gfx/skia/trunk/include/utils/SkMatrix44.h

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 /*
michael@0 2 * Copyright 2011 Google Inc.
michael@0 3 *
michael@0 4 * Use of this source code is governed by a BSD-style license that can be
michael@0 5 * found in the LICENSE file.
michael@0 6 */
michael@0 7
michael@0 8 #ifndef SkMatrix44_DEFINED
michael@0 9 #define SkMatrix44_DEFINED
michael@0 10
michael@0 11 #include "SkMatrix.h"
michael@0 12 #include "SkScalar.h"
michael@0 13
michael@0 14 #ifdef SK_MSCALAR_IS_DOUBLE
michael@0 15 #ifdef SK_MSCALAR_IS_FLOAT
michael@0 16 #error "can't define MSCALAR both as DOUBLE and FLOAT"
michael@0 17 #endif
michael@0 18 typedef double SkMScalar;
michael@0 19
michael@0 20 static inline double SkFloatToMScalar(float x) {
michael@0 21 return static_cast<double>(x);
michael@0 22 }
michael@0 23 static inline float SkMScalarToFloat(double x) {
michael@0 24 return static_cast<float>(x);
michael@0 25 }
michael@0 26 static inline double SkDoubleToMScalar(double x) {
michael@0 27 return x;
michael@0 28 }
michael@0 29 static inline double SkMScalarToDouble(double x) {
michael@0 30 return x;
michael@0 31 }
michael@0 32 static const SkMScalar SK_MScalarPI = 3.141592653589793;
michael@0 33 #elif defined SK_MSCALAR_IS_FLOAT
michael@0 34 #ifdef SK_MSCALAR_IS_DOUBLE
michael@0 35 #error "can't define MSCALAR both as DOUBLE and FLOAT"
michael@0 36 #endif
michael@0 37 typedef float SkMScalar;
michael@0 38
michael@0 39 static inline float SkFloatToMScalar(float x) {
michael@0 40 return x;
michael@0 41 }
michael@0 42 static inline float SkMScalarToFloat(float x) {
michael@0 43 return x;
michael@0 44 }
michael@0 45 static inline float SkDoubleToMScalar(double x) {
michael@0 46 return static_cast<float>(x);
michael@0 47 }
michael@0 48 static inline double SkMScalarToDouble(float x) {
michael@0 49 return static_cast<double>(x);
michael@0 50 }
michael@0 51 static const SkMScalar SK_MScalarPI = 3.14159265f;
michael@0 52 #endif
michael@0 53
michael@0 54 #define SkMScalarToScalar SkMScalarToFloat
michael@0 55 #define SkScalarToMScalar SkFloatToMScalar
michael@0 56
michael@0 57 static const SkMScalar SK_MScalar1 = 1;
michael@0 58
michael@0 59 ///////////////////////////////////////////////////////////////////////////////
michael@0 60
michael@0 61 struct SkVector4 {
michael@0 62 SkScalar fData[4];
michael@0 63
michael@0 64 SkVector4() {
michael@0 65 this->set(0, 0, 0, 1);
michael@0 66 }
michael@0 67 SkVector4(const SkVector4& src) {
michael@0 68 memcpy(fData, src.fData, sizeof(fData));
michael@0 69 }
michael@0 70 SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
michael@0 71 fData[0] = x;
michael@0 72 fData[1] = y;
michael@0 73 fData[2] = z;
michael@0 74 fData[3] = w;
michael@0 75 }
michael@0 76
michael@0 77 SkVector4& operator=(const SkVector4& src) {
michael@0 78 memcpy(fData, src.fData, sizeof(fData));
michael@0 79 return *this;
michael@0 80 }
michael@0 81
michael@0 82 bool operator==(const SkVector4& v) {
michael@0 83 return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
michael@0 84 fData[2] == v.fData[2] && fData[3] == v.fData[3];
michael@0 85 }
michael@0 86 bool operator!=(const SkVector4& v) {
michael@0 87 return !(*this == v);
michael@0 88 }
michael@0 89 bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
michael@0 90 return fData[0] == x && fData[1] == y &&
michael@0 91 fData[2] == z && fData[3] == w;
michael@0 92 }
michael@0 93
michael@0 94 void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
michael@0 95 fData[0] = x;
michael@0 96 fData[1] = y;
michael@0 97 fData[2] = z;
michael@0 98 fData[3] = w;
michael@0 99 }
michael@0 100 };
michael@0 101
michael@0 102 class SK_API SkMatrix44 {
michael@0 103 public:
michael@0 104
michael@0 105 enum Uninitialized_Constructor {
michael@0 106 kUninitialized_Constructor
michael@0 107 };
michael@0 108 enum Identity_Constructor {
michael@0 109 kIdentity_Constructor
michael@0 110 };
michael@0 111
michael@0 112 SkMatrix44(Uninitialized_Constructor) { }
michael@0 113 SkMatrix44(Identity_Constructor) { this->setIdentity(); }
michael@0 114
michael@0 115 SK_ATTR_DEPRECATED("use the constructors that take an enum")
michael@0 116 SkMatrix44() { this->setIdentity(); }
michael@0 117
michael@0 118 SkMatrix44(const SkMatrix44& src) {
michael@0 119 memcpy(fMat, src.fMat, sizeof(fMat));
michael@0 120 fTypeMask = src.fTypeMask;
michael@0 121 }
michael@0 122
michael@0 123 SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
michael@0 124 this->setConcat(a, b);
michael@0 125 }
michael@0 126
michael@0 127 SkMatrix44& operator=(const SkMatrix44& src) {
michael@0 128 if (&src != this) {
michael@0 129 memcpy(fMat, src.fMat, sizeof(fMat));
michael@0 130 fTypeMask = src.fTypeMask;
michael@0 131 }
michael@0 132 return *this;
michael@0 133 }
michael@0 134
michael@0 135 bool operator==(const SkMatrix44& other) const;
michael@0 136 bool operator!=(const SkMatrix44& other) const {
michael@0 137 return !(other == *this);
michael@0 138 }
michael@0 139
michael@0 140 /* When converting from SkMatrix44 to SkMatrix, the third row and
michael@0 141 * column is dropped. When converting from SkMatrix to SkMatrix44
michael@0 142 * the third row and column remain as identity:
michael@0 143 * [ a b c ] [ a b 0 c ]
michael@0 144 * [ d e f ] -> [ d e 0 f ]
michael@0 145 * [ g h i ] [ 0 0 1 0 ]
michael@0 146 * [ g h 0 i ]
michael@0 147 */
michael@0 148 SkMatrix44(const SkMatrix&);
michael@0 149 SkMatrix44& operator=(const SkMatrix& src);
michael@0 150 operator SkMatrix() const;
michael@0 151
michael@0 152 /**
michael@0 153 * Return a reference to a const identity matrix
michael@0 154 */
michael@0 155 static const SkMatrix44& I();
michael@0 156
michael@0 157 enum TypeMask {
michael@0 158 kIdentity_Mask = 0,
michael@0 159 kTranslate_Mask = 0x01, //!< set if the matrix has translation
michael@0 160 kScale_Mask = 0x02, //!< set if the matrix has any scale != 1
michael@0 161 kAffine_Mask = 0x04, //!< set if the matrix skews or rotates
michael@0 162 kPerspective_Mask = 0x08 //!< set if the matrix is in perspective
michael@0 163 };
michael@0 164
michael@0 165 /**
michael@0 166 * Returns a bitfield describing the transformations the matrix may
michael@0 167 * perform. The bitfield is computed conservatively, so it may include
michael@0 168 * false positives. For example, when kPerspective_Mask is true, all
michael@0 169 * other bits may be set to true even in the case of a pure perspective
michael@0 170 * transform.
michael@0 171 */
michael@0 172 inline TypeMask getType() const {
michael@0 173 if (fTypeMask & kUnknown_Mask) {
michael@0 174 fTypeMask = this->computeTypeMask();
michael@0 175 }
michael@0 176 SkASSERT(!(fTypeMask & kUnknown_Mask));
michael@0 177 return (TypeMask)fTypeMask;
michael@0 178 }
michael@0 179
michael@0 180 /**
michael@0 181 * Return true if the matrix is identity.
michael@0 182 */
michael@0 183 inline bool isIdentity() const {
michael@0 184 return kIdentity_Mask == this->getType();
michael@0 185 }
michael@0 186
michael@0 187 /**
michael@0 188 * Return true if the matrix contains translate or is identity.
michael@0 189 */
michael@0 190 inline bool isTranslate() const {
michael@0 191 return !(this->getType() & ~kTranslate_Mask);
michael@0 192 }
michael@0 193
michael@0 194 /**
michael@0 195 * Return true if the matrix only contains scale or translate or is identity.
michael@0 196 */
michael@0 197 inline bool isScaleTranslate() const {
michael@0 198 return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
michael@0 199 }
michael@0 200
michael@0 201 void setIdentity();
michael@0 202 inline void reset() { this->setIdentity();}
michael@0 203
michael@0 204 /**
michael@0 205 * get a value from the matrix. The row,col parameters work as follows:
michael@0 206 * (0, 0) scale-x
michael@0 207 * (0, 3) translate-x
michael@0 208 * (3, 0) perspective-x
michael@0 209 */
michael@0 210 inline SkMScalar get(int row, int col) const {
michael@0 211 SkASSERT((unsigned)row <= 3);
michael@0 212 SkASSERT((unsigned)col <= 3);
michael@0 213 return fMat[col][row];
michael@0 214 }
michael@0 215
michael@0 216 /**
michael@0 217 * set a value in the matrix. The row,col parameters work as follows:
michael@0 218 * (0, 0) scale-x
michael@0 219 * (0, 3) translate-x
michael@0 220 * (3, 0) perspective-x
michael@0 221 */
michael@0 222 inline void set(int row, int col, SkMScalar value) {
michael@0 223 SkASSERT((unsigned)row <= 3);
michael@0 224 SkASSERT((unsigned)col <= 3);
michael@0 225 fMat[col][row] = value;
michael@0 226 this->dirtyTypeMask();
michael@0 227 }
michael@0 228
michael@0 229 inline double getDouble(int row, int col) const {
michael@0 230 return SkMScalarToDouble(this->get(row, col));
michael@0 231 }
michael@0 232 inline void setDouble(int row, int col, double value) {
michael@0 233 this->set(row, col, SkDoubleToMScalar(value));
michael@0 234 }
michael@0 235 inline float getFloat(int row, int col) const {
michael@0 236 return SkMScalarToFloat(this->get(row, col));
michael@0 237 }
michael@0 238 inline void setFloat(int row, int col, float value) {
michael@0 239 this->set(row, col, SkFloatToMScalar(value));
michael@0 240 }
michael@0 241
michael@0 242 /** These methods allow one to efficiently read matrix entries into an
michael@0 243 * array. The given array must have room for exactly 16 entries. Whenever
michael@0 244 * possible, they will try to use memcpy rather than an entry-by-entry
michael@0 245 * copy.
michael@0 246 */
michael@0 247 void asColMajorf(float[]) const;
michael@0 248 void asColMajord(double[]) const;
michael@0 249 void asRowMajorf(float[]) const;
michael@0 250 void asRowMajord(double[]) const;
michael@0 251
michael@0 252 /** These methods allow one to efficiently set all matrix entries from an
michael@0 253 * array. The given array must have room for exactly 16 entries. Whenever
michael@0 254 * possible, they will try to use memcpy rather than an entry-by-entry
michael@0 255 * copy.
michael@0 256 */
michael@0 257 void setColMajorf(const float[]);
michael@0 258 void setColMajord(const double[]);
michael@0 259 void setRowMajorf(const float[]);
michael@0 260 void setRowMajord(const double[]);
michael@0 261
michael@0 262 #ifdef SK_MSCALAR_IS_FLOAT
michael@0 263 void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
michael@0 264 void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
michael@0 265 #else
michael@0 266 void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
michael@0 267 void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
michael@0 268 #endif
michael@0 269
michael@0 270 /* This sets the top-left of the matrix and clears the translation and
michael@0 271 * perspective components (with [3][3] set to 1). */
michael@0 272 void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
michael@0 273 SkMScalar m10, SkMScalar m11, SkMScalar m12,
michael@0 274 SkMScalar m20, SkMScalar m21, SkMScalar m22);
michael@0 275
michael@0 276 void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
michael@0 277 void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
michael@0 278 void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
michael@0 279
michael@0 280 void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
michael@0 281 void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
michael@0 282 void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
michael@0 283
michael@0 284 inline void setScale(SkMScalar scale) {
michael@0 285 this->setScale(scale, scale, scale);
michael@0 286 }
michael@0 287 inline void preScale(SkMScalar scale) {
michael@0 288 this->preScale(scale, scale, scale);
michael@0 289 }
michael@0 290 inline void postScale(SkMScalar scale) {
michael@0 291 this->postScale(scale, scale, scale);
michael@0 292 }
michael@0 293
michael@0 294 void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
michael@0 295 SkMScalar degrees) {
michael@0 296 this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
michael@0 297 }
michael@0 298
michael@0 299 /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
michael@0 300 it will be automatically resized.
michael@0 301 */
michael@0 302 void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
michael@0 303 SkMScalar radians);
michael@0 304 /** Rotate about the vector [x,y,z]. Does not check the length of the
michael@0 305 vector, assuming it is unit-length.
michael@0 306 */
michael@0 307 void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
michael@0 308 SkMScalar radians);
michael@0 309
michael@0 310 void setConcat(const SkMatrix44& a, const SkMatrix44& b);
michael@0 311 inline void preConcat(const SkMatrix44& m) {
michael@0 312 this->setConcat(*this, m);
michael@0 313 }
michael@0 314 inline void postConcat(const SkMatrix44& m) {
michael@0 315 this->setConcat(m, *this);
michael@0 316 }
michael@0 317
michael@0 318 friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
michael@0 319 return SkMatrix44(a, b);
michael@0 320 }
michael@0 321
michael@0 322 /** If this is invertible, return that in inverse and return true. If it is
michael@0 323 not invertible, return false and ignore the inverse parameter.
michael@0 324 */
michael@0 325 bool invert(SkMatrix44* inverse) const;
michael@0 326
michael@0 327 /** Transpose this matrix in place. */
michael@0 328 void transpose();
michael@0 329
michael@0 330 /** Apply the matrix to the src vector, returning the new vector in dst.
michael@0 331 It is legal for src and dst to point to the same memory.
michael@0 332 */
michael@0 333 void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
michael@0 334 inline void mapScalars(SkScalar vec[4]) const {
michael@0 335 this->mapScalars(vec, vec);
michael@0 336 }
michael@0 337
michael@0 338 SK_ATTR_DEPRECATED("use mapScalars")
michael@0 339 void map(const SkScalar src[4], SkScalar dst[4]) const {
michael@0 340 this->mapScalars(src, dst);
michael@0 341 }
michael@0 342
michael@0 343 SK_ATTR_DEPRECATED("use mapScalars")
michael@0 344 void map(SkScalar vec[4]) const {
michael@0 345 this->mapScalars(vec, vec);
michael@0 346 }
michael@0 347
michael@0 348 #ifdef SK_MSCALAR_IS_DOUBLE
michael@0 349 void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
michael@0 350 #elif defined SK_MSCALAR_IS_FLOAT
michael@0 351 inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
michael@0 352 this->mapScalars(src, dst);
michael@0 353 }
michael@0 354 #endif
michael@0 355 inline void mapMScalars(SkMScalar vec[4]) const {
michael@0 356 this->mapMScalars(vec, vec);
michael@0 357 }
michael@0 358
michael@0 359 friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
michael@0 360 SkVector4 dst;
michael@0 361 m.mapScalars(src.fData, dst.fData);
michael@0 362 return dst;
michael@0 363 }
michael@0 364
michael@0 365 /**
michael@0 366 * map an array of [x, y, 0, 1] through the matrix, returning an array
michael@0 367 * of [x', y', z', w'].
michael@0 368 *
michael@0 369 * @param src2 array of [x, y] pairs, with implied z=0 and w=1
michael@0 370 * @param count number of [x, y] pairs in src2
michael@0 371 * @param dst4 array of [x', y', z', w'] quads as the output.
michael@0 372 */
michael@0 373 void map2(const float src2[], int count, float dst4[]) const;
michael@0 374 void map2(const double src2[], int count, double dst4[]) const;
michael@0 375
michael@0 376 void dump() const;
michael@0 377
michael@0 378 double determinant() const;
michael@0 379
michael@0 380 private:
michael@0 381 SkMScalar fMat[4][4];
michael@0 382 mutable unsigned fTypeMask;
michael@0 383
michael@0 384 enum {
michael@0 385 kUnknown_Mask = 0x80,
michael@0 386
michael@0 387 kAllPublic_Masks = 0xF
michael@0 388 };
michael@0 389
michael@0 390 SkMScalar transX() const { return fMat[3][0]; }
michael@0 391 SkMScalar transY() const { return fMat[3][1]; }
michael@0 392 SkMScalar transZ() const { return fMat[3][2]; }
michael@0 393
michael@0 394 SkMScalar scaleX() const { return fMat[0][0]; }
michael@0 395 SkMScalar scaleY() const { return fMat[1][1]; }
michael@0 396 SkMScalar scaleZ() const { return fMat[2][2]; }
michael@0 397
michael@0 398 SkMScalar perspX() const { return fMat[0][3]; }
michael@0 399 SkMScalar perspY() const { return fMat[1][3]; }
michael@0 400 SkMScalar perspZ() const { return fMat[2][3]; }
michael@0 401
michael@0 402 int computeTypeMask() const;
michael@0 403
michael@0 404 inline void dirtyTypeMask() {
michael@0 405 fTypeMask = kUnknown_Mask;
michael@0 406 }
michael@0 407
michael@0 408 inline void setTypeMask(int mask) {
michael@0 409 SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
michael@0 410 fTypeMask = mask;
michael@0 411 }
michael@0 412
michael@0 413 /**
michael@0 414 * Does not take the time to 'compute' the typemask. Only returns true if
michael@0 415 * we already know that this matrix is identity.
michael@0 416 */
michael@0 417 inline bool isTriviallyIdentity() const {
michael@0 418 return 0 == fTypeMask;
michael@0 419 }
michael@0 420 };
michael@0 421
michael@0 422 #endif

mercurial