | 338 | } |
michael@0 | 339 | |
michael@0 | 340 | /** |
michael@0 | 341 | * Copy another array, using preallocated storage if preAllocCount >= |
michael@0 | 342 | * array.count(). Otherwise storage will only be used when array shrinks |
michael@0 | 343 | * to fit. |
michael@0 | 344 | */ |
michael@0 | 345 | template <int N> |
michael@0 | 346 | SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) { |
michael@0 | 347 | this->init(array.fItemArray, array.fCount, storage->get(), N); |
michael@0 | 348 | } |
michael@0 | 349 | |
michael@0 | 350 | /** |
michael@0 | 351 | * Copy a C array, using preallocated storage if preAllocCount >= |
michael@0 | 352 | * count. Otherwise storage will only be used when array shrinks |
michael@0 | 353 | * to fit. |
michael@0 | 354 | */ |
michael@0 | 355 | template <int N> |
michael@0 | 356 | SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) { |
michael@0 | 357 | this->init(array, count, storage->get(), N); |
michael@0 | 358 | } |
michael@0 | 359 | |
michael@0 | 360 | void init(const T* array, int count, |
michael@0 | 361 | void* preAllocStorage, int preAllocOrReserveCount) { |
michael@0 | 362 | SkASSERT(count >= 0); |
michael@0 | 363 | SkASSERT(preAllocOrReserveCount >= 0); |
michael@0 | 364 | fCount = count; |
michael@0 | 365 | fReserveCount = (preAllocOrReserveCount > 0) ? |
michael@0 | 366 | preAllocOrReserveCount : |
michael@0 | 367 | gMIN_ALLOC_COUNT; |
michael@0 | 368 | fPreAllocMemArray = preAllocStorage; |
michael@0 | 369 | if (fReserveCount >= fCount && |
michael@0 | 370 | NULL != preAllocStorage) { |
michael@0 | 371 | fAllocCount = fReserveCount; |
michael@0 | 372 | fMemArray = preAllocStorage; |
michael@0 | 373 | } else { |
michael@0 | 374 | fAllocCount = SkMax32(fCount, fReserveCount); |
michael@0 | 375 | fMemArray = sk_malloc_throw(fAllocCount * sizeof(T)); |
michael@0 | 376 | } |
michael@0 | 377 | |
michael@0 | 378 | SkTArrayExt::copy(this, array); |
michael@0 | 379 | } |
michael@0 | 380 | |
michael@0 | 381 | private: |
michael@0 | 382 | |
michael@0 | 383 | static const int gMIN_ALLOC_COUNT = 8; |
michael@0 | 384 | |
michael@0 | 385 | // Helper function that makes space for n objects, adjusts the count, but does not initialize |
michael@0 | 386 | // the new objects. |
michael@0 | 387 | void* push_back_raw(int n) { |
michael@0 | 388 | this->checkRealloc(n); |
michael@0 | 389 | void* ptr = fItemArray + fCount; |
michael@0 | 390 | fCount += n; |
michael@0 | 391 | return ptr; |
michael@0 | 392 | } |
michael@0 | 393 | |
michael@0 | 394 | inline void checkRealloc(int delta) { |
michael@0 | 395 | SkASSERT(fCount >= 0); |
michael@0 | 396 | SkASSERT(fAllocCount >= 0); |
michael@0 | 397 | |
michael@0 | 398 | SkASSERT(-delta <= fCount); |
michael@0 | 399 | |
michael@0 | 400 | int newCount = fCount + delta; |
michael@0 | 401 | int newAllocCount = fAllocCount; |
michael@0 | 402 | |
michael@0 | 403 | if (newCount > fAllocCount || newCount < (fAllocCount / 3)) { |
michael@0 | 404 | // whether we're growing or shrinking, we leave at least 50% extra space for future |
michael@0 | 405 | // growth (clamped to the reserve count). |
michael@0 | 406 | newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount); |
michael@0 | 407 | } |
michael@0 | 408 | if (newAllocCount != fAllocCount) { |
michael@0 | 409 | |
michael@0 | 410 | fAllocCount = newAllocCount; |
michael@0 | 411 | char* newMemArray; |
michael@0 | 412 | |
michael@0 | 413 | if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) { |
michael@0 | 414 | newMemArray = (char*) fPreAllocMemArray; |
michael@0 | 415 | } else { |
michael@0 | 416 | newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T)); |
michael@0 | 417 | } |
michael@0 | 418 | |
michael@0 | 419 | SkTArrayExt::copyAndDelete<T>(this, newMemArray); |
michael@0 | 420 | |
michael@0 | 421 | if (fMemArray != fPreAllocMemArray) { |
michael@0 | 422 | sk_free(fMemArray); |
michael@0 | 423 | } |
michael@0 | 424 | fMemArray = newMemArray; |
michael@0 | 425 | } |
michael@0 | 426 | } |
michael@0 | 427 | |
michael@0 | 428 | friend void* operator new<T>(size_t, SkTArray*, int); |
michael@0 | 429 | |
michael@0 | 430 | template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, const X*); |
michael@0 | 431 | template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, true>* that, char*); |
michael@0 | 432 | |
michael@0 | 433 | template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, const X*); |
michael@0 | 434 | template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, false>* that, char*); |
michael@0 | 435 | |
michael@0 | 436 | int fReserveCount; |
michael@0 | 437 | int fCount; |
michael@0 | 438 | int fAllocCount; |
michael@0 | 439 | void* fPreAllocMemArray; |
michael@0 | 440 | union { |
michael@0 | 441 | T* fItemArray; |
michael@0 | 442 | void* fMemArray; |
michael@0 | 443 | }; |
michael@0 | 444 | }; |
michael@0 | 445 | |
michael@0 | 446 | // Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly |
michael@0 | 447 | template <typename T, bool MEM_COPY> |
michael@0 | 448 | void* operator new(size_t, SkTArray<T, MEM_COPY>* array, int atIndex) { |
michael@0 | 449 | // Currently, we only support adding to the end of the array. When the array class itself |
michael@0 | 450 | // supports random insertion then this should be updated. |
michael@0 | 451 | // SkASSERT(atIndex >= 0 && atIndex <= array->count()); |
michael@0 | 452 | SkASSERT(atIndex == array->count()); |
michael@0 | 453 | return array->push_back_raw(1); |
michael@0 | 454 | } |
michael@0 | 455 | |
michael@0 | 456 | // Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete |
michael@0 | 457 | // to match the op new silences warnings about missing op delete when a constructor throws an |
michael@0 | 458 | // exception. |
michael@0 | 459 | template <typename T, bool MEM_COPY> |
michael@0 | 460 | void operator delete(void*, SkTArray<T, MEM_COPY>* array, int atIndex) { |
michael@0 | 461 | SK_CRASH(); |
michael@0 | 462 | } |
michael@0 | 463 | |
michael@0 | 464 | // Constructs a new object as the last element of an SkTArray. |
michael@0 | 465 | #define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args) \ |
michael@0 | 466 | (new ((array_ptr), (array_ptr)->count()) type_name args) |
michael@0 | 467 | |
michael@0 | 468 | |
michael@0 | 469 | /** |
michael@0 | 470 | * Subclass of SkTArray that contains a preallocated memory block for the array. |
michael@0 | 471 | */ |
michael@0 | 472 | template <int N, typename T, bool MEM_COPY = false> |
michael@0 | 473 | class SkSTArray : public SkTArray<T, MEM_COPY> { |
michael@0 | 474 | private: |
michael@0 | 475 | typedef SkTArray<T, MEM_COPY> INHERITED; |
michael@0 | 476 | |
michael@0 | 477 | public: |
michael@0 | 478 | SkSTArray() : INHERITED(&fStorage) { |
michael@0 | 479 | } |
michael@0 | 480 | |
michael@0 | 481 | SkSTArray(const SkSTArray& array) |
michael@0 | 482 | : INHERITED(array, &fStorage) { |
michael@0 | 483 | } |
michael@0 | 484 | |
michael@0 | 485 | explicit SkSTArray(const INHERITED& array) |
michael@0 | 486 | : INHERITED(array, &fStorage) { |
michael@0 | 487 | } |
michael@0 | 488 | |
michael@0 | 489 | explicit SkSTArray(int reserveCount) |
michael@0 | 490 | : INHERITED(reserveCount) { |
michael@0 | 491 | } |
michael@0 | 492 | |
michael@0 | 493 | SkSTArray(const T* array, int count) |
michael@0 | 494 | : INHERITED(array, count, &fStorage) { |
michael@0 | 495 | } |
michael@0 | 496 | |
michael@0 | 497 | SkSTArray& operator= (const SkSTArray& array) { |
michael@0 | 498 | return *this = *(const INHERITED*)&array; |
michael@0 | 499 | } |
michael@0 | 500 | |
michael@0 | 501 | SkSTArray& operator= (const INHERITED& array) { |
michael@0 | 502 | INHERITED::operator=(array); |
michael@0 | 503 | return *this; |
michael@0 | 504 | } |
michael@0 | 505 | |
michael@0 | 506 | private: |
michael@0 | 507 | SkAlignedSTStorage<N,T> fStorage; |
michael@0 | 508 | }; |
michael@0 | 509 | |
michael@0 | 510 | #endif |