Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
michael@0 | 1 | |
michael@0 | 2 | /* |
michael@0 | 3 | * Copyright 2006 The Android Open Source Project |
michael@0 | 4 | * |
michael@0 | 5 | * Use of this source code is governed by a BSD-style license that can be |
michael@0 | 6 | * found in the LICENSE file. |
michael@0 | 7 | */ |
michael@0 | 8 | |
michael@0 | 9 | |
michael@0 | 10 | #include "SkBuffer.h" |
michael@0 | 11 | #include "SkErrorInternals.h" |
michael@0 | 12 | #include "SkMath.h" |
michael@0 | 13 | #include "SkPath.h" |
michael@0 | 14 | #include "SkPathRef.h" |
michael@0 | 15 | #include "SkRRect.h" |
michael@0 | 16 | #include "SkThread.h" |
michael@0 | 17 | |
michael@0 | 18 | //////////////////////////////////////////////////////////////////////////// |
michael@0 | 19 | |
michael@0 | 20 | /** |
michael@0 | 21 | * Path.bounds is defined to be the bounds of all the control points. |
michael@0 | 22 | * If we called bounds.join(r) we would skip r if r was empty, which breaks |
michael@0 | 23 | * our promise. Hence we have a custom joiner that doesn't look at emptiness |
michael@0 | 24 | */ |
michael@0 | 25 | static void joinNoEmptyChecks(SkRect* dst, const SkRect& src) { |
michael@0 | 26 | dst->fLeft = SkMinScalar(dst->fLeft, src.fLeft); |
michael@0 | 27 | dst->fTop = SkMinScalar(dst->fTop, src.fTop); |
michael@0 | 28 | dst->fRight = SkMaxScalar(dst->fRight, src.fRight); |
michael@0 | 29 | dst->fBottom = SkMaxScalar(dst->fBottom, src.fBottom); |
michael@0 | 30 | } |
michael@0 | 31 | |
michael@0 | 32 | static bool is_degenerate(const SkPath& path) { |
michael@0 | 33 | SkPath::Iter iter(path, false); |
michael@0 | 34 | SkPoint pts[4]; |
michael@0 | 35 | return SkPath::kDone_Verb == iter.next(pts); |
michael@0 | 36 | } |
michael@0 | 37 | |
michael@0 | 38 | class SkAutoDisableDirectionCheck { |
michael@0 | 39 | public: |
michael@0 | 40 | SkAutoDisableDirectionCheck(SkPath* path) : fPath(path) { |
michael@0 | 41 | fSaved = static_cast<SkPath::Direction>(fPath->fDirection); |
michael@0 | 42 | } |
michael@0 | 43 | |
michael@0 | 44 | ~SkAutoDisableDirectionCheck() { |
michael@0 | 45 | fPath->fDirection = fSaved; |
michael@0 | 46 | } |
michael@0 | 47 | |
michael@0 | 48 | private: |
michael@0 | 49 | SkPath* fPath; |
michael@0 | 50 | SkPath::Direction fSaved; |
michael@0 | 51 | }; |
michael@0 | 52 | #define SkAutoDisableDirectionCheck(...) SK_REQUIRE_LOCAL_VAR(SkAutoDisableDirectionCheck) |
michael@0 | 53 | |
michael@0 | 54 | /* This guy's constructor/destructor bracket a path editing operation. It is |
michael@0 | 55 | used when we know the bounds of the amount we are going to add to the path |
michael@0 | 56 | (usually a new contour, but not required). |
michael@0 | 57 | |
michael@0 | 58 | It captures some state about the path up front (i.e. if it already has a |
michael@0 | 59 | cached bounds), and then if it can, it updates the cache bounds explicitly, |
michael@0 | 60 | avoiding the need to revisit all of the points in getBounds(). |
michael@0 | 61 | |
michael@0 | 62 | It also notes if the path was originally degenerate, and if so, sets |
michael@0 | 63 | isConvex to true. Thus it can only be used if the contour being added is |
michael@0 | 64 | convex. |
michael@0 | 65 | */ |
michael@0 | 66 | class SkAutoPathBoundsUpdate { |
michael@0 | 67 | public: |
michael@0 | 68 | SkAutoPathBoundsUpdate(SkPath* path, const SkRect& r) : fRect(r) { |
michael@0 | 69 | this->init(path); |
michael@0 | 70 | } |
michael@0 | 71 | |
michael@0 | 72 | SkAutoPathBoundsUpdate(SkPath* path, SkScalar left, SkScalar top, |
michael@0 | 73 | SkScalar right, SkScalar bottom) { |
michael@0 | 74 | fRect.set(left, top, right, bottom); |
michael@0 | 75 | this->init(path); |
michael@0 | 76 | } |
michael@0 | 77 | |
michael@0 | 78 | ~SkAutoPathBoundsUpdate() { |
michael@0 | 79 | fPath->setConvexity(fDegenerate ? SkPath::kConvex_Convexity |
michael@0 | 80 | : SkPath::kUnknown_Convexity); |
michael@0 | 81 | if (fEmpty || fHasValidBounds) { |
michael@0 | 82 | fPath->setBounds(fRect); |
michael@0 | 83 | } |
michael@0 | 84 | } |
michael@0 | 85 | |
michael@0 | 86 | private: |
michael@0 | 87 | SkPath* fPath; |
michael@0 | 88 | SkRect fRect; |
michael@0 | 89 | bool fHasValidBounds; |
michael@0 | 90 | bool fDegenerate; |
michael@0 | 91 | bool fEmpty; |
michael@0 | 92 | |
michael@0 | 93 | void init(SkPath* path) { |
michael@0 | 94 | // Cannot use fRect for our bounds unless we know it is sorted |
michael@0 | 95 | fRect.sort(); |
michael@0 | 96 | fPath = path; |
michael@0 | 97 | // Mark the path's bounds as dirty if (1) they are, or (2) the path |
michael@0 | 98 | // is non-finite, and therefore its bounds are not meaningful |
michael@0 | 99 | fHasValidBounds = path->hasComputedBounds() && path->isFinite(); |
michael@0 | 100 | fEmpty = path->isEmpty(); |
michael@0 | 101 | if (fHasValidBounds && !fEmpty) { |
michael@0 | 102 | joinNoEmptyChecks(&fRect, fPath->getBounds()); |
michael@0 | 103 | } |
michael@0 | 104 | fDegenerate = is_degenerate(*path); |
michael@0 | 105 | } |
michael@0 | 106 | }; |
michael@0 | 107 | #define SkAutoPathBoundsUpdate(...) SK_REQUIRE_LOCAL_VAR(SkAutoPathBoundsUpdate) |
michael@0 | 108 | |
michael@0 | 109 | //////////////////////////////////////////////////////////////////////////// |
michael@0 | 110 | |
michael@0 | 111 | /* |
michael@0 | 112 | Stores the verbs and points as they are given to us, with exceptions: |
michael@0 | 113 | - we only record "Close" if it was immediately preceeded by Move | Line | Quad | Cubic |
michael@0 | 114 | - we insert a Move(0,0) if Line | Quad | Cubic is our first command |
michael@0 | 115 | |
michael@0 | 116 | The iterator does more cleanup, especially if forceClose == true |
michael@0 | 117 | 1. If we encounter degenerate segments, remove them |
michael@0 | 118 | 2. if we encounter Close, return a cons'd up Line() first (if the curr-pt != start-pt) |
michael@0 | 119 | 3. if we encounter Move without a preceeding Close, and forceClose is true, goto #2 |
michael@0 | 120 | 4. if we encounter Line | Quad | Cubic after Close, cons up a Move |
michael@0 | 121 | */ |
michael@0 | 122 | |
michael@0 | 123 | //////////////////////////////////////////////////////////////////////////// |
michael@0 | 124 | |
michael@0 | 125 | // flag to require a moveTo if we begin with something else, like lineTo etc. |
michael@0 | 126 | #define INITIAL_LASTMOVETOINDEX_VALUE ~0 |
michael@0 | 127 | |
michael@0 | 128 | SkPath::SkPath() |
michael@0 | 129 | : fPathRef(SkPathRef::CreateEmpty()) |
michael@0 | 130 | #ifdef SK_BUILD_FOR_ANDROID |
michael@0 | 131 | , fSourcePath(NULL) |
michael@0 | 132 | #endif |
michael@0 | 133 | { |
michael@0 | 134 | this->resetFields(); |
michael@0 | 135 | } |
michael@0 | 136 | |
michael@0 | 137 | void SkPath::resetFields() { |
michael@0 | 138 | //fPathRef is assumed to have been emptied by the caller. |
michael@0 | 139 | fLastMoveToIndex = INITIAL_LASTMOVETOINDEX_VALUE; |
michael@0 | 140 | fFillType = kWinding_FillType; |
michael@0 | 141 | fConvexity = kUnknown_Convexity; |
michael@0 | 142 | fDirection = kUnknown_Direction; |
michael@0 | 143 | |
michael@0 | 144 | // We don't touch Android's fSourcePath. It's used to track texture garbage collection, so we |
michael@0 | 145 | // don't want to muck with it if it's been set to something non-NULL. |
michael@0 | 146 | } |
michael@0 | 147 | |
michael@0 | 148 | SkPath::SkPath(const SkPath& that) |
michael@0 | 149 | : fPathRef(SkRef(that.fPathRef.get())) { |
michael@0 | 150 | this->copyFields(that); |
michael@0 | 151 | #ifdef SK_BUILD_FOR_ANDROID |
michael@0 | 152 | fSourcePath = that.fSourcePath; |
michael@0 | 153 | #endif |
michael@0 | 154 | SkDEBUGCODE(that.validate();) |
michael@0 | 155 | } |
michael@0 | 156 | |
michael@0 | 157 | SkPath::~SkPath() { |
michael@0 | 158 | SkDEBUGCODE(this->validate();) |
michael@0 | 159 | } |
michael@0 | 160 | |
michael@0 | 161 | SkPath& SkPath::operator=(const SkPath& that) { |
michael@0 | 162 | SkDEBUGCODE(that.validate();) |
michael@0 | 163 | |
michael@0 | 164 | if (this != &that) { |
michael@0 | 165 | fPathRef.reset(SkRef(that.fPathRef.get())); |
michael@0 | 166 | this->copyFields(that); |
michael@0 | 167 | #ifdef SK_BUILD_FOR_ANDROID |
michael@0 | 168 | fSourcePath = that.fSourcePath; |
michael@0 | 169 | #endif |
michael@0 | 170 | } |
michael@0 | 171 | SkDEBUGCODE(this->validate();) |
michael@0 | 172 | return *this; |
michael@0 | 173 | } |
michael@0 | 174 | |
michael@0 | 175 | void SkPath::copyFields(const SkPath& that) { |
michael@0 | 176 | //fPathRef is assumed to have been set by the caller. |
michael@0 | 177 | fLastMoveToIndex = that.fLastMoveToIndex; |
michael@0 | 178 | fFillType = that.fFillType; |
michael@0 | 179 | fConvexity = that.fConvexity; |
michael@0 | 180 | fDirection = that.fDirection; |
michael@0 | 181 | } |
michael@0 | 182 | |
michael@0 | 183 | bool operator==(const SkPath& a, const SkPath& b) { |
michael@0 | 184 | // note: don't need to look at isConvex or bounds, since just comparing the |
michael@0 | 185 | // raw data is sufficient. |
michael@0 | 186 | return &a == &b || |
michael@0 | 187 | (a.fFillType == b.fFillType && *a.fPathRef.get() == *b.fPathRef.get()); |
michael@0 | 188 | } |
michael@0 | 189 | |
michael@0 | 190 | void SkPath::swap(SkPath& that) { |
michael@0 | 191 | SkASSERT(&that != NULL); |
michael@0 | 192 | |
michael@0 | 193 | if (this != &that) { |
michael@0 | 194 | fPathRef.swap(&that.fPathRef); |
michael@0 | 195 | SkTSwap<int>(fLastMoveToIndex, that.fLastMoveToIndex); |
michael@0 | 196 | SkTSwap<uint8_t>(fFillType, that.fFillType); |
michael@0 | 197 | SkTSwap<uint8_t>(fConvexity, that.fConvexity); |
michael@0 | 198 | SkTSwap<uint8_t>(fDirection, that.fDirection); |
michael@0 | 199 | #ifdef SK_BUILD_FOR_ANDROID |
michael@0 | 200 | SkTSwap<const SkPath*>(fSourcePath, that.fSourcePath); |
michael@0 | 201 | #endif |
michael@0 | 202 | } |
michael@0 | 203 | } |
michael@0 | 204 | |
michael@0 | 205 | static inline bool check_edge_against_rect(const SkPoint& p0, |
michael@0 | 206 | const SkPoint& p1, |
michael@0 | 207 | const SkRect& rect, |
michael@0 | 208 | SkPath::Direction dir) { |
michael@0 | 209 | const SkPoint* edgeBegin; |
michael@0 | 210 | SkVector v; |
michael@0 | 211 | if (SkPath::kCW_Direction == dir) { |
michael@0 | 212 | v = p1 - p0; |
michael@0 | 213 | edgeBegin = &p0; |
michael@0 | 214 | } else { |
michael@0 | 215 | v = p0 - p1; |
michael@0 | 216 | edgeBegin = &p1; |
michael@0 | 217 | } |
michael@0 | 218 | if (v.fX || v.fY) { |
michael@0 | 219 | // check the cross product of v with the vec from edgeBegin to each rect corner |
michael@0 | 220 | SkScalar yL = SkScalarMul(v.fY, rect.fLeft - edgeBegin->fX); |
michael@0 | 221 | SkScalar xT = SkScalarMul(v.fX, rect.fTop - edgeBegin->fY); |
michael@0 | 222 | SkScalar yR = SkScalarMul(v.fY, rect.fRight - edgeBegin->fX); |
michael@0 | 223 | SkScalar xB = SkScalarMul(v.fX, rect.fBottom - edgeBegin->fY); |
michael@0 | 224 | if ((xT < yL) || (xT < yR) || (xB < yL) || (xB < yR)) { |
michael@0 | 225 | return false; |
michael@0 | 226 | } |
michael@0 | 227 | } |
michael@0 | 228 | return true; |
michael@0 | 229 | } |
michael@0 | 230 | |
michael@0 | 231 | bool SkPath::conservativelyContainsRect(const SkRect& rect) const { |
michael@0 | 232 | // This only handles non-degenerate convex paths currently. |
michael@0 | 233 | if (kConvex_Convexity != this->getConvexity()) { |
michael@0 | 234 | return false; |
michael@0 | 235 | } |
michael@0 | 236 | |
michael@0 | 237 | Direction direction; |
michael@0 | 238 | if (!this->cheapComputeDirection(&direction)) { |
michael@0 | 239 | return false; |
michael@0 | 240 | } |
michael@0 | 241 | |
michael@0 | 242 | SkPoint firstPt; |
michael@0 | 243 | SkPoint prevPt; |
michael@0 | 244 | RawIter iter(*this); |
michael@0 | 245 | SkPath::Verb verb; |
michael@0 | 246 | SkPoint pts[4]; |
michael@0 | 247 | SkDEBUGCODE(int moveCnt = 0;) |
michael@0 | 248 | SkDEBUGCODE(int segmentCount = 0;) |
michael@0 | 249 | SkDEBUGCODE(int closeCount = 0;) |
michael@0 | 250 | |
michael@0 | 251 | while ((verb = iter.next(pts)) != kDone_Verb) { |
michael@0 | 252 | int nextPt = -1; |
michael@0 | 253 | switch (verb) { |
michael@0 | 254 | case kMove_Verb: |
michael@0 | 255 | SkASSERT(!segmentCount && !closeCount); |
michael@0 | 256 | SkDEBUGCODE(++moveCnt); |
michael@0 | 257 | firstPt = prevPt = pts[0]; |
michael@0 | 258 | break; |
michael@0 | 259 | case kLine_Verb: |
michael@0 | 260 | nextPt = 1; |
michael@0 | 261 | SkASSERT(moveCnt && !closeCount); |
michael@0 | 262 | SkDEBUGCODE(++segmentCount); |
michael@0 | 263 | break; |
michael@0 | 264 | case kQuad_Verb: |
michael@0 | 265 | case kConic_Verb: |
michael@0 | 266 | SkASSERT(moveCnt && !closeCount); |
michael@0 | 267 | SkDEBUGCODE(++segmentCount); |
michael@0 | 268 | nextPt = 2; |
michael@0 | 269 | break; |
michael@0 | 270 | case kCubic_Verb: |
michael@0 | 271 | SkASSERT(moveCnt && !closeCount); |
michael@0 | 272 | SkDEBUGCODE(++segmentCount); |
michael@0 | 273 | nextPt = 3; |
michael@0 | 274 | break; |
michael@0 | 275 | case kClose_Verb: |
michael@0 | 276 | SkDEBUGCODE(++closeCount;) |
michael@0 | 277 | break; |
michael@0 | 278 | default: |
michael@0 | 279 | SkDEBUGFAIL("unknown verb"); |
michael@0 | 280 | } |
michael@0 | 281 | if (-1 != nextPt) { |
michael@0 | 282 | if (!check_edge_against_rect(prevPt, pts[nextPt], rect, direction)) { |
michael@0 | 283 | return false; |
michael@0 | 284 | } |
michael@0 | 285 | prevPt = pts[nextPt]; |
michael@0 | 286 | } |
michael@0 | 287 | } |
michael@0 | 288 | |
michael@0 | 289 | return check_edge_against_rect(prevPt, firstPt, rect, direction); |
michael@0 | 290 | } |
michael@0 | 291 | |
michael@0 | 292 | uint32_t SkPath::getGenerationID() const { |
michael@0 | 293 | uint32_t genID = fPathRef->genID(); |
michael@0 | 294 | #ifdef SK_BUILD_FOR_ANDROID |
michael@0 | 295 | SkASSERT((unsigned)fFillType < (1 << (32 - kPathRefGenIDBitCnt))); |
michael@0 | 296 | genID |= static_cast<uint32_t>(fFillType) << kPathRefGenIDBitCnt; |
michael@0 | 297 | #endif |
michael@0 | 298 | return genID; |
michael@0 | 299 | } |
michael@0 | 300 | |
michael@0 | 301 | #ifdef SK_BUILD_FOR_ANDROID |
michael@0 | 302 | const SkPath* SkPath::getSourcePath() const { |
michael@0 | 303 | return fSourcePath; |
michael@0 | 304 | } |
michael@0 | 305 | |
michael@0 | 306 | void SkPath::setSourcePath(const SkPath* path) { |
michael@0 | 307 | fSourcePath = path; |
michael@0 | 308 | } |
michael@0 | 309 | #endif |
michael@0 | 310 | |
michael@0 | 311 | void SkPath::reset() { |
michael@0 | 312 | SkDEBUGCODE(this->validate();) |
michael@0 | 313 | |
michael@0 | 314 | fPathRef.reset(SkPathRef::CreateEmpty()); |
michael@0 | 315 | this->resetFields(); |
michael@0 | 316 | } |
michael@0 | 317 | |
michael@0 | 318 | void SkPath::rewind() { |
michael@0 | 319 | SkDEBUGCODE(this->validate();) |
michael@0 | 320 | |
michael@0 | 321 | SkPathRef::Rewind(&fPathRef); |
michael@0 | 322 | this->resetFields(); |
michael@0 | 323 | } |
michael@0 | 324 | |
michael@0 | 325 | bool SkPath::isLine(SkPoint line[2]) const { |
michael@0 | 326 | int verbCount = fPathRef->countVerbs(); |
michael@0 | 327 | |
michael@0 | 328 | if (2 == verbCount) { |
michael@0 | 329 | SkASSERT(kMove_Verb == fPathRef->atVerb(0)); |
michael@0 | 330 | if (kLine_Verb == fPathRef->atVerb(1)) { |
michael@0 | 331 | SkASSERT(2 == fPathRef->countPoints()); |
michael@0 | 332 | if (line) { |
michael@0 | 333 | const SkPoint* pts = fPathRef->points(); |
michael@0 | 334 | line[0] = pts[0]; |
michael@0 | 335 | line[1] = pts[1]; |
michael@0 | 336 | } |
michael@0 | 337 | return true; |
michael@0 | 338 | } |
michael@0 | 339 | } |
michael@0 | 340 | return false; |
michael@0 | 341 | } |
michael@0 | 342 | |
michael@0 | 343 | /* |
michael@0 | 344 | Determines if path is a rect by keeping track of changes in direction |
michael@0 | 345 | and looking for a loop either clockwise or counterclockwise. |
michael@0 | 346 | |
michael@0 | 347 | The direction is computed such that: |
michael@0 | 348 | 0: vertical up |
michael@0 | 349 | 1: horizontal left |
michael@0 | 350 | 2: vertical down |
michael@0 | 351 | 3: horizontal right |
michael@0 | 352 | |
michael@0 | 353 | A rectangle cycles up/right/down/left or up/left/down/right. |
michael@0 | 354 | |
michael@0 | 355 | The test fails if: |
michael@0 | 356 | The path is closed, and followed by a line. |
michael@0 | 357 | A second move creates a new endpoint. |
michael@0 | 358 | A diagonal line is parsed. |
michael@0 | 359 | There's more than four changes of direction. |
michael@0 | 360 | There's a discontinuity on the line (e.g., a move in the middle) |
michael@0 | 361 | The line reverses direction. |
michael@0 | 362 | The path contains a quadratic or cubic. |
michael@0 | 363 | The path contains fewer than four points. |
michael@0 | 364 | *The rectangle doesn't complete a cycle. |
michael@0 | 365 | *The final point isn't equal to the first point. |
michael@0 | 366 | |
michael@0 | 367 | *These last two conditions we relax if we have a 3-edge path that would |
michael@0 | 368 | form a rectangle if it were closed (as we do when we fill a path) |
michael@0 | 369 | |
michael@0 | 370 | It's OK if the path has: |
michael@0 | 371 | Several colinear line segments composing a rectangle side. |
michael@0 | 372 | Single points on the rectangle side. |
michael@0 | 373 | |
michael@0 | 374 | The direction takes advantage of the corners found since opposite sides |
michael@0 | 375 | must travel in opposite directions. |
michael@0 | 376 | |
michael@0 | 377 | FIXME: Allow colinear quads and cubics to be treated like lines. |
michael@0 | 378 | FIXME: If the API passes fill-only, return true if the filled stroke |
michael@0 | 379 | is a rectangle, though the caller failed to close the path. |
michael@0 | 380 | |
michael@0 | 381 | first,last,next direction state-machine: |
michael@0 | 382 | 0x1 is set if the segment is horizontal |
michael@0 | 383 | 0x2 is set if the segment is moving to the right or down |
michael@0 | 384 | thus: |
michael@0 | 385 | two directions are opposites iff (dirA ^ dirB) == 0x2 |
michael@0 | 386 | two directions are perpendicular iff (dirA ^ dirB) == 0x1 |
michael@0 | 387 | |
michael@0 | 388 | */ |
michael@0 | 389 | static int rect_make_dir(SkScalar dx, SkScalar dy) { |
michael@0 | 390 | return ((0 != dx) << 0) | ((dx > 0 || dy > 0) << 1); |
michael@0 | 391 | } |
michael@0 | 392 | bool SkPath::isRectContour(bool allowPartial, int* currVerb, const SkPoint** ptsPtr, |
michael@0 | 393 | bool* isClosed, Direction* direction) const { |
michael@0 | 394 | int corners = 0; |
michael@0 | 395 | SkPoint first, last; |
michael@0 | 396 | const SkPoint* pts = *ptsPtr; |
michael@0 | 397 | const SkPoint* savePts = NULL; |
michael@0 | 398 | first.set(0, 0); |
michael@0 | 399 | last.set(0, 0); |
michael@0 | 400 | int firstDirection = 0; |
michael@0 | 401 | int lastDirection = 0; |
michael@0 | 402 | int nextDirection = 0; |
michael@0 | 403 | bool closedOrMoved = false; |
michael@0 | 404 | bool autoClose = false; |
michael@0 | 405 | int verbCnt = fPathRef->countVerbs(); |
michael@0 | 406 | while (*currVerb < verbCnt && (!allowPartial || !autoClose)) { |
michael@0 | 407 | switch (fPathRef->atVerb(*currVerb)) { |
michael@0 | 408 | case kClose_Verb: |
michael@0 | 409 | savePts = pts; |
michael@0 | 410 | pts = *ptsPtr; |
michael@0 | 411 | autoClose = true; |
michael@0 | 412 | case kLine_Verb: { |
michael@0 | 413 | SkScalar left = last.fX; |
michael@0 | 414 | SkScalar top = last.fY; |
michael@0 | 415 | SkScalar right = pts->fX; |
michael@0 | 416 | SkScalar bottom = pts->fY; |
michael@0 | 417 | ++pts; |
michael@0 | 418 | if (left != right && top != bottom) { |
michael@0 | 419 | return false; // diagonal |
michael@0 | 420 | } |
michael@0 | 421 | if (left == right && top == bottom) { |
michael@0 | 422 | break; // single point on side OK |
michael@0 | 423 | } |
michael@0 | 424 | nextDirection = rect_make_dir(right - left, bottom - top); |
michael@0 | 425 | if (0 == corners) { |
michael@0 | 426 | firstDirection = nextDirection; |
michael@0 | 427 | first = last; |
michael@0 | 428 | last = pts[-1]; |
michael@0 | 429 | corners = 1; |
michael@0 | 430 | closedOrMoved = false; |
michael@0 | 431 | break; |
michael@0 | 432 | } |
michael@0 | 433 | if (closedOrMoved) { |
michael@0 | 434 | return false; // closed followed by a line |
michael@0 | 435 | } |
michael@0 | 436 | if (autoClose && nextDirection == firstDirection) { |
michael@0 | 437 | break; // colinear with first |
michael@0 | 438 | } |
michael@0 | 439 | closedOrMoved = autoClose; |
michael@0 | 440 | if (lastDirection != nextDirection) { |
michael@0 | 441 | if (++corners > 4) { |
michael@0 | 442 | return false; // too many direction changes |
michael@0 | 443 | } |
michael@0 | 444 | } |
michael@0 | 445 | last = pts[-1]; |
michael@0 | 446 | if (lastDirection == nextDirection) { |
michael@0 | 447 | break; // colinear segment |
michael@0 | 448 | } |
michael@0 | 449 | // Possible values for corners are 2, 3, and 4. |
michael@0 | 450 | // When corners == 3, nextDirection opposes firstDirection. |
michael@0 | 451 | // Otherwise, nextDirection at corner 2 opposes corner 4. |
michael@0 | 452 | int turn = firstDirection ^ (corners - 1); |
michael@0 | 453 | int directionCycle = 3 == corners ? 0 : nextDirection ^ turn; |
michael@0 | 454 | if ((directionCycle ^ turn) != nextDirection) { |
michael@0 | 455 | return false; // direction didn't follow cycle |
michael@0 | 456 | } |
michael@0 | 457 | break; |
michael@0 | 458 | } |
michael@0 | 459 | case kQuad_Verb: |
michael@0 | 460 | case kConic_Verb: |
michael@0 | 461 | case kCubic_Verb: |
michael@0 | 462 | return false; // quadratic, cubic not allowed |
michael@0 | 463 | case kMove_Verb: |
michael@0 | 464 | last = *pts++; |
michael@0 | 465 | closedOrMoved = true; |
michael@0 | 466 | break; |
michael@0 | 467 | default: |
michael@0 | 468 | SkDEBUGFAIL("unexpected verb"); |
michael@0 | 469 | break; |
michael@0 | 470 | } |
michael@0 | 471 | *currVerb += 1; |
michael@0 | 472 | lastDirection = nextDirection; |
michael@0 | 473 | } |
michael@0 | 474 | // Success if 4 corners and first point equals last |
michael@0 | 475 | bool result = 4 == corners && (first == last || autoClose); |
michael@0 | 476 | if (!result) { |
michael@0 | 477 | // check if we are just an incomplete rectangle, in which case we can |
michael@0 | 478 | // return true, but not claim to be closed. |
michael@0 | 479 | // e.g. |
michael@0 | 480 | // 3 sided rectangle |
michael@0 | 481 | // 4 sided but the last edge is not long enough to reach the start |
michael@0 | 482 | // |
michael@0 | 483 | SkScalar closeX = first.x() - last.x(); |
michael@0 | 484 | SkScalar closeY = first.y() - last.y(); |
michael@0 | 485 | if (closeX && closeY) { |
michael@0 | 486 | return false; // we're diagonal, abort (can we ever reach this?) |
michael@0 | 487 | } |
michael@0 | 488 | int closeDirection = rect_make_dir(closeX, closeY); |
michael@0 | 489 | // make sure the close-segment doesn't double-back on itself |
michael@0 | 490 | if (3 == corners || (4 == corners && closeDirection == lastDirection)) { |
michael@0 | 491 | result = true; |
michael@0 | 492 | autoClose = false; // we are not closed |
michael@0 | 493 | } |
michael@0 | 494 | } |
michael@0 | 495 | if (savePts) { |
michael@0 | 496 | *ptsPtr = savePts; |
michael@0 | 497 | } |
michael@0 | 498 | if (result && isClosed) { |
michael@0 | 499 | *isClosed = autoClose; |
michael@0 | 500 | } |
michael@0 | 501 | if (result && direction) { |
michael@0 | 502 | *direction = firstDirection == ((lastDirection + 1) & 3) ? kCCW_Direction : kCW_Direction; |
michael@0 | 503 | } |
michael@0 | 504 | return result; |
michael@0 | 505 | } |
michael@0 | 506 | |
michael@0 | 507 | SkPath::PathAsRect SkPath::asRect(Direction* direction) const { |
michael@0 | 508 | SK_COMPILE_ASSERT(0 == kNone_PathAsRect, path_as_rect_mismatch); |
michael@0 | 509 | SK_COMPILE_ASSERT(1 == kFill_PathAsRect, path_as_rect_mismatch); |
michael@0 | 510 | SK_COMPILE_ASSERT(2 == kStroke_PathAsRect, path_as_rect_mismatch); |
michael@0 | 511 | bool isClosed = false; |
michael@0 | 512 | return (PathAsRect) (isRect(&isClosed, direction) + isClosed); |
michael@0 | 513 | } |
michael@0 | 514 | |
michael@0 | 515 | bool SkPath::isRect(SkRect* rect) const { |
michael@0 | 516 | SkDEBUGCODE(this->validate();) |
michael@0 | 517 | int currVerb = 0; |
michael@0 | 518 | const SkPoint* pts = fPathRef->points(); |
michael@0 | 519 | bool result = isRectContour(false, &currVerb, &pts, NULL, NULL); |
michael@0 | 520 | if (result && rect) { |
michael@0 | 521 | *rect = getBounds(); |
michael@0 | 522 | } |
michael@0 | 523 | return result; |
michael@0 | 524 | } |
michael@0 | 525 | |
michael@0 | 526 | bool SkPath::isRect(bool* isClosed, Direction* direction) const { |
michael@0 | 527 | SkDEBUGCODE(this->validate();) |
michael@0 | 528 | int currVerb = 0; |
michael@0 | 529 | const SkPoint* pts = fPathRef->points(); |
michael@0 | 530 | return isRectContour(false, &currVerb, &pts, isClosed, direction); |
michael@0 | 531 | } |
michael@0 | 532 | |
michael@0 | 533 | bool SkPath::isNestedRects(SkRect rects[2], Direction dirs[2]) const { |
michael@0 | 534 | SkDEBUGCODE(this->validate();) |
michael@0 | 535 | int currVerb = 0; |
michael@0 | 536 | const SkPoint* pts = fPathRef->points(); |
michael@0 | 537 | const SkPoint* first = pts; |
michael@0 | 538 | Direction testDirs[2]; |
michael@0 | 539 | if (!isRectContour(true, &currVerb, &pts, NULL, &testDirs[0])) { |
michael@0 | 540 | return false; |
michael@0 | 541 | } |
michael@0 | 542 | const SkPoint* last = pts; |
michael@0 | 543 | SkRect testRects[2]; |
michael@0 | 544 | if (isRectContour(false, &currVerb, &pts, NULL, &testDirs[1])) { |
michael@0 | 545 | testRects[0].set(first, SkToS32(last - first)); |
michael@0 | 546 | testRects[1].set(last, SkToS32(pts - last)); |
michael@0 | 547 | if (testRects[0].contains(testRects[1])) { |
michael@0 | 548 | if (rects) { |
michael@0 | 549 | rects[0] = testRects[0]; |
michael@0 | 550 | rects[1] = testRects[1]; |
michael@0 | 551 | } |
michael@0 | 552 | if (dirs) { |
michael@0 | 553 | dirs[0] = testDirs[0]; |
michael@0 | 554 | dirs[1] = testDirs[1]; |
michael@0 | 555 | } |
michael@0 | 556 | return true; |
michael@0 | 557 | } |
michael@0 | 558 | if (testRects[1].contains(testRects[0])) { |
michael@0 | 559 | if (rects) { |
michael@0 | 560 | rects[0] = testRects[1]; |
michael@0 | 561 | rects[1] = testRects[0]; |
michael@0 | 562 | } |
michael@0 | 563 | if (dirs) { |
michael@0 | 564 | dirs[0] = testDirs[1]; |
michael@0 | 565 | dirs[1] = testDirs[0]; |
michael@0 | 566 | } |
michael@0 | 567 | return true; |
michael@0 | 568 | } |
michael@0 | 569 | } |
michael@0 | 570 | return false; |
michael@0 | 571 | } |
michael@0 | 572 | |
michael@0 | 573 | int SkPath::countPoints() const { |
michael@0 | 574 | return fPathRef->countPoints(); |
michael@0 | 575 | } |
michael@0 | 576 | |
michael@0 | 577 | int SkPath::getPoints(SkPoint dst[], int max) const { |
michael@0 | 578 | SkDEBUGCODE(this->validate();) |
michael@0 | 579 | |
michael@0 | 580 | SkASSERT(max >= 0); |
michael@0 | 581 | SkASSERT(!max || dst); |
michael@0 | 582 | int count = SkMin32(max, fPathRef->countPoints()); |
michael@0 | 583 | memcpy(dst, fPathRef->points(), count * sizeof(SkPoint)); |
michael@0 | 584 | return fPathRef->countPoints(); |
michael@0 | 585 | } |
michael@0 | 586 | |
michael@0 | 587 | SkPoint SkPath::getPoint(int index) const { |
michael@0 | 588 | if ((unsigned)index < (unsigned)fPathRef->countPoints()) { |
michael@0 | 589 | return fPathRef->atPoint(index); |
michael@0 | 590 | } |
michael@0 | 591 | return SkPoint::Make(0, 0); |
michael@0 | 592 | } |
michael@0 | 593 | |
michael@0 | 594 | int SkPath::countVerbs() const { |
michael@0 | 595 | return fPathRef->countVerbs(); |
michael@0 | 596 | } |
michael@0 | 597 | |
michael@0 | 598 | static inline void copy_verbs_reverse(uint8_t* inorderDst, |
michael@0 | 599 | const uint8_t* reversedSrc, |
michael@0 | 600 | int count) { |
michael@0 | 601 | for (int i = 0; i < count; ++i) { |
michael@0 | 602 | inorderDst[i] = reversedSrc[~i]; |
michael@0 | 603 | } |
michael@0 | 604 | } |
michael@0 | 605 | |
michael@0 | 606 | int SkPath::getVerbs(uint8_t dst[], int max) const { |
michael@0 | 607 | SkDEBUGCODE(this->validate();) |
michael@0 | 608 | |
michael@0 | 609 | SkASSERT(max >= 0); |
michael@0 | 610 | SkASSERT(!max || dst); |
michael@0 | 611 | int count = SkMin32(max, fPathRef->countVerbs()); |
michael@0 | 612 | copy_verbs_reverse(dst, fPathRef->verbs(), count); |
michael@0 | 613 | return fPathRef->countVerbs(); |
michael@0 | 614 | } |
michael@0 | 615 | |
michael@0 | 616 | bool SkPath::getLastPt(SkPoint* lastPt) const { |
michael@0 | 617 | SkDEBUGCODE(this->validate();) |
michael@0 | 618 | |
michael@0 | 619 | int count = fPathRef->countPoints(); |
michael@0 | 620 | if (count > 0) { |
michael@0 | 621 | if (lastPt) { |
michael@0 | 622 | *lastPt = fPathRef->atPoint(count - 1); |
michael@0 | 623 | } |
michael@0 | 624 | return true; |
michael@0 | 625 | } |
michael@0 | 626 | if (lastPt) { |
michael@0 | 627 | lastPt->set(0, 0); |
michael@0 | 628 | } |
michael@0 | 629 | return false; |
michael@0 | 630 | } |
michael@0 | 631 | |
michael@0 | 632 | void SkPath::setLastPt(SkScalar x, SkScalar y) { |
michael@0 | 633 | SkDEBUGCODE(this->validate();) |
michael@0 | 634 | |
michael@0 | 635 | int count = fPathRef->countPoints(); |
michael@0 | 636 | if (count == 0) { |
michael@0 | 637 | this->moveTo(x, y); |
michael@0 | 638 | } else { |
michael@0 | 639 | SkPathRef::Editor ed(&fPathRef); |
michael@0 | 640 | ed.atPoint(count-1)->set(x, y); |
michael@0 | 641 | } |
michael@0 | 642 | } |
michael@0 | 643 | |
michael@0 | 644 | void SkPath::setConvexity(Convexity c) { |
michael@0 | 645 | if (fConvexity != c) { |
michael@0 | 646 | fConvexity = c; |
michael@0 | 647 | } |
michael@0 | 648 | } |
michael@0 | 649 | |
michael@0 | 650 | ////////////////////////////////////////////////////////////////////////////// |
michael@0 | 651 | // Construction methods |
michael@0 | 652 | |
michael@0 | 653 | #define DIRTY_AFTER_EDIT \ |
michael@0 | 654 | do { \ |
michael@0 | 655 | fConvexity = kUnknown_Convexity; \ |
michael@0 | 656 | fDirection = kUnknown_Direction; \ |
michael@0 | 657 | } while (0) |
michael@0 | 658 | |
michael@0 | 659 | void SkPath::incReserve(U16CPU inc) { |
michael@0 | 660 | SkDEBUGCODE(this->validate();) |
michael@0 | 661 | SkPathRef::Editor(&fPathRef, inc, inc); |
michael@0 | 662 | SkDEBUGCODE(this->validate();) |
michael@0 | 663 | } |
michael@0 | 664 | |
michael@0 | 665 | void SkPath::moveTo(SkScalar x, SkScalar y) { |
michael@0 | 666 | SkDEBUGCODE(this->validate();) |
michael@0 | 667 | |
michael@0 | 668 | SkPathRef::Editor ed(&fPathRef); |
michael@0 | 669 | |
michael@0 | 670 | // remember our index |
michael@0 | 671 | fLastMoveToIndex = fPathRef->countPoints(); |
michael@0 | 672 | |
michael@0 | 673 | ed.growForVerb(kMove_Verb)->set(x, y); |
michael@0 | 674 | } |
michael@0 | 675 | |
michael@0 | 676 | void SkPath::rMoveTo(SkScalar x, SkScalar y) { |
michael@0 | 677 | SkPoint pt; |
michael@0 | 678 | this->getLastPt(&pt); |
michael@0 | 679 | this->moveTo(pt.fX + x, pt.fY + y); |
michael@0 | 680 | } |
michael@0 | 681 | |
michael@0 | 682 | void SkPath::injectMoveToIfNeeded() { |
michael@0 | 683 | if (fLastMoveToIndex < 0) { |
michael@0 | 684 | SkScalar x, y; |
michael@0 | 685 | if (fPathRef->countVerbs() == 0) { |
michael@0 | 686 | x = y = 0; |
michael@0 | 687 | } else { |
michael@0 | 688 | const SkPoint& pt = fPathRef->atPoint(~fLastMoveToIndex); |
michael@0 | 689 | x = pt.fX; |
michael@0 | 690 | y = pt.fY; |
michael@0 | 691 | } |
michael@0 | 692 | this->moveTo(x, y); |
michael@0 | 693 | } |
michael@0 | 694 | } |
michael@0 | 695 | |
michael@0 | 696 | void SkPath::lineTo(SkScalar x, SkScalar y) { |
michael@0 | 697 | SkDEBUGCODE(this->validate();) |
michael@0 | 698 | |
michael@0 | 699 | this->injectMoveToIfNeeded(); |
michael@0 | 700 | |
michael@0 | 701 | SkPathRef::Editor ed(&fPathRef); |
michael@0 | 702 | ed.growForVerb(kLine_Verb)->set(x, y); |
michael@0 | 703 | |
michael@0 | 704 | DIRTY_AFTER_EDIT; |
michael@0 | 705 | } |
michael@0 | 706 | |
michael@0 | 707 | void SkPath::rLineTo(SkScalar x, SkScalar y) { |
michael@0 | 708 | this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
michael@0 | 709 | SkPoint pt; |
michael@0 | 710 | this->getLastPt(&pt); |
michael@0 | 711 | this->lineTo(pt.fX + x, pt.fY + y); |
michael@0 | 712 | } |
michael@0 | 713 | |
michael@0 | 714 | void SkPath::quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
michael@0 | 715 | SkDEBUGCODE(this->validate();) |
michael@0 | 716 | |
michael@0 | 717 | this->injectMoveToIfNeeded(); |
michael@0 | 718 | |
michael@0 | 719 | SkPathRef::Editor ed(&fPathRef); |
michael@0 | 720 | SkPoint* pts = ed.growForVerb(kQuad_Verb); |
michael@0 | 721 | pts[0].set(x1, y1); |
michael@0 | 722 | pts[1].set(x2, y2); |
michael@0 | 723 | |
michael@0 | 724 | DIRTY_AFTER_EDIT; |
michael@0 | 725 | } |
michael@0 | 726 | |
michael@0 | 727 | void SkPath::rQuadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
michael@0 | 728 | this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
michael@0 | 729 | SkPoint pt; |
michael@0 | 730 | this->getLastPt(&pt); |
michael@0 | 731 | this->quadTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2); |
michael@0 | 732 | } |
michael@0 | 733 | |
michael@0 | 734 | void SkPath::conicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
michael@0 | 735 | SkScalar w) { |
michael@0 | 736 | // check for <= 0 or NaN with this test |
michael@0 | 737 | if (!(w > 0)) { |
michael@0 | 738 | this->lineTo(x2, y2); |
michael@0 | 739 | } else if (!SkScalarIsFinite(w)) { |
michael@0 | 740 | this->lineTo(x1, y1); |
michael@0 | 741 | this->lineTo(x2, y2); |
michael@0 | 742 | } else if (SK_Scalar1 == w) { |
michael@0 | 743 | this->quadTo(x1, y1, x2, y2); |
michael@0 | 744 | } else { |
michael@0 | 745 | SkDEBUGCODE(this->validate();) |
michael@0 | 746 | |
michael@0 | 747 | this->injectMoveToIfNeeded(); |
michael@0 | 748 | |
michael@0 | 749 | SkPathRef::Editor ed(&fPathRef); |
michael@0 | 750 | SkPoint* pts = ed.growForVerb(kConic_Verb, w); |
michael@0 | 751 | pts[0].set(x1, y1); |
michael@0 | 752 | pts[1].set(x2, y2); |
michael@0 | 753 | |
michael@0 | 754 | DIRTY_AFTER_EDIT; |
michael@0 | 755 | } |
michael@0 | 756 | } |
michael@0 | 757 | |
michael@0 | 758 | void SkPath::rConicTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2, |
michael@0 | 759 | SkScalar w) { |
michael@0 | 760 | this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
michael@0 | 761 | SkPoint pt; |
michael@0 | 762 | this->getLastPt(&pt); |
michael@0 | 763 | this->conicTo(pt.fX + dx1, pt.fY + dy1, pt.fX + dx2, pt.fY + dy2, w); |
michael@0 | 764 | } |
michael@0 | 765 | |
michael@0 | 766 | void SkPath::cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
michael@0 | 767 | SkScalar x3, SkScalar y3) { |
michael@0 | 768 | SkDEBUGCODE(this->validate();) |
michael@0 | 769 | |
michael@0 | 770 | this->injectMoveToIfNeeded(); |
michael@0 | 771 | |
michael@0 | 772 | SkPathRef::Editor ed(&fPathRef); |
michael@0 | 773 | SkPoint* pts = ed.growForVerb(kCubic_Verb); |
michael@0 | 774 | pts[0].set(x1, y1); |
michael@0 | 775 | pts[1].set(x2, y2); |
michael@0 | 776 | pts[2].set(x3, y3); |
michael@0 | 777 | |
michael@0 | 778 | DIRTY_AFTER_EDIT; |
michael@0 | 779 | } |
michael@0 | 780 | |
michael@0 | 781 | void SkPath::rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
michael@0 | 782 | SkScalar x3, SkScalar y3) { |
michael@0 | 783 | this->injectMoveToIfNeeded(); // This can change the result of this->getLastPt(). |
michael@0 | 784 | SkPoint pt; |
michael@0 | 785 | this->getLastPt(&pt); |
michael@0 | 786 | this->cubicTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2, |
michael@0 | 787 | pt.fX + x3, pt.fY + y3); |
michael@0 | 788 | } |
michael@0 | 789 | |
michael@0 | 790 | void SkPath::close() { |
michael@0 | 791 | SkDEBUGCODE(this->validate();) |
michael@0 | 792 | |
michael@0 | 793 | int count = fPathRef->countVerbs(); |
michael@0 | 794 | if (count > 0) { |
michael@0 | 795 | switch (fPathRef->atVerb(count - 1)) { |
michael@0 | 796 | case kLine_Verb: |
michael@0 | 797 | case kQuad_Verb: |
michael@0 | 798 | case kConic_Verb: |
michael@0 | 799 | case kCubic_Verb: |
michael@0 | 800 | case kMove_Verb: { |
michael@0 | 801 | SkPathRef::Editor ed(&fPathRef); |
michael@0 | 802 | ed.growForVerb(kClose_Verb); |
michael@0 | 803 | break; |
michael@0 | 804 | } |
michael@0 | 805 | case kClose_Verb: |
michael@0 | 806 | // don't add a close if it's the first verb or a repeat |
michael@0 | 807 | break; |
michael@0 | 808 | default: |
michael@0 | 809 | SkDEBUGFAIL("unexpected verb"); |
michael@0 | 810 | break; |
michael@0 | 811 | } |
michael@0 | 812 | } |
michael@0 | 813 | |
michael@0 | 814 | // signal that we need a moveTo to follow us (unless we're done) |
michael@0 | 815 | #if 0 |
michael@0 | 816 | if (fLastMoveToIndex >= 0) { |
michael@0 | 817 | fLastMoveToIndex = ~fLastMoveToIndex; |
michael@0 | 818 | } |
michael@0 | 819 | #else |
michael@0 | 820 | fLastMoveToIndex ^= ~fLastMoveToIndex >> (8 * sizeof(fLastMoveToIndex) - 1); |
michael@0 | 821 | #endif |
michael@0 | 822 | } |
michael@0 | 823 | |
michael@0 | 824 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 825 | |
michael@0 | 826 | static void assert_known_direction(int dir) { |
michael@0 | 827 | SkASSERT(SkPath::kCW_Direction == dir || SkPath::kCCW_Direction == dir); |
michael@0 | 828 | } |
michael@0 | 829 | |
michael@0 | 830 | void SkPath::addRect(const SkRect& rect, Direction dir) { |
michael@0 | 831 | this->addRect(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, dir); |
michael@0 | 832 | } |
michael@0 | 833 | |
michael@0 | 834 | void SkPath::addRect(SkScalar left, SkScalar top, SkScalar right, |
michael@0 | 835 | SkScalar bottom, Direction dir) { |
michael@0 | 836 | assert_known_direction(dir); |
michael@0 | 837 | fDirection = this->hasOnlyMoveTos() ? dir : kUnknown_Direction; |
michael@0 | 838 | SkAutoDisableDirectionCheck addc(this); |
michael@0 | 839 | |
michael@0 | 840 | SkAutoPathBoundsUpdate apbu(this, left, top, right, bottom); |
michael@0 | 841 | |
michael@0 | 842 | this->incReserve(5); |
michael@0 | 843 | |
michael@0 | 844 | this->moveTo(left, top); |
michael@0 | 845 | if (dir == kCCW_Direction) { |
michael@0 | 846 | this->lineTo(left, bottom); |
michael@0 | 847 | this->lineTo(right, bottom); |
michael@0 | 848 | this->lineTo(right, top); |
michael@0 | 849 | } else { |
michael@0 | 850 | this->lineTo(right, top); |
michael@0 | 851 | this->lineTo(right, bottom); |
michael@0 | 852 | this->lineTo(left, bottom); |
michael@0 | 853 | } |
michael@0 | 854 | this->close(); |
michael@0 | 855 | } |
michael@0 | 856 | |
michael@0 | 857 | void SkPath::addPoly(const SkPoint pts[], int count, bool close) { |
michael@0 | 858 | SkDEBUGCODE(this->validate();) |
michael@0 | 859 | if (count <= 0) { |
michael@0 | 860 | return; |
michael@0 | 861 | } |
michael@0 | 862 | |
michael@0 | 863 | fLastMoveToIndex = fPathRef->countPoints(); |
michael@0 | 864 | |
michael@0 | 865 | // +close makes room for the extra kClose_Verb |
michael@0 | 866 | SkPathRef::Editor ed(&fPathRef, count+close, count); |
michael@0 | 867 | |
michael@0 | 868 | ed.growForVerb(kMove_Verb)->set(pts[0].fX, pts[0].fY); |
michael@0 | 869 | if (count > 1) { |
michael@0 | 870 | SkPoint* p = ed.growForRepeatedVerb(kLine_Verb, count - 1); |
michael@0 | 871 | memcpy(p, &pts[1], (count-1) * sizeof(SkPoint)); |
michael@0 | 872 | } |
michael@0 | 873 | |
michael@0 | 874 | if (close) { |
michael@0 | 875 | ed.growForVerb(kClose_Verb); |
michael@0 | 876 | } |
michael@0 | 877 | |
michael@0 | 878 | DIRTY_AFTER_EDIT; |
michael@0 | 879 | SkDEBUGCODE(this->validate();) |
michael@0 | 880 | } |
michael@0 | 881 | |
michael@0 | 882 | #include "SkGeometry.h" |
michael@0 | 883 | |
michael@0 | 884 | static int build_arc_points(const SkRect& oval, SkScalar startAngle, |
michael@0 | 885 | SkScalar sweepAngle, |
michael@0 | 886 | SkPoint pts[kSkBuildQuadArcStorage]) { |
michael@0 | 887 | |
michael@0 | 888 | if (0 == sweepAngle && |
michael@0 | 889 | (0 == startAngle || SkIntToScalar(360) == startAngle)) { |
michael@0 | 890 | // Chrome uses this path to move into and out of ovals. If not |
michael@0 | 891 | // treated as a special case the moves can distort the oval's |
michael@0 | 892 | // bounding box (and break the circle special case). |
michael@0 | 893 | pts[0].set(oval.fRight, oval.centerY()); |
michael@0 | 894 | return 1; |
michael@0 | 895 | } else if (0 == oval.width() && 0 == oval.height()) { |
michael@0 | 896 | // Chrome will sometimes create 0 radius round rects. Having degenerate |
michael@0 | 897 | // quad segments in the path prevents the path from being recognized as |
michael@0 | 898 | // a rect. |
michael@0 | 899 | // TODO: optimizing the case where only one of width or height is zero |
michael@0 | 900 | // should also be considered. This case, however, doesn't seem to be |
michael@0 | 901 | // as common as the single point case. |
michael@0 | 902 | pts[0].set(oval.fRight, oval.fTop); |
michael@0 | 903 | return 1; |
michael@0 | 904 | } |
michael@0 | 905 | |
michael@0 | 906 | SkVector start, stop; |
michael@0 | 907 | |
michael@0 | 908 | start.fY = SkScalarSinCos(SkDegreesToRadians(startAngle), &start.fX); |
michael@0 | 909 | stop.fY = SkScalarSinCos(SkDegreesToRadians(startAngle + sweepAngle), |
michael@0 | 910 | &stop.fX); |
michael@0 | 911 | |
michael@0 | 912 | /* If the sweep angle is nearly (but less than) 360, then due to precision |
michael@0 | 913 | loss in radians-conversion and/or sin/cos, we may end up with coincident |
michael@0 | 914 | vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead |
michael@0 | 915 | of drawing a nearly complete circle (good). |
michael@0 | 916 | e.g. canvas.drawArc(0, 359.99, ...) |
michael@0 | 917 | -vs- canvas.drawArc(0, 359.9, ...) |
michael@0 | 918 | We try to detect this edge case, and tweak the stop vector |
michael@0 | 919 | */ |
michael@0 | 920 | if (start == stop) { |
michael@0 | 921 | SkScalar sw = SkScalarAbs(sweepAngle); |
michael@0 | 922 | if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) { |
michael@0 | 923 | SkScalar stopRad = SkDegreesToRadians(startAngle + sweepAngle); |
michael@0 | 924 | // make a guess at a tiny angle (in radians) to tweak by |
michael@0 | 925 | SkScalar deltaRad = SkScalarCopySign(SK_Scalar1/512, sweepAngle); |
michael@0 | 926 | // not sure how much will be enough, so we use a loop |
michael@0 | 927 | do { |
michael@0 | 928 | stopRad -= deltaRad; |
michael@0 | 929 | stop.fY = SkScalarSinCos(stopRad, &stop.fX); |
michael@0 | 930 | } while (start == stop); |
michael@0 | 931 | } |
michael@0 | 932 | } |
michael@0 | 933 | |
michael@0 | 934 | SkMatrix matrix; |
michael@0 | 935 | |
michael@0 | 936 | matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height())); |
michael@0 | 937 | matrix.postTranslate(oval.centerX(), oval.centerY()); |
michael@0 | 938 | |
michael@0 | 939 | return SkBuildQuadArc(start, stop, |
michael@0 | 940 | sweepAngle > 0 ? kCW_SkRotationDirection : |
michael@0 | 941 | kCCW_SkRotationDirection, |
michael@0 | 942 | &matrix, pts); |
michael@0 | 943 | } |
michael@0 | 944 | |
michael@0 | 945 | void SkPath::addRoundRect(const SkRect& rect, const SkScalar radii[], |
michael@0 | 946 | Direction dir) { |
michael@0 | 947 | SkRRect rrect; |
michael@0 | 948 | rrect.setRectRadii(rect, (const SkVector*) radii); |
michael@0 | 949 | this->addRRect(rrect, dir); |
michael@0 | 950 | } |
michael@0 | 951 | |
michael@0 | 952 | /* The inline clockwise and counterclockwise round rect quad approximations |
michael@0 | 953 | make it easier to see the symmetry patterns used by add corner quads. |
michael@0 | 954 | Clockwise corner value |
michael@0 | 955 | path->lineTo(rect.fLeft, rect.fTop + ry); 0 upper left |
michael@0 | 956 | path->quadTo(rect.fLeft, rect.fTop + offPtY, |
michael@0 | 957 | rect.fLeft + midPtX, rect.fTop + midPtY); |
michael@0 | 958 | path->quadTo(rect.fLeft + offPtX, rect.fTop, |
michael@0 | 959 | rect.fLeft + rx, rect.fTop); |
michael@0 | 960 | |
michael@0 | 961 | path->lineTo(rect.fRight - rx, rect.fTop); 1 upper right |
michael@0 | 962 | path->quadTo(rect.fRight - offPtX, rect.fTop, |
michael@0 | 963 | rect.fRight - midPtX, rect.fTop + midPtY); |
michael@0 | 964 | path->quadTo(rect.fRight, rect.fTop + offPtY, |
michael@0 | 965 | rect.fRight, rect.fTop + ry); |
michael@0 | 966 | |
michael@0 | 967 | path->lineTo(rect.fRight, rect.fBottom - ry); 2 lower right |
michael@0 | 968 | path->quadTo(rect.fRight, rect.fBottom - offPtY, |
michael@0 | 969 | rect.fRight - midPtX, rect.fBottom - midPtY); |
michael@0 | 970 | path->quadTo(rect.fRight - offPtX, rect.fBottom, |
michael@0 | 971 | rect.fRight - rx, rect.fBottom); |
michael@0 | 972 | |
michael@0 | 973 | path->lineTo(rect.fLeft + rx, rect.fBottom); 3 lower left |
michael@0 | 974 | path->quadTo(rect.fLeft + offPtX, rect.fBottom, |
michael@0 | 975 | rect.fLeft + midPtX, rect.fBottom - midPtY); |
michael@0 | 976 | path->quadTo(rect.fLeft, rect.fBottom - offPtY, |
michael@0 | 977 | rect.fLeft, rect.fBottom - ry); |
michael@0 | 978 | |
michael@0 | 979 | Counterclockwise |
michael@0 | 980 | path->lineTo(rect.fLeft, rect.fBottom - ry); 3 lower left |
michael@0 | 981 | path->quadTo(rect.fLeft, rect.fBottom - offPtY, |
michael@0 | 982 | rect.fLeft + midPtX, rect.fBottom - midPtY); |
michael@0 | 983 | path->quadTo(rect.fLeft + offPtX, rect.fBottom, |
michael@0 | 984 | rect.fLeft + rx, rect.fBottom); |
michael@0 | 985 | |
michael@0 | 986 | path->lineTo(rect.fRight - rx, rect.fBottom); 2 lower right |
michael@0 | 987 | path->quadTo(rect.fRight - offPtX, rect.fBottom, |
michael@0 | 988 | rect.fRight - midPtX, rect.fBottom - midPtY); |
michael@0 | 989 | path->quadTo(rect.fRight, rect.fBottom - offPtY, |
michael@0 | 990 | rect.fRight, rect.fBottom - ry); |
michael@0 | 991 | |
michael@0 | 992 | path->lineTo(rect.fRight, rect.fTop + ry); 1 upper right |
michael@0 | 993 | path->quadTo(rect.fRight, rect.fTop + offPtY, |
michael@0 | 994 | rect.fRight - midPtX, rect.fTop + midPtY); |
michael@0 | 995 | path->quadTo(rect.fRight - offPtX, rect.fTop, |
michael@0 | 996 | rect.fRight - rx, rect.fTop); |
michael@0 | 997 | |
michael@0 | 998 | path->lineTo(rect.fLeft + rx, rect.fTop); 0 upper left |
michael@0 | 999 | path->quadTo(rect.fLeft + offPtX, rect.fTop, |
michael@0 | 1000 | rect.fLeft + midPtX, rect.fTop + midPtY); |
michael@0 | 1001 | path->quadTo(rect.fLeft, rect.fTop + offPtY, |
michael@0 | 1002 | rect.fLeft, rect.fTop + ry); |
michael@0 | 1003 | */ |
michael@0 | 1004 | static void add_corner_quads(SkPath* path, const SkRRect& rrect, |
michael@0 | 1005 | SkRRect::Corner corner, SkPath::Direction dir) { |
michael@0 | 1006 | const SkRect& rect = rrect.rect(); |
michael@0 | 1007 | const SkVector& radii = rrect.radii(corner); |
michael@0 | 1008 | SkScalar rx = radii.fX; |
michael@0 | 1009 | SkScalar ry = radii.fY; |
michael@0 | 1010 | // The mid point of the quadratic arc approximation is half way between the two |
michael@0 | 1011 | // control points. |
michael@0 | 1012 | const SkScalar mid = 1 - (SK_Scalar1 + SK_ScalarTanPIOver8) / 2; |
michael@0 | 1013 | SkScalar midPtX = rx * mid; |
michael@0 | 1014 | SkScalar midPtY = ry * mid; |
michael@0 | 1015 | const SkScalar control = 1 - SK_ScalarTanPIOver8; |
michael@0 | 1016 | SkScalar offPtX = rx * control; |
michael@0 | 1017 | SkScalar offPtY = ry * control; |
michael@0 | 1018 | static const int kCornerPts = 5; |
michael@0 | 1019 | SkScalar xOff[kCornerPts]; |
michael@0 | 1020 | SkScalar yOff[kCornerPts]; |
michael@0 | 1021 | |
michael@0 | 1022 | if ((corner & 1) == (dir == SkPath::kCCW_Direction)) { // corners always alternate direction |
michael@0 | 1023 | SkASSERT(dir == SkPath::kCCW_Direction |
michael@0 | 1024 | ? corner == SkRRect::kLowerLeft_Corner || corner == SkRRect::kUpperRight_Corner |
michael@0 | 1025 | : corner == SkRRect::kUpperLeft_Corner || corner == SkRRect::kLowerRight_Corner); |
michael@0 | 1026 | xOff[0] = xOff[1] = 0; |
michael@0 | 1027 | xOff[2] = midPtX; |
michael@0 | 1028 | xOff[3] = offPtX; |
michael@0 | 1029 | xOff[4] = rx; |
michael@0 | 1030 | yOff[0] = ry; |
michael@0 | 1031 | yOff[1] = offPtY; |
michael@0 | 1032 | yOff[2] = midPtY; |
michael@0 | 1033 | yOff[3] = yOff[4] = 0; |
michael@0 | 1034 | } else { |
michael@0 | 1035 | xOff[0] = rx; |
michael@0 | 1036 | xOff[1] = offPtX; |
michael@0 | 1037 | xOff[2] = midPtX; |
michael@0 | 1038 | xOff[3] = xOff[4] = 0; |
michael@0 | 1039 | yOff[0] = yOff[1] = 0; |
michael@0 | 1040 | yOff[2] = midPtY; |
michael@0 | 1041 | yOff[3] = offPtY; |
michael@0 | 1042 | yOff[4] = ry; |
michael@0 | 1043 | } |
michael@0 | 1044 | if ((corner - 1) & 2) { |
michael@0 | 1045 | SkASSERT(corner == SkRRect::kLowerLeft_Corner || corner == SkRRect::kUpperLeft_Corner); |
michael@0 | 1046 | for (int i = 0; i < kCornerPts; ++i) { |
michael@0 | 1047 | xOff[i] = rect.fLeft + xOff[i]; |
michael@0 | 1048 | } |
michael@0 | 1049 | } else { |
michael@0 | 1050 | SkASSERT(corner == SkRRect::kLowerRight_Corner || corner == SkRRect::kUpperRight_Corner); |
michael@0 | 1051 | for (int i = 0; i < kCornerPts; ++i) { |
michael@0 | 1052 | xOff[i] = rect.fRight - xOff[i]; |
michael@0 | 1053 | } |
michael@0 | 1054 | } |
michael@0 | 1055 | if (corner < SkRRect::kLowerRight_Corner) { |
michael@0 | 1056 | for (int i = 0; i < kCornerPts; ++i) { |
michael@0 | 1057 | yOff[i] = rect.fTop + yOff[i]; |
michael@0 | 1058 | } |
michael@0 | 1059 | } else { |
michael@0 | 1060 | for (int i = 0; i < kCornerPts; ++i) { |
michael@0 | 1061 | yOff[i] = rect.fBottom - yOff[i]; |
michael@0 | 1062 | } |
michael@0 | 1063 | } |
michael@0 | 1064 | |
michael@0 | 1065 | SkPoint lastPt; |
michael@0 | 1066 | SkAssertResult(path->getLastPt(&lastPt)); |
michael@0 | 1067 | if (lastPt.fX != xOff[0] || lastPt.fY != yOff[0]) { |
michael@0 | 1068 | path->lineTo(xOff[0], yOff[0]); |
michael@0 | 1069 | } |
michael@0 | 1070 | if (rx || ry) { |
michael@0 | 1071 | path->quadTo(xOff[1], yOff[1], xOff[2], yOff[2]); |
michael@0 | 1072 | path->quadTo(xOff[3], yOff[3], xOff[4], yOff[4]); |
michael@0 | 1073 | } else { |
michael@0 | 1074 | path->lineTo(xOff[2], yOff[2]); |
michael@0 | 1075 | path->lineTo(xOff[4], yOff[4]); |
michael@0 | 1076 | } |
michael@0 | 1077 | } |
michael@0 | 1078 | |
michael@0 | 1079 | void SkPath::addRRect(const SkRRect& rrect, Direction dir) { |
michael@0 | 1080 | assert_known_direction(dir); |
michael@0 | 1081 | |
michael@0 | 1082 | if (rrect.isEmpty()) { |
michael@0 | 1083 | return; |
michael@0 | 1084 | } |
michael@0 | 1085 | |
michael@0 | 1086 | const SkRect& bounds = rrect.getBounds(); |
michael@0 | 1087 | |
michael@0 | 1088 | if (rrect.isRect()) { |
michael@0 | 1089 | this->addRect(bounds, dir); |
michael@0 | 1090 | } else if (rrect.isOval()) { |
michael@0 | 1091 | this->addOval(bounds, dir); |
michael@0 | 1092 | #ifdef SK_IGNORE_QUAD_RR_CORNERS_OPT |
michael@0 | 1093 | } else if (rrect.isSimple()) { |
michael@0 | 1094 | const SkVector& rad = rrect.getSimpleRadii(); |
michael@0 | 1095 | this->addRoundRect(bounds, rad.x(), rad.y(), dir); |
michael@0 | 1096 | #endif |
michael@0 | 1097 | } else { |
michael@0 | 1098 | fDirection = this->hasOnlyMoveTos() ? dir : kUnknown_Direction; |
michael@0 | 1099 | |
michael@0 | 1100 | SkAutoPathBoundsUpdate apbu(this, bounds); |
michael@0 | 1101 | SkAutoDisableDirectionCheck addc(this); |
michael@0 | 1102 | |
michael@0 | 1103 | this->incReserve(21); |
michael@0 | 1104 | if (kCW_Direction == dir) { |
michael@0 | 1105 | this->moveTo(bounds.fLeft, |
michael@0 | 1106 | bounds.fBottom - rrect.fRadii[SkRRect::kLowerLeft_Corner].fY); |
michael@0 | 1107 | add_corner_quads(this, rrect, SkRRect::kUpperLeft_Corner, dir); |
michael@0 | 1108 | add_corner_quads(this, rrect, SkRRect::kUpperRight_Corner, dir); |
michael@0 | 1109 | add_corner_quads(this, rrect, SkRRect::kLowerRight_Corner, dir); |
michael@0 | 1110 | add_corner_quads(this, rrect, SkRRect::kLowerLeft_Corner, dir); |
michael@0 | 1111 | } else { |
michael@0 | 1112 | this->moveTo(bounds.fLeft, |
michael@0 | 1113 | bounds.fTop + rrect.fRadii[SkRRect::kUpperLeft_Corner].fY); |
michael@0 | 1114 | add_corner_quads(this, rrect, SkRRect::kLowerLeft_Corner, dir); |
michael@0 | 1115 | add_corner_quads(this, rrect, SkRRect::kLowerRight_Corner, dir); |
michael@0 | 1116 | add_corner_quads(this, rrect, SkRRect::kUpperRight_Corner, dir); |
michael@0 | 1117 | add_corner_quads(this, rrect, SkRRect::kUpperLeft_Corner, dir); |
michael@0 | 1118 | } |
michael@0 | 1119 | this->close(); |
michael@0 | 1120 | } |
michael@0 | 1121 | } |
michael@0 | 1122 | |
michael@0 | 1123 | bool SkPath::hasOnlyMoveTos() const { |
michael@0 | 1124 | int count = fPathRef->countVerbs(); |
michael@0 | 1125 | const uint8_t* verbs = const_cast<const SkPathRef*>(fPathRef.get())->verbsMemBegin(); |
michael@0 | 1126 | for (int i = 0; i < count; ++i) { |
michael@0 | 1127 | if (*verbs == kLine_Verb || |
michael@0 | 1128 | *verbs == kQuad_Verb || |
michael@0 | 1129 | *verbs == kConic_Verb || |
michael@0 | 1130 | *verbs == kCubic_Verb) { |
michael@0 | 1131 | return false; |
michael@0 | 1132 | } |
michael@0 | 1133 | ++verbs; |
michael@0 | 1134 | } |
michael@0 | 1135 | return true; |
michael@0 | 1136 | } |
michael@0 | 1137 | |
michael@0 | 1138 | #ifdef SK_IGNORE_QUAD_RR_CORNERS_OPT |
michael@0 | 1139 | #define CUBIC_ARC_FACTOR ((SK_ScalarSqrt2 - SK_Scalar1) * 4 / 3) |
michael@0 | 1140 | #endif |
michael@0 | 1141 | |
michael@0 | 1142 | void SkPath::addRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry, |
michael@0 | 1143 | Direction dir) { |
michael@0 | 1144 | assert_known_direction(dir); |
michael@0 | 1145 | |
michael@0 | 1146 | if (rx < 0 || ry < 0) { |
michael@0 | 1147 | SkErrorInternals::SetError( kInvalidArgument_SkError, |
michael@0 | 1148 | "I got %f and %f as radii to SkPath::AddRoundRect, " |
michael@0 | 1149 | "but negative radii are not allowed.", |
michael@0 | 1150 | SkScalarToDouble(rx), SkScalarToDouble(ry) ); |
michael@0 | 1151 | return; |
michael@0 | 1152 | } |
michael@0 | 1153 | |
michael@0 | 1154 | #ifdef SK_IGNORE_QUAD_RR_CORNERS_OPT |
michael@0 | 1155 | SkScalar w = rect.width(); |
michael@0 | 1156 | SkScalar halfW = SkScalarHalf(w); |
michael@0 | 1157 | SkScalar h = rect.height(); |
michael@0 | 1158 | SkScalar halfH = SkScalarHalf(h); |
michael@0 | 1159 | |
michael@0 | 1160 | if (halfW <= 0 || halfH <= 0) { |
michael@0 | 1161 | return; |
michael@0 | 1162 | } |
michael@0 | 1163 | |
michael@0 | 1164 | bool skip_hori = rx >= halfW; |
michael@0 | 1165 | bool skip_vert = ry >= halfH; |
michael@0 | 1166 | |
michael@0 | 1167 | if (skip_hori && skip_vert) { |
michael@0 | 1168 | this->addOval(rect, dir); |
michael@0 | 1169 | return; |
michael@0 | 1170 | } |
michael@0 | 1171 | |
michael@0 | 1172 | fDirection = this->hasOnlyMoveTos() ? dir : kUnknown_Direction; |
michael@0 | 1173 | |
michael@0 | 1174 | SkAutoPathBoundsUpdate apbu(this, rect); |
michael@0 | 1175 | SkAutoDisableDirectionCheck addc(this); |
michael@0 | 1176 | |
michael@0 | 1177 | if (skip_hori) { |
michael@0 | 1178 | rx = halfW; |
michael@0 | 1179 | } else if (skip_vert) { |
michael@0 | 1180 | ry = halfH; |
michael@0 | 1181 | } |
michael@0 | 1182 | SkScalar sx = SkScalarMul(rx, CUBIC_ARC_FACTOR); |
michael@0 | 1183 | SkScalar sy = SkScalarMul(ry, CUBIC_ARC_FACTOR); |
michael@0 | 1184 | |
michael@0 | 1185 | this->incReserve(17); |
michael@0 | 1186 | this->moveTo(rect.fRight - rx, rect.fTop); // top-right |
michael@0 | 1187 | if (dir == kCCW_Direction) { |
michael@0 | 1188 | if (!skip_hori) { |
michael@0 | 1189 | this->lineTo(rect.fLeft + rx, rect.fTop); // top |
michael@0 | 1190 | } |
michael@0 | 1191 | this->cubicTo(rect.fLeft + rx - sx, rect.fTop, |
michael@0 | 1192 | rect.fLeft, rect.fTop + ry - sy, |
michael@0 | 1193 | rect.fLeft, rect.fTop + ry); // top-left |
michael@0 | 1194 | if (!skip_vert) { |
michael@0 | 1195 | this->lineTo(rect.fLeft, rect.fBottom - ry); // left |
michael@0 | 1196 | } |
michael@0 | 1197 | this->cubicTo(rect.fLeft, rect.fBottom - ry + sy, |
michael@0 | 1198 | rect.fLeft + rx - sx, rect.fBottom, |
michael@0 | 1199 | rect.fLeft + rx, rect.fBottom); // bot-left |
michael@0 | 1200 | if (!skip_hori) { |
michael@0 | 1201 | this->lineTo(rect.fRight - rx, rect.fBottom); // bottom |
michael@0 | 1202 | } |
michael@0 | 1203 | this->cubicTo(rect.fRight - rx + sx, rect.fBottom, |
michael@0 | 1204 | rect.fRight, rect.fBottom - ry + sy, |
michael@0 | 1205 | rect.fRight, rect.fBottom - ry); // bot-right |
michael@0 | 1206 | if (!skip_vert) { |
michael@0 | 1207 | this->lineTo(rect.fRight, rect.fTop + ry); // right |
michael@0 | 1208 | } |
michael@0 | 1209 | this->cubicTo(rect.fRight, rect.fTop + ry - sy, |
michael@0 | 1210 | rect.fRight - rx + sx, rect.fTop, |
michael@0 | 1211 | rect.fRight - rx, rect.fTop); // top-right |
michael@0 | 1212 | } else { |
michael@0 | 1213 | this->cubicTo(rect.fRight - rx + sx, rect.fTop, |
michael@0 | 1214 | rect.fRight, rect.fTop + ry - sy, |
michael@0 | 1215 | rect.fRight, rect.fTop + ry); // top-right |
michael@0 | 1216 | if (!skip_vert) { |
michael@0 | 1217 | this->lineTo(rect.fRight, rect.fBottom - ry); // right |
michael@0 | 1218 | } |
michael@0 | 1219 | this->cubicTo(rect.fRight, rect.fBottom - ry + sy, |
michael@0 | 1220 | rect.fRight - rx + sx, rect.fBottom, |
michael@0 | 1221 | rect.fRight - rx, rect.fBottom); // bot-right |
michael@0 | 1222 | if (!skip_hori) { |
michael@0 | 1223 | this->lineTo(rect.fLeft + rx, rect.fBottom); // bottom |
michael@0 | 1224 | } |
michael@0 | 1225 | this->cubicTo(rect.fLeft + rx - sx, rect.fBottom, |
michael@0 | 1226 | rect.fLeft, rect.fBottom - ry + sy, |
michael@0 | 1227 | rect.fLeft, rect.fBottom - ry); // bot-left |
michael@0 | 1228 | if (!skip_vert) { |
michael@0 | 1229 | this->lineTo(rect.fLeft, rect.fTop + ry); // left |
michael@0 | 1230 | } |
michael@0 | 1231 | this->cubicTo(rect.fLeft, rect.fTop + ry - sy, |
michael@0 | 1232 | rect.fLeft + rx - sx, rect.fTop, |
michael@0 | 1233 | rect.fLeft + rx, rect.fTop); // top-left |
michael@0 | 1234 | if (!skip_hori) { |
michael@0 | 1235 | this->lineTo(rect.fRight - rx, rect.fTop); // top |
michael@0 | 1236 | } |
michael@0 | 1237 | } |
michael@0 | 1238 | this->close(); |
michael@0 | 1239 | #else |
michael@0 | 1240 | SkRRect rrect; |
michael@0 | 1241 | rrect.setRectXY(rect, rx, ry); |
michael@0 | 1242 | this->addRRect(rrect, dir); |
michael@0 | 1243 | #endif |
michael@0 | 1244 | } |
michael@0 | 1245 | |
michael@0 | 1246 | void SkPath::addOval(const SkRect& oval, Direction dir) { |
michael@0 | 1247 | assert_known_direction(dir); |
michael@0 | 1248 | |
michael@0 | 1249 | /* If addOval() is called after previous moveTo(), |
michael@0 | 1250 | this path is still marked as an oval. This is used to |
michael@0 | 1251 | fit into WebKit's calling sequences. |
michael@0 | 1252 | We can't simply check isEmpty() in this case, as additional |
michael@0 | 1253 | moveTo() would mark the path non empty. |
michael@0 | 1254 | */ |
michael@0 | 1255 | bool isOval = hasOnlyMoveTos(); |
michael@0 | 1256 | if (isOval) { |
michael@0 | 1257 | fDirection = dir; |
michael@0 | 1258 | } else { |
michael@0 | 1259 | fDirection = kUnknown_Direction; |
michael@0 | 1260 | } |
michael@0 | 1261 | |
michael@0 | 1262 | SkAutoDisableDirectionCheck addc(this); |
michael@0 | 1263 | |
michael@0 | 1264 | SkAutoPathBoundsUpdate apbu(this, oval); |
michael@0 | 1265 | |
michael@0 | 1266 | SkScalar cx = oval.centerX(); |
michael@0 | 1267 | SkScalar cy = oval.centerY(); |
michael@0 | 1268 | SkScalar rx = SkScalarHalf(oval.width()); |
michael@0 | 1269 | SkScalar ry = SkScalarHalf(oval.height()); |
michael@0 | 1270 | |
michael@0 | 1271 | SkScalar sx = SkScalarMul(rx, SK_ScalarTanPIOver8); |
michael@0 | 1272 | SkScalar sy = SkScalarMul(ry, SK_ScalarTanPIOver8); |
michael@0 | 1273 | SkScalar mx = SkScalarMul(rx, SK_ScalarRoot2Over2); |
michael@0 | 1274 | SkScalar my = SkScalarMul(ry, SK_ScalarRoot2Over2); |
michael@0 | 1275 | |
michael@0 | 1276 | /* |
michael@0 | 1277 | To handle imprecision in computing the center and radii, we revert to |
michael@0 | 1278 | the provided bounds when we can (i.e. use oval.fLeft instead of cx-rx) |
michael@0 | 1279 | to ensure that we don't exceed the oval's bounds *ever*, since we want |
michael@0 | 1280 | to use oval for our fast-bounds, rather than have to recompute it. |
michael@0 | 1281 | */ |
michael@0 | 1282 | const SkScalar L = oval.fLeft; // cx - rx |
michael@0 | 1283 | const SkScalar T = oval.fTop; // cy - ry |
michael@0 | 1284 | const SkScalar R = oval.fRight; // cx + rx |
michael@0 | 1285 | const SkScalar B = oval.fBottom; // cy + ry |
michael@0 | 1286 | |
michael@0 | 1287 | this->incReserve(17); // 8 quads + close |
michael@0 | 1288 | this->moveTo(R, cy); |
michael@0 | 1289 | if (dir == kCCW_Direction) { |
michael@0 | 1290 | this->quadTo( R, cy - sy, cx + mx, cy - my); |
michael@0 | 1291 | this->quadTo(cx + sx, T, cx , T); |
michael@0 | 1292 | this->quadTo(cx - sx, T, cx - mx, cy - my); |
michael@0 | 1293 | this->quadTo( L, cy - sy, L, cy ); |
michael@0 | 1294 | this->quadTo( L, cy + sy, cx - mx, cy + my); |
michael@0 | 1295 | this->quadTo(cx - sx, B, cx , B); |
michael@0 | 1296 | this->quadTo(cx + sx, B, cx + mx, cy + my); |
michael@0 | 1297 | this->quadTo( R, cy + sy, R, cy ); |
michael@0 | 1298 | } else { |
michael@0 | 1299 | this->quadTo( R, cy + sy, cx + mx, cy + my); |
michael@0 | 1300 | this->quadTo(cx + sx, B, cx , B); |
michael@0 | 1301 | this->quadTo(cx - sx, B, cx - mx, cy + my); |
michael@0 | 1302 | this->quadTo( L, cy + sy, L, cy ); |
michael@0 | 1303 | this->quadTo( L, cy - sy, cx - mx, cy - my); |
michael@0 | 1304 | this->quadTo(cx - sx, T, cx , T); |
michael@0 | 1305 | this->quadTo(cx + sx, T, cx + mx, cy - my); |
michael@0 | 1306 | this->quadTo( R, cy - sy, R, cy ); |
michael@0 | 1307 | } |
michael@0 | 1308 | this->close(); |
michael@0 | 1309 | |
michael@0 | 1310 | SkPathRef::Editor ed(&fPathRef); |
michael@0 | 1311 | |
michael@0 | 1312 | ed.setIsOval(isOval); |
michael@0 | 1313 | } |
michael@0 | 1314 | |
michael@0 | 1315 | void SkPath::addCircle(SkScalar x, SkScalar y, SkScalar r, Direction dir) { |
michael@0 | 1316 | if (r > 0) { |
michael@0 | 1317 | SkRect rect; |
michael@0 | 1318 | rect.set(x - r, y - r, x + r, y + r); |
michael@0 | 1319 | this->addOval(rect, dir); |
michael@0 | 1320 | } |
michael@0 | 1321 | } |
michael@0 | 1322 | |
michael@0 | 1323 | void SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, |
michael@0 | 1324 | bool forceMoveTo) { |
michael@0 | 1325 | if (oval.width() < 0 || oval.height() < 0) { |
michael@0 | 1326 | return; |
michael@0 | 1327 | } |
michael@0 | 1328 | |
michael@0 | 1329 | SkPoint pts[kSkBuildQuadArcStorage]; |
michael@0 | 1330 | int count = build_arc_points(oval, startAngle, sweepAngle, pts); |
michael@0 | 1331 | SkASSERT((count & 1) == 1); |
michael@0 | 1332 | |
michael@0 | 1333 | if (fPathRef->countVerbs() == 0) { |
michael@0 | 1334 | forceMoveTo = true; |
michael@0 | 1335 | } |
michael@0 | 1336 | this->incReserve(count); |
michael@0 | 1337 | forceMoveTo ? this->moveTo(pts[0]) : this->lineTo(pts[0]); |
michael@0 | 1338 | for (int i = 1; i < count; i += 2) { |
michael@0 | 1339 | this->quadTo(pts[i], pts[i+1]); |
michael@0 | 1340 | } |
michael@0 | 1341 | } |
michael@0 | 1342 | |
michael@0 | 1343 | void SkPath::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle) { |
michael@0 | 1344 | if (oval.isEmpty() || 0 == sweepAngle) { |
michael@0 | 1345 | return; |
michael@0 | 1346 | } |
michael@0 | 1347 | |
michael@0 | 1348 | const SkScalar kFullCircleAngle = SkIntToScalar(360); |
michael@0 | 1349 | |
michael@0 | 1350 | if (sweepAngle >= kFullCircleAngle || sweepAngle <= -kFullCircleAngle) { |
michael@0 | 1351 | this->addOval(oval, sweepAngle > 0 ? kCW_Direction : kCCW_Direction); |
michael@0 | 1352 | return; |
michael@0 | 1353 | } |
michael@0 | 1354 | |
michael@0 | 1355 | SkPoint pts[kSkBuildQuadArcStorage]; |
michael@0 | 1356 | int count = build_arc_points(oval, startAngle, sweepAngle, pts); |
michael@0 | 1357 | |
michael@0 | 1358 | SkDEBUGCODE(this->validate();) |
michael@0 | 1359 | SkASSERT(count & 1); |
michael@0 | 1360 | |
michael@0 | 1361 | fLastMoveToIndex = fPathRef->countPoints(); |
michael@0 | 1362 | |
michael@0 | 1363 | SkPathRef::Editor ed(&fPathRef, 1+(count-1)/2, count); |
michael@0 | 1364 | |
michael@0 | 1365 | ed.growForVerb(kMove_Verb)->set(pts[0].fX, pts[0].fY); |
michael@0 | 1366 | if (count > 1) { |
michael@0 | 1367 | SkPoint* p = ed.growForRepeatedVerb(kQuad_Verb, (count-1)/2); |
michael@0 | 1368 | memcpy(p, &pts[1], (count-1) * sizeof(SkPoint)); |
michael@0 | 1369 | } |
michael@0 | 1370 | |
michael@0 | 1371 | DIRTY_AFTER_EDIT; |
michael@0 | 1372 | SkDEBUGCODE(this->validate();) |
michael@0 | 1373 | } |
michael@0 | 1374 | |
michael@0 | 1375 | /* |
michael@0 | 1376 | Need to handle the case when the angle is sharp, and our computed end-points |
michael@0 | 1377 | for the arc go behind pt1 and/or p2... |
michael@0 | 1378 | */ |
michael@0 | 1379 | void SkPath::arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
michael@0 | 1380 | SkScalar radius) { |
michael@0 | 1381 | SkVector before, after; |
michael@0 | 1382 | |
michael@0 | 1383 | // need to know our prev pt so we can construct tangent vectors |
michael@0 | 1384 | { |
michael@0 | 1385 | SkPoint start; |
michael@0 | 1386 | this->getLastPt(&start); |
michael@0 | 1387 | // Handle degenerate cases by adding a line to the first point and |
michael@0 | 1388 | // bailing out. |
michael@0 | 1389 | if ((x1 == start.fX && y1 == start.fY) || |
michael@0 | 1390 | (x1 == x2 && y1 == y2) || |
michael@0 | 1391 | radius == 0) { |
michael@0 | 1392 | this->lineTo(x1, y1); |
michael@0 | 1393 | return; |
michael@0 | 1394 | } |
michael@0 | 1395 | before.setNormalize(x1 - start.fX, y1 - start.fY); |
michael@0 | 1396 | after.setNormalize(x2 - x1, y2 - y1); |
michael@0 | 1397 | } |
michael@0 | 1398 | |
michael@0 | 1399 | SkScalar cosh = SkPoint::DotProduct(before, after); |
michael@0 | 1400 | SkScalar sinh = SkPoint::CrossProduct(before, after); |
michael@0 | 1401 | |
michael@0 | 1402 | if (SkScalarNearlyZero(sinh)) { // angle is too tight |
michael@0 | 1403 | this->lineTo(x1, y1); |
michael@0 | 1404 | return; |
michael@0 | 1405 | } |
michael@0 | 1406 | |
michael@0 | 1407 | SkScalar dist = SkScalarMulDiv(radius, SK_Scalar1 - cosh, sinh); |
michael@0 | 1408 | if (dist < 0) { |
michael@0 | 1409 | dist = -dist; |
michael@0 | 1410 | } |
michael@0 | 1411 | |
michael@0 | 1412 | SkScalar xx = x1 - SkScalarMul(dist, before.fX); |
michael@0 | 1413 | SkScalar yy = y1 - SkScalarMul(dist, before.fY); |
michael@0 | 1414 | SkRotationDirection arcDir; |
michael@0 | 1415 | |
michael@0 | 1416 | // now turn before/after into normals |
michael@0 | 1417 | if (sinh > 0) { |
michael@0 | 1418 | before.rotateCCW(); |
michael@0 | 1419 | after.rotateCCW(); |
michael@0 | 1420 | arcDir = kCW_SkRotationDirection; |
michael@0 | 1421 | } else { |
michael@0 | 1422 | before.rotateCW(); |
michael@0 | 1423 | after.rotateCW(); |
michael@0 | 1424 | arcDir = kCCW_SkRotationDirection; |
michael@0 | 1425 | } |
michael@0 | 1426 | |
michael@0 | 1427 | SkMatrix matrix; |
michael@0 | 1428 | SkPoint pts[kSkBuildQuadArcStorage]; |
michael@0 | 1429 | |
michael@0 | 1430 | matrix.setScale(radius, radius); |
michael@0 | 1431 | matrix.postTranslate(xx - SkScalarMul(radius, before.fX), |
michael@0 | 1432 | yy - SkScalarMul(radius, before.fY)); |
michael@0 | 1433 | |
michael@0 | 1434 | int count = SkBuildQuadArc(before, after, arcDir, &matrix, pts); |
michael@0 | 1435 | |
michael@0 | 1436 | this->incReserve(count); |
michael@0 | 1437 | // [xx,yy] == pts[0] |
michael@0 | 1438 | this->lineTo(xx, yy); |
michael@0 | 1439 | for (int i = 1; i < count; i += 2) { |
michael@0 | 1440 | this->quadTo(pts[i], pts[i+1]); |
michael@0 | 1441 | } |
michael@0 | 1442 | } |
michael@0 | 1443 | |
michael@0 | 1444 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 1445 | |
michael@0 | 1446 | void SkPath::addPath(const SkPath& path, SkScalar dx, SkScalar dy, AddPathMode mode) { |
michael@0 | 1447 | SkMatrix matrix; |
michael@0 | 1448 | |
michael@0 | 1449 | matrix.setTranslate(dx, dy); |
michael@0 | 1450 | this->addPath(path, matrix, mode); |
michael@0 | 1451 | } |
michael@0 | 1452 | |
michael@0 | 1453 | void SkPath::addPath(const SkPath& path, const SkMatrix& matrix, AddPathMode mode) { |
michael@0 | 1454 | SkPathRef::Editor(&fPathRef, path.countVerbs(), path.countPoints()); |
michael@0 | 1455 | |
michael@0 | 1456 | RawIter iter(path); |
michael@0 | 1457 | SkPoint pts[4]; |
michael@0 | 1458 | Verb verb; |
michael@0 | 1459 | |
michael@0 | 1460 | SkMatrix::MapPtsProc proc = matrix.getMapPtsProc(); |
michael@0 | 1461 | bool firstVerb = true; |
michael@0 | 1462 | while ((verb = iter.next(pts)) != kDone_Verb) { |
michael@0 | 1463 | switch (verb) { |
michael@0 | 1464 | case kMove_Verb: |
michael@0 | 1465 | proc(matrix, &pts[0], &pts[0], 1); |
michael@0 | 1466 | if (firstVerb && mode == kExtend_AddPathMode && !isEmpty()) { |
michael@0 | 1467 | injectMoveToIfNeeded(); // In case last contour is closed |
michael@0 | 1468 | this->lineTo(pts[0]); |
michael@0 | 1469 | } else { |
michael@0 | 1470 | this->moveTo(pts[0]); |
michael@0 | 1471 | } |
michael@0 | 1472 | break; |
michael@0 | 1473 | case kLine_Verb: |
michael@0 | 1474 | proc(matrix, &pts[1], &pts[1], 1); |
michael@0 | 1475 | this->lineTo(pts[1]); |
michael@0 | 1476 | break; |
michael@0 | 1477 | case kQuad_Verb: |
michael@0 | 1478 | proc(matrix, &pts[1], &pts[1], 2); |
michael@0 | 1479 | this->quadTo(pts[1], pts[2]); |
michael@0 | 1480 | break; |
michael@0 | 1481 | case kConic_Verb: |
michael@0 | 1482 | proc(matrix, &pts[1], &pts[1], 2); |
michael@0 | 1483 | this->conicTo(pts[1], pts[2], iter.conicWeight()); |
michael@0 | 1484 | break; |
michael@0 | 1485 | case kCubic_Verb: |
michael@0 | 1486 | proc(matrix, &pts[1], &pts[1], 3); |
michael@0 | 1487 | this->cubicTo(pts[1], pts[2], pts[3]); |
michael@0 | 1488 | break; |
michael@0 | 1489 | case kClose_Verb: |
michael@0 | 1490 | this->close(); |
michael@0 | 1491 | break; |
michael@0 | 1492 | default: |
michael@0 | 1493 | SkDEBUGFAIL("unknown verb"); |
michael@0 | 1494 | } |
michael@0 | 1495 | firstVerb = false; |
michael@0 | 1496 | } |
michael@0 | 1497 | } |
michael@0 | 1498 | |
michael@0 | 1499 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 1500 | |
michael@0 | 1501 | static int pts_in_verb(unsigned verb) { |
michael@0 | 1502 | static const uint8_t gPtsInVerb[] = { |
michael@0 | 1503 | 1, // kMove |
michael@0 | 1504 | 1, // kLine |
michael@0 | 1505 | 2, // kQuad |
michael@0 | 1506 | 2, // kConic |
michael@0 | 1507 | 3, // kCubic |
michael@0 | 1508 | 0, // kClose |
michael@0 | 1509 | 0 // kDone |
michael@0 | 1510 | }; |
michael@0 | 1511 | |
michael@0 | 1512 | SkASSERT(verb < SK_ARRAY_COUNT(gPtsInVerb)); |
michael@0 | 1513 | return gPtsInVerb[verb]; |
michael@0 | 1514 | } |
michael@0 | 1515 | |
michael@0 | 1516 | // ignore the last point of the 1st contour |
michael@0 | 1517 | void SkPath::reversePathTo(const SkPath& path) { |
michael@0 | 1518 | int i, vcount = path.fPathRef->countVerbs(); |
michael@0 | 1519 | // exit early if the path is empty, or just has a moveTo. |
michael@0 | 1520 | if (vcount < 2) { |
michael@0 | 1521 | return; |
michael@0 | 1522 | } |
michael@0 | 1523 | |
michael@0 | 1524 | SkPathRef::Editor(&fPathRef, vcount, path.countPoints()); |
michael@0 | 1525 | |
michael@0 | 1526 | const uint8_t* verbs = path.fPathRef->verbs(); |
michael@0 | 1527 | const SkPoint* pts = path.fPathRef->points(); |
michael@0 | 1528 | const SkScalar* conicWeights = path.fPathRef->conicWeights(); |
michael@0 | 1529 | |
michael@0 | 1530 | SkASSERT(verbs[~0] == kMove_Verb); |
michael@0 | 1531 | for (i = 1; i < vcount; ++i) { |
michael@0 | 1532 | unsigned v = verbs[~i]; |
michael@0 | 1533 | int n = pts_in_verb(v); |
michael@0 | 1534 | if (n == 0) { |
michael@0 | 1535 | break; |
michael@0 | 1536 | } |
michael@0 | 1537 | pts += n; |
michael@0 | 1538 | conicWeights += (SkPath::kConic_Verb == v); |
michael@0 | 1539 | } |
michael@0 | 1540 | |
michael@0 | 1541 | while (--i > 0) { |
michael@0 | 1542 | switch (verbs[~i]) { |
michael@0 | 1543 | case kLine_Verb: |
michael@0 | 1544 | this->lineTo(pts[-1].fX, pts[-1].fY); |
michael@0 | 1545 | break; |
michael@0 | 1546 | case kQuad_Verb: |
michael@0 | 1547 | this->quadTo(pts[-1].fX, pts[-1].fY, pts[-2].fX, pts[-2].fY); |
michael@0 | 1548 | break; |
michael@0 | 1549 | case kConic_Verb: |
michael@0 | 1550 | this->conicTo(pts[-1], pts[-2], *--conicWeights); |
michael@0 | 1551 | break; |
michael@0 | 1552 | case kCubic_Verb: |
michael@0 | 1553 | this->cubicTo(pts[-1].fX, pts[-1].fY, pts[-2].fX, pts[-2].fY, |
michael@0 | 1554 | pts[-3].fX, pts[-3].fY); |
michael@0 | 1555 | break; |
michael@0 | 1556 | default: |
michael@0 | 1557 | SkDEBUGFAIL("bad verb"); |
michael@0 | 1558 | break; |
michael@0 | 1559 | } |
michael@0 | 1560 | pts -= pts_in_verb(verbs[~i]); |
michael@0 | 1561 | } |
michael@0 | 1562 | } |
michael@0 | 1563 | |
michael@0 | 1564 | void SkPath::reverseAddPath(const SkPath& src) { |
michael@0 | 1565 | SkPathRef::Editor ed(&fPathRef, src.fPathRef->countPoints(), src.fPathRef->countVerbs()); |
michael@0 | 1566 | |
michael@0 | 1567 | const SkPoint* pts = src.fPathRef->pointsEnd(); |
michael@0 | 1568 | // we will iterator through src's verbs backwards |
michael@0 | 1569 | const uint8_t* verbs = src.fPathRef->verbsMemBegin(); // points at the last verb |
michael@0 | 1570 | const uint8_t* verbsEnd = src.fPathRef->verbs(); // points just past the first verb |
michael@0 | 1571 | const SkScalar* conicWeights = src.fPathRef->conicWeightsEnd(); |
michael@0 | 1572 | |
michael@0 | 1573 | bool needMove = true; |
michael@0 | 1574 | bool needClose = false; |
michael@0 | 1575 | while (verbs < verbsEnd) { |
michael@0 | 1576 | uint8_t v = *(verbs++); |
michael@0 | 1577 | int n = pts_in_verb(v); |
michael@0 | 1578 | |
michael@0 | 1579 | if (needMove) { |
michael@0 | 1580 | --pts; |
michael@0 | 1581 | this->moveTo(pts->fX, pts->fY); |
michael@0 | 1582 | needMove = false; |
michael@0 | 1583 | } |
michael@0 | 1584 | pts -= n; |
michael@0 | 1585 | switch (v) { |
michael@0 | 1586 | case kMove_Verb: |
michael@0 | 1587 | if (needClose) { |
michael@0 | 1588 | this->close(); |
michael@0 | 1589 | needClose = false; |
michael@0 | 1590 | } |
michael@0 | 1591 | needMove = true; |
michael@0 | 1592 | pts += 1; // so we see the point in "if (needMove)" above |
michael@0 | 1593 | break; |
michael@0 | 1594 | case kLine_Verb: |
michael@0 | 1595 | this->lineTo(pts[0]); |
michael@0 | 1596 | break; |
michael@0 | 1597 | case kQuad_Verb: |
michael@0 | 1598 | this->quadTo(pts[1], pts[0]); |
michael@0 | 1599 | break; |
michael@0 | 1600 | case kConic_Verb: |
michael@0 | 1601 | this->conicTo(pts[1], pts[0], *--conicWeights); |
michael@0 | 1602 | break; |
michael@0 | 1603 | case kCubic_Verb: |
michael@0 | 1604 | this->cubicTo(pts[2], pts[1], pts[0]); |
michael@0 | 1605 | break; |
michael@0 | 1606 | case kClose_Verb: |
michael@0 | 1607 | needClose = true; |
michael@0 | 1608 | break; |
michael@0 | 1609 | default: |
michael@0 | 1610 | SkDEBUGFAIL("unexpected verb"); |
michael@0 | 1611 | } |
michael@0 | 1612 | } |
michael@0 | 1613 | } |
michael@0 | 1614 | |
michael@0 | 1615 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 1616 | |
michael@0 | 1617 | void SkPath::offset(SkScalar dx, SkScalar dy, SkPath* dst) const { |
michael@0 | 1618 | SkMatrix matrix; |
michael@0 | 1619 | |
michael@0 | 1620 | matrix.setTranslate(dx, dy); |
michael@0 | 1621 | this->transform(matrix, dst); |
michael@0 | 1622 | } |
michael@0 | 1623 | |
michael@0 | 1624 | #include "SkGeometry.h" |
michael@0 | 1625 | |
michael@0 | 1626 | static void subdivide_quad_to(SkPath* path, const SkPoint pts[3], |
michael@0 | 1627 | int level = 2) { |
michael@0 | 1628 | if (--level >= 0) { |
michael@0 | 1629 | SkPoint tmp[5]; |
michael@0 | 1630 | |
michael@0 | 1631 | SkChopQuadAtHalf(pts, tmp); |
michael@0 | 1632 | subdivide_quad_to(path, &tmp[0], level); |
michael@0 | 1633 | subdivide_quad_to(path, &tmp[2], level); |
michael@0 | 1634 | } else { |
michael@0 | 1635 | path->quadTo(pts[1], pts[2]); |
michael@0 | 1636 | } |
michael@0 | 1637 | } |
michael@0 | 1638 | |
michael@0 | 1639 | static void subdivide_cubic_to(SkPath* path, const SkPoint pts[4], |
michael@0 | 1640 | int level = 2) { |
michael@0 | 1641 | if (--level >= 0) { |
michael@0 | 1642 | SkPoint tmp[7]; |
michael@0 | 1643 | |
michael@0 | 1644 | SkChopCubicAtHalf(pts, tmp); |
michael@0 | 1645 | subdivide_cubic_to(path, &tmp[0], level); |
michael@0 | 1646 | subdivide_cubic_to(path, &tmp[3], level); |
michael@0 | 1647 | } else { |
michael@0 | 1648 | path->cubicTo(pts[1], pts[2], pts[3]); |
michael@0 | 1649 | } |
michael@0 | 1650 | } |
michael@0 | 1651 | |
michael@0 | 1652 | void SkPath::transform(const SkMatrix& matrix, SkPath* dst) const { |
michael@0 | 1653 | SkDEBUGCODE(this->validate();) |
michael@0 | 1654 | if (dst == NULL) { |
michael@0 | 1655 | dst = (SkPath*)this; |
michael@0 | 1656 | } |
michael@0 | 1657 | |
michael@0 | 1658 | if (matrix.hasPerspective()) { |
michael@0 | 1659 | SkPath tmp; |
michael@0 | 1660 | tmp.fFillType = fFillType; |
michael@0 | 1661 | |
michael@0 | 1662 | SkPath::Iter iter(*this, false); |
michael@0 | 1663 | SkPoint pts[4]; |
michael@0 | 1664 | SkPath::Verb verb; |
michael@0 | 1665 | |
michael@0 | 1666 | while ((verb = iter.next(pts, false)) != kDone_Verb) { |
michael@0 | 1667 | switch (verb) { |
michael@0 | 1668 | case kMove_Verb: |
michael@0 | 1669 | tmp.moveTo(pts[0]); |
michael@0 | 1670 | break; |
michael@0 | 1671 | case kLine_Verb: |
michael@0 | 1672 | tmp.lineTo(pts[1]); |
michael@0 | 1673 | break; |
michael@0 | 1674 | case kQuad_Verb: |
michael@0 | 1675 | subdivide_quad_to(&tmp, pts); |
michael@0 | 1676 | break; |
michael@0 | 1677 | case kConic_Verb: |
michael@0 | 1678 | SkDEBUGFAIL("TODO: compute new weight"); |
michael@0 | 1679 | tmp.conicTo(pts[1], pts[2], iter.conicWeight()); |
michael@0 | 1680 | break; |
michael@0 | 1681 | case kCubic_Verb: |
michael@0 | 1682 | subdivide_cubic_to(&tmp, pts); |
michael@0 | 1683 | break; |
michael@0 | 1684 | case kClose_Verb: |
michael@0 | 1685 | tmp.close(); |
michael@0 | 1686 | break; |
michael@0 | 1687 | default: |
michael@0 | 1688 | SkDEBUGFAIL("unknown verb"); |
michael@0 | 1689 | break; |
michael@0 | 1690 | } |
michael@0 | 1691 | } |
michael@0 | 1692 | |
michael@0 | 1693 | dst->swap(tmp); |
michael@0 | 1694 | SkPathRef::Editor ed(&dst->fPathRef); |
michael@0 | 1695 | matrix.mapPoints(ed.points(), ed.pathRef()->countPoints()); |
michael@0 | 1696 | dst->fDirection = kUnknown_Direction; |
michael@0 | 1697 | } else { |
michael@0 | 1698 | SkPathRef::CreateTransformedCopy(&dst->fPathRef, *fPathRef.get(), matrix); |
michael@0 | 1699 | |
michael@0 | 1700 | if (this != dst) { |
michael@0 | 1701 | dst->fFillType = fFillType; |
michael@0 | 1702 | dst->fConvexity = fConvexity; |
michael@0 | 1703 | } |
michael@0 | 1704 | |
michael@0 | 1705 | if (kUnknown_Direction == fDirection) { |
michael@0 | 1706 | dst->fDirection = kUnknown_Direction; |
michael@0 | 1707 | } else { |
michael@0 | 1708 | SkScalar det2x2 = |
michael@0 | 1709 | SkScalarMul(matrix.get(SkMatrix::kMScaleX), matrix.get(SkMatrix::kMScaleY)) - |
michael@0 | 1710 | SkScalarMul(matrix.get(SkMatrix::kMSkewX), matrix.get(SkMatrix::kMSkewY)); |
michael@0 | 1711 | if (det2x2 < 0) { |
michael@0 | 1712 | dst->fDirection = SkPath::OppositeDirection(static_cast<Direction>(fDirection)); |
michael@0 | 1713 | } else if (det2x2 > 0) { |
michael@0 | 1714 | dst->fDirection = fDirection; |
michael@0 | 1715 | } else { |
michael@0 | 1716 | dst->fConvexity = kUnknown_Convexity; |
michael@0 | 1717 | dst->fDirection = kUnknown_Direction; |
michael@0 | 1718 | } |
michael@0 | 1719 | } |
michael@0 | 1720 | |
michael@0 | 1721 | SkDEBUGCODE(dst->validate();) |
michael@0 | 1722 | } |
michael@0 | 1723 | } |
michael@0 | 1724 | |
michael@0 | 1725 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 1726 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 1727 | |
michael@0 | 1728 | enum SegmentState { |
michael@0 | 1729 | kEmptyContour_SegmentState, // The current contour is empty. We may be |
michael@0 | 1730 | // starting processing or we may have just |
michael@0 | 1731 | // closed a contour. |
michael@0 | 1732 | kAfterMove_SegmentState, // We have seen a move, but nothing else. |
michael@0 | 1733 | kAfterPrimitive_SegmentState // We have seen a primitive but not yet |
michael@0 | 1734 | // closed the path. Also the initial state. |
michael@0 | 1735 | }; |
michael@0 | 1736 | |
michael@0 | 1737 | SkPath::Iter::Iter() { |
michael@0 | 1738 | #ifdef SK_DEBUG |
michael@0 | 1739 | fPts = NULL; |
michael@0 | 1740 | fConicWeights = NULL; |
michael@0 | 1741 | fMoveTo.fX = fMoveTo.fY = fLastPt.fX = fLastPt.fY = 0; |
michael@0 | 1742 | fForceClose = fCloseLine = false; |
michael@0 | 1743 | fSegmentState = kEmptyContour_SegmentState; |
michael@0 | 1744 | #endif |
michael@0 | 1745 | // need to init enough to make next() harmlessly return kDone_Verb |
michael@0 | 1746 | fVerbs = NULL; |
michael@0 | 1747 | fVerbStop = NULL; |
michael@0 | 1748 | fNeedClose = false; |
michael@0 | 1749 | } |
michael@0 | 1750 | |
michael@0 | 1751 | SkPath::Iter::Iter(const SkPath& path, bool forceClose) { |
michael@0 | 1752 | this->setPath(path, forceClose); |
michael@0 | 1753 | } |
michael@0 | 1754 | |
michael@0 | 1755 | void SkPath::Iter::setPath(const SkPath& path, bool forceClose) { |
michael@0 | 1756 | fPts = path.fPathRef->points(); |
michael@0 | 1757 | fVerbs = path.fPathRef->verbs(); |
michael@0 | 1758 | fVerbStop = path.fPathRef->verbsMemBegin(); |
michael@0 | 1759 | fConicWeights = path.fPathRef->conicWeights() - 1; // begin one behind |
michael@0 | 1760 | fLastPt.fX = fLastPt.fY = 0; |
michael@0 | 1761 | fMoveTo.fX = fMoveTo.fY = 0; |
michael@0 | 1762 | fForceClose = SkToU8(forceClose); |
michael@0 | 1763 | fNeedClose = false; |
michael@0 | 1764 | fSegmentState = kEmptyContour_SegmentState; |
michael@0 | 1765 | } |
michael@0 | 1766 | |
michael@0 | 1767 | bool SkPath::Iter::isClosedContour() const { |
michael@0 | 1768 | if (fVerbs == NULL || fVerbs == fVerbStop) { |
michael@0 | 1769 | return false; |
michael@0 | 1770 | } |
michael@0 | 1771 | if (fForceClose) { |
michael@0 | 1772 | return true; |
michael@0 | 1773 | } |
michael@0 | 1774 | |
michael@0 | 1775 | const uint8_t* verbs = fVerbs; |
michael@0 | 1776 | const uint8_t* stop = fVerbStop; |
michael@0 | 1777 | |
michael@0 | 1778 | if (kMove_Verb == *(verbs - 1)) { |
michael@0 | 1779 | verbs -= 1; // skip the initial moveto |
michael@0 | 1780 | } |
michael@0 | 1781 | |
michael@0 | 1782 | while (verbs > stop) { |
michael@0 | 1783 | // verbs points one beyond the current verb, decrement first. |
michael@0 | 1784 | unsigned v = *(--verbs); |
michael@0 | 1785 | if (kMove_Verb == v) { |
michael@0 | 1786 | break; |
michael@0 | 1787 | } |
michael@0 | 1788 | if (kClose_Verb == v) { |
michael@0 | 1789 | return true; |
michael@0 | 1790 | } |
michael@0 | 1791 | } |
michael@0 | 1792 | return false; |
michael@0 | 1793 | } |
michael@0 | 1794 | |
michael@0 | 1795 | SkPath::Verb SkPath::Iter::autoClose(SkPoint pts[2]) { |
michael@0 | 1796 | SkASSERT(pts); |
michael@0 | 1797 | if (fLastPt != fMoveTo) { |
michael@0 | 1798 | // A special case: if both points are NaN, SkPoint::operation== returns |
michael@0 | 1799 | // false, but the iterator expects that they are treated as the same. |
michael@0 | 1800 | // (consider SkPoint is a 2-dimension float point). |
michael@0 | 1801 | if (SkScalarIsNaN(fLastPt.fX) || SkScalarIsNaN(fLastPt.fY) || |
michael@0 | 1802 | SkScalarIsNaN(fMoveTo.fX) || SkScalarIsNaN(fMoveTo.fY)) { |
michael@0 | 1803 | return kClose_Verb; |
michael@0 | 1804 | } |
michael@0 | 1805 | |
michael@0 | 1806 | pts[0] = fLastPt; |
michael@0 | 1807 | pts[1] = fMoveTo; |
michael@0 | 1808 | fLastPt = fMoveTo; |
michael@0 | 1809 | fCloseLine = true; |
michael@0 | 1810 | return kLine_Verb; |
michael@0 | 1811 | } else { |
michael@0 | 1812 | pts[0] = fMoveTo; |
michael@0 | 1813 | return kClose_Verb; |
michael@0 | 1814 | } |
michael@0 | 1815 | } |
michael@0 | 1816 | |
michael@0 | 1817 | const SkPoint& SkPath::Iter::cons_moveTo() { |
michael@0 | 1818 | if (fSegmentState == kAfterMove_SegmentState) { |
michael@0 | 1819 | // Set the first return pt to the move pt |
michael@0 | 1820 | fSegmentState = kAfterPrimitive_SegmentState; |
michael@0 | 1821 | return fMoveTo; |
michael@0 | 1822 | } else { |
michael@0 | 1823 | SkASSERT(fSegmentState == kAfterPrimitive_SegmentState); |
michael@0 | 1824 | // Set the first return pt to the last pt of the previous primitive. |
michael@0 | 1825 | return fPts[-1]; |
michael@0 | 1826 | } |
michael@0 | 1827 | } |
michael@0 | 1828 | |
michael@0 | 1829 | void SkPath::Iter::consumeDegenerateSegments() { |
michael@0 | 1830 | // We need to step over anything that will not move the current draw point |
michael@0 | 1831 | // forward before the next move is seen |
michael@0 | 1832 | const uint8_t* lastMoveVerb = 0; |
michael@0 | 1833 | const SkPoint* lastMovePt = 0; |
michael@0 | 1834 | SkPoint lastPt = fLastPt; |
michael@0 | 1835 | while (fVerbs != fVerbStop) { |
michael@0 | 1836 | unsigned verb = *(fVerbs - 1); // fVerbs is one beyond the current verb |
michael@0 | 1837 | switch (verb) { |
michael@0 | 1838 | case kMove_Verb: |
michael@0 | 1839 | // Keep a record of this most recent move |
michael@0 | 1840 | lastMoveVerb = fVerbs; |
michael@0 | 1841 | lastMovePt = fPts; |
michael@0 | 1842 | lastPt = fPts[0]; |
michael@0 | 1843 | fVerbs--; |
michael@0 | 1844 | fPts++; |
michael@0 | 1845 | break; |
michael@0 | 1846 | |
michael@0 | 1847 | case kClose_Verb: |
michael@0 | 1848 | // A close when we are in a segment is always valid except when it |
michael@0 | 1849 | // follows a move which follows a segment. |
michael@0 | 1850 | if (fSegmentState == kAfterPrimitive_SegmentState && !lastMoveVerb) { |
michael@0 | 1851 | return; |
michael@0 | 1852 | } |
michael@0 | 1853 | // A close at any other time must be ignored |
michael@0 | 1854 | fVerbs--; |
michael@0 | 1855 | break; |
michael@0 | 1856 | |
michael@0 | 1857 | case kLine_Verb: |
michael@0 | 1858 | if (!IsLineDegenerate(lastPt, fPts[0])) { |
michael@0 | 1859 | if (lastMoveVerb) { |
michael@0 | 1860 | fVerbs = lastMoveVerb; |
michael@0 | 1861 | fPts = lastMovePt; |
michael@0 | 1862 | return; |
michael@0 | 1863 | } |
michael@0 | 1864 | return; |
michael@0 | 1865 | } |
michael@0 | 1866 | // Ignore this line and continue |
michael@0 | 1867 | fVerbs--; |
michael@0 | 1868 | fPts++; |
michael@0 | 1869 | break; |
michael@0 | 1870 | |
michael@0 | 1871 | case kConic_Verb: |
michael@0 | 1872 | case kQuad_Verb: |
michael@0 | 1873 | if (!IsQuadDegenerate(lastPt, fPts[0], fPts[1])) { |
michael@0 | 1874 | if (lastMoveVerb) { |
michael@0 | 1875 | fVerbs = lastMoveVerb; |
michael@0 | 1876 | fPts = lastMovePt; |
michael@0 | 1877 | return; |
michael@0 | 1878 | } |
michael@0 | 1879 | return; |
michael@0 | 1880 | } |
michael@0 | 1881 | // Ignore this line and continue |
michael@0 | 1882 | fVerbs--; |
michael@0 | 1883 | fPts += 2; |
michael@0 | 1884 | fConicWeights += (kConic_Verb == verb); |
michael@0 | 1885 | break; |
michael@0 | 1886 | |
michael@0 | 1887 | case kCubic_Verb: |
michael@0 | 1888 | if (!IsCubicDegenerate(lastPt, fPts[0], fPts[1], fPts[2])) { |
michael@0 | 1889 | if (lastMoveVerb) { |
michael@0 | 1890 | fVerbs = lastMoveVerb; |
michael@0 | 1891 | fPts = lastMovePt; |
michael@0 | 1892 | return; |
michael@0 | 1893 | } |
michael@0 | 1894 | return; |
michael@0 | 1895 | } |
michael@0 | 1896 | // Ignore this line and continue |
michael@0 | 1897 | fVerbs--; |
michael@0 | 1898 | fPts += 3; |
michael@0 | 1899 | break; |
michael@0 | 1900 | |
michael@0 | 1901 | default: |
michael@0 | 1902 | SkDEBUGFAIL("Should never see kDone_Verb"); |
michael@0 | 1903 | } |
michael@0 | 1904 | } |
michael@0 | 1905 | } |
michael@0 | 1906 | |
michael@0 | 1907 | SkPath::Verb SkPath::Iter::doNext(SkPoint ptsParam[4]) { |
michael@0 | 1908 | SkASSERT(ptsParam); |
michael@0 | 1909 | |
michael@0 | 1910 | if (fVerbs == fVerbStop) { |
michael@0 | 1911 | // Close the curve if requested and if there is some curve to close |
michael@0 | 1912 | if (fNeedClose && fSegmentState == kAfterPrimitive_SegmentState) { |
michael@0 | 1913 | if (kLine_Verb == this->autoClose(ptsParam)) { |
michael@0 | 1914 | return kLine_Verb; |
michael@0 | 1915 | } |
michael@0 | 1916 | fNeedClose = false; |
michael@0 | 1917 | return kClose_Verb; |
michael@0 | 1918 | } |
michael@0 | 1919 | return kDone_Verb; |
michael@0 | 1920 | } |
michael@0 | 1921 | |
michael@0 | 1922 | // fVerbs is one beyond the current verb, decrement first |
michael@0 | 1923 | unsigned verb = *(--fVerbs); |
michael@0 | 1924 | const SkPoint* SK_RESTRICT srcPts = fPts; |
michael@0 | 1925 | SkPoint* SK_RESTRICT pts = ptsParam; |
michael@0 | 1926 | |
michael@0 | 1927 | switch (verb) { |
michael@0 | 1928 | case kMove_Verb: |
michael@0 | 1929 | if (fNeedClose) { |
michael@0 | 1930 | fVerbs++; // move back one verb |
michael@0 | 1931 | verb = this->autoClose(pts); |
michael@0 | 1932 | if (verb == kClose_Verb) { |
michael@0 | 1933 | fNeedClose = false; |
michael@0 | 1934 | } |
michael@0 | 1935 | return (Verb)verb; |
michael@0 | 1936 | } |
michael@0 | 1937 | if (fVerbs == fVerbStop) { // might be a trailing moveto |
michael@0 | 1938 | return kDone_Verb; |
michael@0 | 1939 | } |
michael@0 | 1940 | fMoveTo = *srcPts; |
michael@0 | 1941 | pts[0] = *srcPts; |
michael@0 | 1942 | srcPts += 1; |
michael@0 | 1943 | fSegmentState = kAfterMove_SegmentState; |
michael@0 | 1944 | fLastPt = fMoveTo; |
michael@0 | 1945 | fNeedClose = fForceClose; |
michael@0 | 1946 | break; |
michael@0 | 1947 | case kLine_Verb: |
michael@0 | 1948 | pts[0] = this->cons_moveTo(); |
michael@0 | 1949 | pts[1] = srcPts[0]; |
michael@0 | 1950 | fLastPt = srcPts[0]; |
michael@0 | 1951 | fCloseLine = false; |
michael@0 | 1952 | srcPts += 1; |
michael@0 | 1953 | break; |
michael@0 | 1954 | case kConic_Verb: |
michael@0 | 1955 | fConicWeights += 1; |
michael@0 | 1956 | // fall-through |
michael@0 | 1957 | case kQuad_Verb: |
michael@0 | 1958 | pts[0] = this->cons_moveTo(); |
michael@0 | 1959 | memcpy(&pts[1], srcPts, 2 * sizeof(SkPoint)); |
michael@0 | 1960 | fLastPt = srcPts[1]; |
michael@0 | 1961 | srcPts += 2; |
michael@0 | 1962 | break; |
michael@0 | 1963 | case kCubic_Verb: |
michael@0 | 1964 | pts[0] = this->cons_moveTo(); |
michael@0 | 1965 | memcpy(&pts[1], srcPts, 3 * sizeof(SkPoint)); |
michael@0 | 1966 | fLastPt = srcPts[2]; |
michael@0 | 1967 | srcPts += 3; |
michael@0 | 1968 | break; |
michael@0 | 1969 | case kClose_Verb: |
michael@0 | 1970 | verb = this->autoClose(pts); |
michael@0 | 1971 | if (verb == kLine_Verb) { |
michael@0 | 1972 | fVerbs++; // move back one verb |
michael@0 | 1973 | } else { |
michael@0 | 1974 | fNeedClose = false; |
michael@0 | 1975 | fSegmentState = kEmptyContour_SegmentState; |
michael@0 | 1976 | } |
michael@0 | 1977 | fLastPt = fMoveTo; |
michael@0 | 1978 | break; |
michael@0 | 1979 | } |
michael@0 | 1980 | fPts = srcPts; |
michael@0 | 1981 | return (Verb)verb; |
michael@0 | 1982 | } |
michael@0 | 1983 | |
michael@0 | 1984 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 1985 | |
michael@0 | 1986 | SkPath::RawIter::RawIter() { |
michael@0 | 1987 | #ifdef SK_DEBUG |
michael@0 | 1988 | fPts = NULL; |
michael@0 | 1989 | fConicWeights = NULL; |
michael@0 | 1990 | fMoveTo.fX = fMoveTo.fY = fLastPt.fX = fLastPt.fY = 0; |
michael@0 | 1991 | #endif |
michael@0 | 1992 | // need to init enough to make next() harmlessly return kDone_Verb |
michael@0 | 1993 | fVerbs = NULL; |
michael@0 | 1994 | fVerbStop = NULL; |
michael@0 | 1995 | } |
michael@0 | 1996 | |
michael@0 | 1997 | SkPath::RawIter::RawIter(const SkPath& path) { |
michael@0 | 1998 | this->setPath(path); |
michael@0 | 1999 | } |
michael@0 | 2000 | |
michael@0 | 2001 | void SkPath::RawIter::setPath(const SkPath& path) { |
michael@0 | 2002 | fPts = path.fPathRef->points(); |
michael@0 | 2003 | fVerbs = path.fPathRef->verbs(); |
michael@0 | 2004 | fVerbStop = path.fPathRef->verbsMemBegin(); |
michael@0 | 2005 | fConicWeights = path.fPathRef->conicWeights() - 1; // begin one behind |
michael@0 | 2006 | fMoveTo.fX = fMoveTo.fY = 0; |
michael@0 | 2007 | fLastPt.fX = fLastPt.fY = 0; |
michael@0 | 2008 | } |
michael@0 | 2009 | |
michael@0 | 2010 | SkPath::Verb SkPath::RawIter::next(SkPoint pts[4]) { |
michael@0 | 2011 | SkASSERT(NULL != pts); |
michael@0 | 2012 | if (fVerbs == fVerbStop) { |
michael@0 | 2013 | return kDone_Verb; |
michael@0 | 2014 | } |
michael@0 | 2015 | |
michael@0 | 2016 | // fVerbs points one beyond next verb so decrement first. |
michael@0 | 2017 | unsigned verb = *(--fVerbs); |
michael@0 | 2018 | const SkPoint* srcPts = fPts; |
michael@0 | 2019 | |
michael@0 | 2020 | switch (verb) { |
michael@0 | 2021 | case kMove_Verb: |
michael@0 | 2022 | pts[0] = *srcPts; |
michael@0 | 2023 | fMoveTo = srcPts[0]; |
michael@0 | 2024 | fLastPt = fMoveTo; |
michael@0 | 2025 | srcPts += 1; |
michael@0 | 2026 | break; |
michael@0 | 2027 | case kLine_Verb: |
michael@0 | 2028 | pts[0] = fLastPt; |
michael@0 | 2029 | pts[1] = srcPts[0]; |
michael@0 | 2030 | fLastPt = srcPts[0]; |
michael@0 | 2031 | srcPts += 1; |
michael@0 | 2032 | break; |
michael@0 | 2033 | case kConic_Verb: |
michael@0 | 2034 | fConicWeights += 1; |
michael@0 | 2035 | // fall-through |
michael@0 | 2036 | case kQuad_Verb: |
michael@0 | 2037 | pts[0] = fLastPt; |
michael@0 | 2038 | memcpy(&pts[1], srcPts, 2 * sizeof(SkPoint)); |
michael@0 | 2039 | fLastPt = srcPts[1]; |
michael@0 | 2040 | srcPts += 2; |
michael@0 | 2041 | break; |
michael@0 | 2042 | case kCubic_Verb: |
michael@0 | 2043 | pts[0] = fLastPt; |
michael@0 | 2044 | memcpy(&pts[1], srcPts, 3 * sizeof(SkPoint)); |
michael@0 | 2045 | fLastPt = srcPts[2]; |
michael@0 | 2046 | srcPts += 3; |
michael@0 | 2047 | break; |
michael@0 | 2048 | case kClose_Verb: |
michael@0 | 2049 | fLastPt = fMoveTo; |
michael@0 | 2050 | pts[0] = fMoveTo; |
michael@0 | 2051 | break; |
michael@0 | 2052 | } |
michael@0 | 2053 | fPts = srcPts; |
michael@0 | 2054 | return (Verb)verb; |
michael@0 | 2055 | } |
michael@0 | 2056 | |
michael@0 | 2057 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 2058 | |
michael@0 | 2059 | /* |
michael@0 | 2060 | Format in compressed buffer: [ptCount, verbCount, pts[], verbs[]] |
michael@0 | 2061 | */ |
michael@0 | 2062 | |
michael@0 | 2063 | size_t SkPath::writeToMemory(void* storage) const { |
michael@0 | 2064 | SkDEBUGCODE(this->validate();) |
michael@0 | 2065 | |
michael@0 | 2066 | if (NULL == storage) { |
michael@0 | 2067 | const int byteCount = sizeof(int32_t) + fPathRef->writeSize(); |
michael@0 | 2068 | return SkAlign4(byteCount); |
michael@0 | 2069 | } |
michael@0 | 2070 | |
michael@0 | 2071 | SkWBuffer buffer(storage); |
michael@0 | 2072 | |
michael@0 | 2073 | int32_t packed = (fConvexity << kConvexity_SerializationShift) | |
michael@0 | 2074 | (fFillType << kFillType_SerializationShift) | |
michael@0 | 2075 | (fDirection << kDirection_SerializationShift); |
michael@0 | 2076 | |
michael@0 | 2077 | buffer.write32(packed); |
michael@0 | 2078 | |
michael@0 | 2079 | fPathRef->writeToBuffer(&buffer); |
michael@0 | 2080 | |
michael@0 | 2081 | buffer.padToAlign4(); |
michael@0 | 2082 | return buffer.pos(); |
michael@0 | 2083 | } |
michael@0 | 2084 | |
michael@0 | 2085 | size_t SkPath::readFromMemory(const void* storage, size_t length) { |
michael@0 | 2086 | SkRBufferWithSizeCheck buffer(storage, length); |
michael@0 | 2087 | |
michael@0 | 2088 | int32_t packed; |
michael@0 | 2089 | if (!buffer.readS32(&packed)) { |
michael@0 | 2090 | return 0; |
michael@0 | 2091 | } |
michael@0 | 2092 | |
michael@0 | 2093 | fConvexity = (packed >> kConvexity_SerializationShift) & 0xFF; |
michael@0 | 2094 | fFillType = (packed >> kFillType_SerializationShift) & 0xFF; |
michael@0 | 2095 | fDirection = (packed >> kDirection_SerializationShift) & 0x3; |
michael@0 | 2096 | SkPathRef* pathRef = SkPathRef::CreateFromBuffer(&buffer); |
michael@0 | 2097 | |
michael@0 | 2098 | size_t sizeRead = 0; |
michael@0 | 2099 | if (buffer.isValid()) { |
michael@0 | 2100 | fPathRef.reset(pathRef); |
michael@0 | 2101 | SkDEBUGCODE(this->validate();) |
michael@0 | 2102 | buffer.skipToAlign4(); |
michael@0 | 2103 | sizeRead = buffer.pos(); |
michael@0 | 2104 | } else if (NULL != pathRef) { |
michael@0 | 2105 | // If the buffer is not valid, pathRef should be NULL |
michael@0 | 2106 | sk_throw(); |
michael@0 | 2107 | } |
michael@0 | 2108 | return sizeRead; |
michael@0 | 2109 | } |
michael@0 | 2110 | |
michael@0 | 2111 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 2112 | |
michael@0 | 2113 | #include "SkString.h" |
michael@0 | 2114 | |
michael@0 | 2115 | static void append_scalar(SkString* str, SkScalar value) { |
michael@0 | 2116 | SkString tmp; |
michael@0 | 2117 | tmp.printf("%g", value); |
michael@0 | 2118 | if (tmp.contains('.')) { |
michael@0 | 2119 | tmp.appendUnichar('f'); |
michael@0 | 2120 | } |
michael@0 | 2121 | str->append(tmp); |
michael@0 | 2122 | } |
michael@0 | 2123 | |
michael@0 | 2124 | static void append_params(SkString* str, const char label[], const SkPoint pts[], |
michael@0 | 2125 | int count, SkScalar conicWeight = -1) { |
michael@0 | 2126 | str->append(label); |
michael@0 | 2127 | str->append("("); |
michael@0 | 2128 | |
michael@0 | 2129 | const SkScalar* values = &pts[0].fX; |
michael@0 | 2130 | count *= 2; |
michael@0 | 2131 | |
michael@0 | 2132 | for (int i = 0; i < count; ++i) { |
michael@0 | 2133 | append_scalar(str, values[i]); |
michael@0 | 2134 | if (i < count - 1) { |
michael@0 | 2135 | str->append(", "); |
michael@0 | 2136 | } |
michael@0 | 2137 | } |
michael@0 | 2138 | if (conicWeight >= 0) { |
michael@0 | 2139 | str->append(", "); |
michael@0 | 2140 | append_scalar(str, conicWeight); |
michael@0 | 2141 | } |
michael@0 | 2142 | str->append(");\n"); |
michael@0 | 2143 | } |
michael@0 | 2144 | |
michael@0 | 2145 | void SkPath::dump(bool forceClose, const char title[]) const { |
michael@0 | 2146 | Iter iter(*this, forceClose); |
michael@0 | 2147 | SkPoint pts[4]; |
michael@0 | 2148 | Verb verb; |
michael@0 | 2149 | |
michael@0 | 2150 | SkDebugf("path: forceClose=%s %s\n", forceClose ? "true" : "false", |
michael@0 | 2151 | title ? title : ""); |
michael@0 | 2152 | |
michael@0 | 2153 | SkString builder; |
michael@0 | 2154 | |
michael@0 | 2155 | while ((verb = iter.next(pts, false)) != kDone_Verb) { |
michael@0 | 2156 | switch (verb) { |
michael@0 | 2157 | case kMove_Verb: |
michael@0 | 2158 | append_params(&builder, "path.moveTo", &pts[0], 1); |
michael@0 | 2159 | break; |
michael@0 | 2160 | case kLine_Verb: |
michael@0 | 2161 | append_params(&builder, "path.lineTo", &pts[1], 1); |
michael@0 | 2162 | break; |
michael@0 | 2163 | case kQuad_Verb: |
michael@0 | 2164 | append_params(&builder, "path.quadTo", &pts[1], 2); |
michael@0 | 2165 | break; |
michael@0 | 2166 | case kConic_Verb: |
michael@0 | 2167 | append_params(&builder, "path.conicTo", &pts[1], 2, iter.conicWeight()); |
michael@0 | 2168 | break; |
michael@0 | 2169 | case kCubic_Verb: |
michael@0 | 2170 | append_params(&builder, "path.cubicTo", &pts[1], 3); |
michael@0 | 2171 | break; |
michael@0 | 2172 | case kClose_Verb: |
michael@0 | 2173 | builder.append("path.close();\n"); |
michael@0 | 2174 | break; |
michael@0 | 2175 | default: |
michael@0 | 2176 | SkDebugf(" path: UNKNOWN VERB %d, aborting dump...\n", verb); |
michael@0 | 2177 | verb = kDone_Verb; // stop the loop |
michael@0 | 2178 | break; |
michael@0 | 2179 | } |
michael@0 | 2180 | } |
michael@0 | 2181 | SkDebugf("%s\n", builder.c_str()); |
michael@0 | 2182 | } |
michael@0 | 2183 | |
michael@0 | 2184 | void SkPath::dump() const { |
michael@0 | 2185 | this->dump(false); |
michael@0 | 2186 | } |
michael@0 | 2187 | |
michael@0 | 2188 | #ifdef SK_DEBUG |
michael@0 | 2189 | void SkPath::validate() const { |
michael@0 | 2190 | SkASSERT(this != NULL); |
michael@0 | 2191 | SkASSERT((fFillType & ~3) == 0); |
michael@0 | 2192 | |
michael@0 | 2193 | #ifdef SK_DEBUG_PATH |
michael@0 | 2194 | if (!fBoundsIsDirty) { |
michael@0 | 2195 | SkRect bounds; |
michael@0 | 2196 | |
michael@0 | 2197 | bool isFinite = compute_pt_bounds(&bounds, *fPathRef.get()); |
michael@0 | 2198 | SkASSERT(SkToBool(fIsFinite) == isFinite); |
michael@0 | 2199 | |
michael@0 | 2200 | if (fPathRef->countPoints() <= 1) { |
michael@0 | 2201 | // if we're empty, fBounds may be empty but translated, so we can't |
michael@0 | 2202 | // necessarily compare to bounds directly |
michael@0 | 2203 | // try path.addOval(2, 2, 2, 2) which is empty, but the bounds will |
michael@0 | 2204 | // be [2, 2, 2, 2] |
michael@0 | 2205 | SkASSERT(bounds.isEmpty()); |
michael@0 | 2206 | SkASSERT(fBounds.isEmpty()); |
michael@0 | 2207 | } else { |
michael@0 | 2208 | if (bounds.isEmpty()) { |
michael@0 | 2209 | SkASSERT(fBounds.isEmpty()); |
michael@0 | 2210 | } else { |
michael@0 | 2211 | if (!fBounds.isEmpty()) { |
michael@0 | 2212 | SkASSERT(fBounds.contains(bounds)); |
michael@0 | 2213 | } |
michael@0 | 2214 | } |
michael@0 | 2215 | } |
michael@0 | 2216 | } |
michael@0 | 2217 | #endif // SK_DEBUG_PATH |
michael@0 | 2218 | } |
michael@0 | 2219 | #endif // SK_DEBUG |
michael@0 | 2220 | |
michael@0 | 2221 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 2222 | |
michael@0 | 2223 | static int sign(SkScalar x) { return x < 0; } |
michael@0 | 2224 | #define kValueNeverReturnedBySign 2 |
michael@0 | 2225 | |
michael@0 | 2226 | static bool AlmostEqual(SkScalar compA, SkScalar compB) { |
michael@0 | 2227 | // The error epsilon was empirically derived; worse case round rects |
michael@0 | 2228 | // with a mid point outset by 2x float epsilon in tests had an error |
michael@0 | 2229 | // of 12. |
michael@0 | 2230 | const int epsilon = 16; |
michael@0 | 2231 | if (!SkScalarIsFinite(compA) || !SkScalarIsFinite(compB)) { |
michael@0 | 2232 | return false; |
michael@0 | 2233 | } |
michael@0 | 2234 | // no need to check for small numbers because SkPath::Iter has removed degenerate values |
michael@0 | 2235 | int aBits = SkFloatAs2sCompliment(compA); |
michael@0 | 2236 | int bBits = SkFloatAs2sCompliment(compB); |
michael@0 | 2237 | return aBits < bBits + epsilon && bBits < aBits + epsilon; |
michael@0 | 2238 | } |
michael@0 | 2239 | |
michael@0 | 2240 | // only valid for a single contour |
michael@0 | 2241 | struct Convexicator { |
michael@0 | 2242 | Convexicator() |
michael@0 | 2243 | : fPtCount(0) |
michael@0 | 2244 | , fConvexity(SkPath::kConvex_Convexity) |
michael@0 | 2245 | , fDirection(SkPath::kUnknown_Direction) { |
michael@0 | 2246 | fSign = 0; |
michael@0 | 2247 | // warnings |
michael@0 | 2248 | fLastPt.set(0, 0); |
michael@0 | 2249 | fCurrPt.set(0, 0); |
michael@0 | 2250 | fVec0.set(0, 0); |
michael@0 | 2251 | fVec1.set(0, 0); |
michael@0 | 2252 | fFirstVec.set(0, 0); |
michael@0 | 2253 | |
michael@0 | 2254 | fDx = fDy = 0; |
michael@0 | 2255 | fSx = fSy = kValueNeverReturnedBySign; |
michael@0 | 2256 | } |
michael@0 | 2257 | |
michael@0 | 2258 | SkPath::Convexity getConvexity() const { return fConvexity; } |
michael@0 | 2259 | |
michael@0 | 2260 | /** The direction returned is only valid if the path is determined convex */ |
michael@0 | 2261 | SkPath::Direction getDirection() const { return fDirection; } |
michael@0 | 2262 | |
michael@0 | 2263 | void addPt(const SkPoint& pt) { |
michael@0 | 2264 | if (SkPath::kConcave_Convexity == fConvexity) { |
michael@0 | 2265 | return; |
michael@0 | 2266 | } |
michael@0 | 2267 | |
michael@0 | 2268 | if (0 == fPtCount) { |
michael@0 | 2269 | fCurrPt = pt; |
michael@0 | 2270 | ++fPtCount; |
michael@0 | 2271 | } else { |
michael@0 | 2272 | SkVector vec = pt - fCurrPt; |
michael@0 | 2273 | if (vec.fX || vec.fY) { |
michael@0 | 2274 | fLastPt = fCurrPt; |
michael@0 | 2275 | fCurrPt = pt; |
michael@0 | 2276 | if (++fPtCount == 2) { |
michael@0 | 2277 | fFirstVec = fVec1 = vec; |
michael@0 | 2278 | } else { |
michael@0 | 2279 | SkASSERT(fPtCount > 2); |
michael@0 | 2280 | this->addVec(vec); |
michael@0 | 2281 | } |
michael@0 | 2282 | |
michael@0 | 2283 | int sx = sign(vec.fX); |
michael@0 | 2284 | int sy = sign(vec.fY); |
michael@0 | 2285 | fDx += (sx != fSx); |
michael@0 | 2286 | fDy += (sy != fSy); |
michael@0 | 2287 | fSx = sx; |
michael@0 | 2288 | fSy = sy; |
michael@0 | 2289 | |
michael@0 | 2290 | if (fDx > 3 || fDy > 3) { |
michael@0 | 2291 | fConvexity = SkPath::kConcave_Convexity; |
michael@0 | 2292 | } |
michael@0 | 2293 | } |
michael@0 | 2294 | } |
michael@0 | 2295 | } |
michael@0 | 2296 | |
michael@0 | 2297 | void close() { |
michael@0 | 2298 | if (fPtCount > 2) { |
michael@0 | 2299 | this->addVec(fFirstVec); |
michael@0 | 2300 | } |
michael@0 | 2301 | } |
michael@0 | 2302 | |
michael@0 | 2303 | private: |
michael@0 | 2304 | void addVec(const SkVector& vec) { |
michael@0 | 2305 | SkASSERT(vec.fX || vec.fY); |
michael@0 | 2306 | fVec0 = fVec1; |
michael@0 | 2307 | fVec1 = vec; |
michael@0 | 2308 | SkScalar cross = SkPoint::CrossProduct(fVec0, fVec1); |
michael@0 | 2309 | SkScalar smallest = SkTMin(fCurrPt.fX, SkTMin(fCurrPt.fY, SkTMin(fLastPt.fX, fLastPt.fY))); |
michael@0 | 2310 | SkScalar largest = SkTMax(fCurrPt.fX, SkTMax(fCurrPt.fY, SkTMax(fLastPt.fX, fLastPt.fY))); |
michael@0 | 2311 | largest = SkTMax(largest, -smallest); |
michael@0 | 2312 | int sign = AlmostEqual(largest, largest + cross) ? 0 : SkScalarSignAsInt(cross); |
michael@0 | 2313 | if (0 == fSign) { |
michael@0 | 2314 | fSign = sign; |
michael@0 | 2315 | if (1 == sign) { |
michael@0 | 2316 | fDirection = SkPath::kCW_Direction; |
michael@0 | 2317 | } else if (-1 == sign) { |
michael@0 | 2318 | fDirection = SkPath::kCCW_Direction; |
michael@0 | 2319 | } |
michael@0 | 2320 | } else if (sign) { |
michael@0 | 2321 | if (fSign != sign) { |
michael@0 | 2322 | fConvexity = SkPath::kConcave_Convexity; |
michael@0 | 2323 | fDirection = SkPath::kUnknown_Direction; |
michael@0 | 2324 | } |
michael@0 | 2325 | } |
michael@0 | 2326 | } |
michael@0 | 2327 | |
michael@0 | 2328 | SkPoint fLastPt; |
michael@0 | 2329 | SkPoint fCurrPt; |
michael@0 | 2330 | SkVector fVec0, fVec1, fFirstVec; |
michael@0 | 2331 | int fPtCount; // non-degenerate points |
michael@0 | 2332 | int fSign; |
michael@0 | 2333 | SkPath::Convexity fConvexity; |
michael@0 | 2334 | SkPath::Direction fDirection; |
michael@0 | 2335 | int fDx, fDy, fSx, fSy; |
michael@0 | 2336 | }; |
michael@0 | 2337 | |
michael@0 | 2338 | SkPath::Convexity SkPath::internalGetConvexity() const { |
michael@0 | 2339 | SkASSERT(kUnknown_Convexity == fConvexity); |
michael@0 | 2340 | SkPoint pts[4]; |
michael@0 | 2341 | SkPath::Verb verb; |
michael@0 | 2342 | SkPath::Iter iter(*this, true); |
michael@0 | 2343 | |
michael@0 | 2344 | int contourCount = 0; |
michael@0 | 2345 | int count; |
michael@0 | 2346 | Convexicator state; |
michael@0 | 2347 | |
michael@0 | 2348 | while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
michael@0 | 2349 | switch (verb) { |
michael@0 | 2350 | case kMove_Verb: |
michael@0 | 2351 | if (++contourCount > 1) { |
michael@0 | 2352 | fConvexity = kConcave_Convexity; |
michael@0 | 2353 | return kConcave_Convexity; |
michael@0 | 2354 | } |
michael@0 | 2355 | pts[1] = pts[0]; |
michael@0 | 2356 | count = 1; |
michael@0 | 2357 | break; |
michael@0 | 2358 | case kLine_Verb: count = 1; break; |
michael@0 | 2359 | case kQuad_Verb: count = 2; break; |
michael@0 | 2360 | case kConic_Verb: count = 2; break; |
michael@0 | 2361 | case kCubic_Verb: count = 3; break; |
michael@0 | 2362 | case kClose_Verb: |
michael@0 | 2363 | state.close(); |
michael@0 | 2364 | count = 0; |
michael@0 | 2365 | break; |
michael@0 | 2366 | default: |
michael@0 | 2367 | SkDEBUGFAIL("bad verb"); |
michael@0 | 2368 | fConvexity = kConcave_Convexity; |
michael@0 | 2369 | return kConcave_Convexity; |
michael@0 | 2370 | } |
michael@0 | 2371 | |
michael@0 | 2372 | for (int i = 1; i <= count; i++) { |
michael@0 | 2373 | state.addPt(pts[i]); |
michael@0 | 2374 | } |
michael@0 | 2375 | // early exit |
michael@0 | 2376 | if (kConcave_Convexity == state.getConvexity()) { |
michael@0 | 2377 | fConvexity = kConcave_Convexity; |
michael@0 | 2378 | return kConcave_Convexity; |
michael@0 | 2379 | } |
michael@0 | 2380 | } |
michael@0 | 2381 | fConvexity = state.getConvexity(); |
michael@0 | 2382 | if (kConvex_Convexity == fConvexity && kUnknown_Direction == fDirection) { |
michael@0 | 2383 | fDirection = state.getDirection(); |
michael@0 | 2384 | } |
michael@0 | 2385 | return static_cast<Convexity>(fConvexity); |
michael@0 | 2386 | } |
michael@0 | 2387 | |
michael@0 | 2388 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 2389 | |
michael@0 | 2390 | class ContourIter { |
michael@0 | 2391 | public: |
michael@0 | 2392 | ContourIter(const SkPathRef& pathRef); |
michael@0 | 2393 | |
michael@0 | 2394 | bool done() const { return fDone; } |
michael@0 | 2395 | // if !done() then these may be called |
michael@0 | 2396 | int count() const { return fCurrPtCount; } |
michael@0 | 2397 | const SkPoint* pts() const { return fCurrPt; } |
michael@0 | 2398 | void next(); |
michael@0 | 2399 | |
michael@0 | 2400 | private: |
michael@0 | 2401 | int fCurrPtCount; |
michael@0 | 2402 | const SkPoint* fCurrPt; |
michael@0 | 2403 | const uint8_t* fCurrVerb; |
michael@0 | 2404 | const uint8_t* fStopVerbs; |
michael@0 | 2405 | const SkScalar* fCurrConicWeight; |
michael@0 | 2406 | bool fDone; |
michael@0 | 2407 | SkDEBUGCODE(int fContourCounter;) |
michael@0 | 2408 | }; |
michael@0 | 2409 | |
michael@0 | 2410 | ContourIter::ContourIter(const SkPathRef& pathRef) { |
michael@0 | 2411 | fStopVerbs = pathRef.verbsMemBegin(); |
michael@0 | 2412 | fDone = false; |
michael@0 | 2413 | fCurrPt = pathRef.points(); |
michael@0 | 2414 | fCurrVerb = pathRef.verbs(); |
michael@0 | 2415 | fCurrConicWeight = pathRef.conicWeights(); |
michael@0 | 2416 | fCurrPtCount = 0; |
michael@0 | 2417 | SkDEBUGCODE(fContourCounter = 0;) |
michael@0 | 2418 | this->next(); |
michael@0 | 2419 | } |
michael@0 | 2420 | |
michael@0 | 2421 | void ContourIter::next() { |
michael@0 | 2422 | if (fCurrVerb <= fStopVerbs) { |
michael@0 | 2423 | fDone = true; |
michael@0 | 2424 | } |
michael@0 | 2425 | if (fDone) { |
michael@0 | 2426 | return; |
michael@0 | 2427 | } |
michael@0 | 2428 | |
michael@0 | 2429 | // skip pts of prev contour |
michael@0 | 2430 | fCurrPt += fCurrPtCount; |
michael@0 | 2431 | |
michael@0 | 2432 | SkASSERT(SkPath::kMove_Verb == fCurrVerb[~0]); |
michael@0 | 2433 | int ptCount = 1; // moveTo |
michael@0 | 2434 | const uint8_t* verbs = fCurrVerb; |
michael@0 | 2435 | |
michael@0 | 2436 | for (--verbs; verbs > fStopVerbs; --verbs) { |
michael@0 | 2437 | switch (verbs[~0]) { |
michael@0 | 2438 | case SkPath::kMove_Verb: |
michael@0 | 2439 | goto CONTOUR_END; |
michael@0 | 2440 | case SkPath::kLine_Verb: |
michael@0 | 2441 | ptCount += 1; |
michael@0 | 2442 | break; |
michael@0 | 2443 | case SkPath::kConic_Verb: |
michael@0 | 2444 | fCurrConicWeight += 1; |
michael@0 | 2445 | // fall-through |
michael@0 | 2446 | case SkPath::kQuad_Verb: |
michael@0 | 2447 | ptCount += 2; |
michael@0 | 2448 | break; |
michael@0 | 2449 | case SkPath::kCubic_Verb: |
michael@0 | 2450 | ptCount += 3; |
michael@0 | 2451 | break; |
michael@0 | 2452 | case SkPath::kClose_Verb: |
michael@0 | 2453 | break; |
michael@0 | 2454 | default: |
michael@0 | 2455 | SkDEBUGFAIL("unexpected verb"); |
michael@0 | 2456 | break; |
michael@0 | 2457 | } |
michael@0 | 2458 | } |
michael@0 | 2459 | CONTOUR_END: |
michael@0 | 2460 | fCurrPtCount = ptCount; |
michael@0 | 2461 | fCurrVerb = verbs; |
michael@0 | 2462 | SkDEBUGCODE(++fContourCounter;) |
michael@0 | 2463 | } |
michael@0 | 2464 | |
michael@0 | 2465 | // returns cross product of (p1 - p0) and (p2 - p0) |
michael@0 | 2466 | static SkScalar cross_prod(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { |
michael@0 | 2467 | SkScalar cross = SkPoint::CrossProduct(p1 - p0, p2 - p0); |
michael@0 | 2468 | // We may get 0 when the above subtracts underflow. We expect this to be |
michael@0 | 2469 | // very rare and lazily promote to double. |
michael@0 | 2470 | if (0 == cross) { |
michael@0 | 2471 | double p0x = SkScalarToDouble(p0.fX); |
michael@0 | 2472 | double p0y = SkScalarToDouble(p0.fY); |
michael@0 | 2473 | |
michael@0 | 2474 | double p1x = SkScalarToDouble(p1.fX); |
michael@0 | 2475 | double p1y = SkScalarToDouble(p1.fY); |
michael@0 | 2476 | |
michael@0 | 2477 | double p2x = SkScalarToDouble(p2.fX); |
michael@0 | 2478 | double p2y = SkScalarToDouble(p2.fY); |
michael@0 | 2479 | |
michael@0 | 2480 | cross = SkDoubleToScalar((p1x - p0x) * (p2y - p0y) - |
michael@0 | 2481 | (p1y - p0y) * (p2x - p0x)); |
michael@0 | 2482 | |
michael@0 | 2483 | } |
michael@0 | 2484 | return cross; |
michael@0 | 2485 | } |
michael@0 | 2486 | |
michael@0 | 2487 | // Returns the first pt with the maximum Y coordinate |
michael@0 | 2488 | static int find_max_y(const SkPoint pts[], int count) { |
michael@0 | 2489 | SkASSERT(count > 0); |
michael@0 | 2490 | SkScalar max = pts[0].fY; |
michael@0 | 2491 | int firstIndex = 0; |
michael@0 | 2492 | for (int i = 1; i < count; ++i) { |
michael@0 | 2493 | SkScalar y = pts[i].fY; |
michael@0 | 2494 | if (y > max) { |
michael@0 | 2495 | max = y; |
michael@0 | 2496 | firstIndex = i; |
michael@0 | 2497 | } |
michael@0 | 2498 | } |
michael@0 | 2499 | return firstIndex; |
michael@0 | 2500 | } |
michael@0 | 2501 | |
michael@0 | 2502 | static int find_diff_pt(const SkPoint pts[], int index, int n, int inc) { |
michael@0 | 2503 | int i = index; |
michael@0 | 2504 | for (;;) { |
michael@0 | 2505 | i = (i + inc) % n; |
michael@0 | 2506 | if (i == index) { // we wrapped around, so abort |
michael@0 | 2507 | break; |
michael@0 | 2508 | } |
michael@0 | 2509 | if (pts[index] != pts[i]) { // found a different point, success! |
michael@0 | 2510 | break; |
michael@0 | 2511 | } |
michael@0 | 2512 | } |
michael@0 | 2513 | return i; |
michael@0 | 2514 | } |
michael@0 | 2515 | |
michael@0 | 2516 | /** |
michael@0 | 2517 | * Starting at index, and moving forward (incrementing), find the xmin and |
michael@0 | 2518 | * xmax of the contiguous points that have the same Y. |
michael@0 | 2519 | */ |
michael@0 | 2520 | static int find_min_max_x_at_y(const SkPoint pts[], int index, int n, |
michael@0 | 2521 | int* maxIndexPtr) { |
michael@0 | 2522 | const SkScalar y = pts[index].fY; |
michael@0 | 2523 | SkScalar min = pts[index].fX; |
michael@0 | 2524 | SkScalar max = min; |
michael@0 | 2525 | int minIndex = index; |
michael@0 | 2526 | int maxIndex = index; |
michael@0 | 2527 | for (int i = index + 1; i < n; ++i) { |
michael@0 | 2528 | if (pts[i].fY != y) { |
michael@0 | 2529 | break; |
michael@0 | 2530 | } |
michael@0 | 2531 | SkScalar x = pts[i].fX; |
michael@0 | 2532 | if (x < min) { |
michael@0 | 2533 | min = x; |
michael@0 | 2534 | minIndex = i; |
michael@0 | 2535 | } else if (x > max) { |
michael@0 | 2536 | max = x; |
michael@0 | 2537 | maxIndex = i; |
michael@0 | 2538 | } |
michael@0 | 2539 | } |
michael@0 | 2540 | *maxIndexPtr = maxIndex; |
michael@0 | 2541 | return minIndex; |
michael@0 | 2542 | } |
michael@0 | 2543 | |
michael@0 | 2544 | static void crossToDir(SkScalar cross, SkPath::Direction* dir) { |
michael@0 | 2545 | *dir = cross > 0 ? SkPath::kCW_Direction : SkPath::kCCW_Direction; |
michael@0 | 2546 | } |
michael@0 | 2547 | |
michael@0 | 2548 | /* |
michael@0 | 2549 | * We loop through all contours, and keep the computed cross-product of the |
michael@0 | 2550 | * contour that contained the global y-max. If we just look at the first |
michael@0 | 2551 | * contour, we may find one that is wound the opposite way (correctly) since |
michael@0 | 2552 | * it is the interior of a hole (e.g. 'o'). Thus we must find the contour |
michael@0 | 2553 | * that is outer most (or at least has the global y-max) before we can consider |
michael@0 | 2554 | * its cross product. |
michael@0 | 2555 | */ |
michael@0 | 2556 | bool SkPath::cheapComputeDirection(Direction* dir) const { |
michael@0 | 2557 | if (kUnknown_Direction != fDirection) { |
michael@0 | 2558 | *dir = static_cast<Direction>(fDirection); |
michael@0 | 2559 | return true; |
michael@0 | 2560 | } |
michael@0 | 2561 | |
michael@0 | 2562 | // don't want to pay the cost for computing this if it |
michael@0 | 2563 | // is unknown, so we don't call isConvex() |
michael@0 | 2564 | if (kConvex_Convexity == this->getConvexityOrUnknown()) { |
michael@0 | 2565 | SkASSERT(kUnknown_Direction == fDirection); |
michael@0 | 2566 | *dir = static_cast<Direction>(fDirection); |
michael@0 | 2567 | return false; |
michael@0 | 2568 | } |
michael@0 | 2569 | |
michael@0 | 2570 | ContourIter iter(*fPathRef.get()); |
michael@0 | 2571 | |
michael@0 | 2572 | // initialize with our logical y-min |
michael@0 | 2573 | SkScalar ymax = this->getBounds().fTop; |
michael@0 | 2574 | SkScalar ymaxCross = 0; |
michael@0 | 2575 | |
michael@0 | 2576 | for (; !iter.done(); iter.next()) { |
michael@0 | 2577 | int n = iter.count(); |
michael@0 | 2578 | if (n < 3) { |
michael@0 | 2579 | continue; |
michael@0 | 2580 | } |
michael@0 | 2581 | |
michael@0 | 2582 | const SkPoint* pts = iter.pts(); |
michael@0 | 2583 | SkScalar cross = 0; |
michael@0 | 2584 | int index = find_max_y(pts, n); |
michael@0 | 2585 | if (pts[index].fY < ymax) { |
michael@0 | 2586 | continue; |
michael@0 | 2587 | } |
michael@0 | 2588 | |
michael@0 | 2589 | // If there is more than 1 distinct point at the y-max, we take the |
michael@0 | 2590 | // x-min and x-max of them and just subtract to compute the dir. |
michael@0 | 2591 | if (pts[(index + 1) % n].fY == pts[index].fY) { |
michael@0 | 2592 | int maxIndex; |
michael@0 | 2593 | int minIndex = find_min_max_x_at_y(pts, index, n, &maxIndex); |
michael@0 | 2594 | if (minIndex == maxIndex) { |
michael@0 | 2595 | goto TRY_CROSSPROD; |
michael@0 | 2596 | } |
michael@0 | 2597 | SkASSERT(pts[minIndex].fY == pts[index].fY); |
michael@0 | 2598 | SkASSERT(pts[maxIndex].fY == pts[index].fY); |
michael@0 | 2599 | SkASSERT(pts[minIndex].fX <= pts[maxIndex].fX); |
michael@0 | 2600 | // we just subtract the indices, and let that auto-convert to |
michael@0 | 2601 | // SkScalar, since we just want - or + to signal the direction. |
michael@0 | 2602 | cross = minIndex - maxIndex; |
michael@0 | 2603 | } else { |
michael@0 | 2604 | TRY_CROSSPROD: |
michael@0 | 2605 | // Find a next and prev index to use for the cross-product test, |
michael@0 | 2606 | // but we try to find pts that form non-zero vectors from pts[index] |
michael@0 | 2607 | // |
michael@0 | 2608 | // Its possible that we can't find two non-degenerate vectors, so |
michael@0 | 2609 | // we have to guard our search (e.g. all the pts could be in the |
michael@0 | 2610 | // same place). |
michael@0 | 2611 | |
michael@0 | 2612 | // we pass n - 1 instead of -1 so we don't foul up % operator by |
michael@0 | 2613 | // passing it a negative LH argument. |
michael@0 | 2614 | int prev = find_diff_pt(pts, index, n, n - 1); |
michael@0 | 2615 | if (prev == index) { |
michael@0 | 2616 | // completely degenerate, skip to next contour |
michael@0 | 2617 | continue; |
michael@0 | 2618 | } |
michael@0 | 2619 | int next = find_diff_pt(pts, index, n, 1); |
michael@0 | 2620 | SkASSERT(next != index); |
michael@0 | 2621 | cross = cross_prod(pts[prev], pts[index], pts[next]); |
michael@0 | 2622 | // if we get a zero and the points are horizontal, then we look at the spread in |
michael@0 | 2623 | // x-direction. We really should continue to walk away from the degeneracy until |
michael@0 | 2624 | // there is a divergence. |
michael@0 | 2625 | if (0 == cross && pts[prev].fY == pts[index].fY && pts[next].fY == pts[index].fY) { |
michael@0 | 2626 | // construct the subtract so we get the correct Direction below |
michael@0 | 2627 | cross = pts[index].fX - pts[next].fX; |
michael@0 | 2628 | } |
michael@0 | 2629 | } |
michael@0 | 2630 | |
michael@0 | 2631 | if (cross) { |
michael@0 | 2632 | // record our best guess so far |
michael@0 | 2633 | ymax = pts[index].fY; |
michael@0 | 2634 | ymaxCross = cross; |
michael@0 | 2635 | } |
michael@0 | 2636 | } |
michael@0 | 2637 | if (ymaxCross) { |
michael@0 | 2638 | crossToDir(ymaxCross, dir); |
michael@0 | 2639 | fDirection = *dir; |
michael@0 | 2640 | return true; |
michael@0 | 2641 | } else { |
michael@0 | 2642 | return false; |
michael@0 | 2643 | } |
michael@0 | 2644 | } |
michael@0 | 2645 | |
michael@0 | 2646 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 2647 | |
michael@0 | 2648 | static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C, |
michael@0 | 2649 | SkScalar D, SkScalar t) { |
michael@0 | 2650 | return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); |
michael@0 | 2651 | } |
michael@0 | 2652 | |
michael@0 | 2653 | static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, |
michael@0 | 2654 | SkScalar t) { |
michael@0 | 2655 | SkScalar A = c3 + 3*(c1 - c2) - c0; |
michael@0 | 2656 | SkScalar B = 3*(c2 - c1 - c1 + c0); |
michael@0 | 2657 | SkScalar C = 3*(c1 - c0); |
michael@0 | 2658 | SkScalar D = c0; |
michael@0 | 2659 | return eval_cubic_coeff(A, B, C, D, t); |
michael@0 | 2660 | } |
michael@0 | 2661 | |
michael@0 | 2662 | /* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the |
michael@0 | 2663 | t value such that cubic(t) = target |
michael@0 | 2664 | */ |
michael@0 | 2665 | static void chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, |
michael@0 | 2666 | SkScalar target, SkScalar* t) { |
michael@0 | 2667 | // SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3); |
michael@0 | 2668 | SkASSERT(c0 < target && target < c3); |
michael@0 | 2669 | |
michael@0 | 2670 | SkScalar D = c0 - target; |
michael@0 | 2671 | SkScalar A = c3 + 3*(c1 - c2) - c0; |
michael@0 | 2672 | SkScalar B = 3*(c2 - c1 - c1 + c0); |
michael@0 | 2673 | SkScalar C = 3*(c1 - c0); |
michael@0 | 2674 | |
michael@0 | 2675 | const SkScalar TOLERANCE = SK_Scalar1 / 4096; |
michael@0 | 2676 | SkScalar minT = 0; |
michael@0 | 2677 | SkScalar maxT = SK_Scalar1; |
michael@0 | 2678 | SkScalar mid; |
michael@0 | 2679 | int i; |
michael@0 | 2680 | for (i = 0; i < 16; i++) { |
michael@0 | 2681 | mid = SkScalarAve(minT, maxT); |
michael@0 | 2682 | SkScalar delta = eval_cubic_coeff(A, B, C, D, mid); |
michael@0 | 2683 | if (delta < 0) { |
michael@0 | 2684 | minT = mid; |
michael@0 | 2685 | delta = -delta; |
michael@0 | 2686 | } else { |
michael@0 | 2687 | maxT = mid; |
michael@0 | 2688 | } |
michael@0 | 2689 | if (delta < TOLERANCE) { |
michael@0 | 2690 | break; |
michael@0 | 2691 | } |
michael@0 | 2692 | } |
michael@0 | 2693 | *t = mid; |
michael@0 | 2694 | } |
michael@0 | 2695 | |
michael@0 | 2696 | template <size_t N> static void find_minmax(const SkPoint pts[], |
michael@0 | 2697 | SkScalar* minPtr, SkScalar* maxPtr) { |
michael@0 | 2698 | SkScalar min, max; |
michael@0 | 2699 | min = max = pts[0].fX; |
michael@0 | 2700 | for (size_t i = 1; i < N; ++i) { |
michael@0 | 2701 | min = SkMinScalar(min, pts[i].fX); |
michael@0 | 2702 | max = SkMaxScalar(max, pts[i].fX); |
michael@0 | 2703 | } |
michael@0 | 2704 | *minPtr = min; |
michael@0 | 2705 | *maxPtr = max; |
michael@0 | 2706 | } |
michael@0 | 2707 | |
michael@0 | 2708 | static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y) { |
michael@0 | 2709 | SkPoint storage[4]; |
michael@0 | 2710 | |
michael@0 | 2711 | int dir = 1; |
michael@0 | 2712 | if (pts[0].fY > pts[3].fY) { |
michael@0 | 2713 | storage[0] = pts[3]; |
michael@0 | 2714 | storage[1] = pts[2]; |
michael@0 | 2715 | storage[2] = pts[1]; |
michael@0 | 2716 | storage[3] = pts[0]; |
michael@0 | 2717 | pts = storage; |
michael@0 | 2718 | dir = -1; |
michael@0 | 2719 | } |
michael@0 | 2720 | if (y < pts[0].fY || y >= pts[3].fY) { |
michael@0 | 2721 | return 0; |
michael@0 | 2722 | } |
michael@0 | 2723 | |
michael@0 | 2724 | // quickreject or quickaccept |
michael@0 | 2725 | SkScalar min, max; |
michael@0 | 2726 | find_minmax<4>(pts, &min, &max); |
michael@0 | 2727 | if (x < min) { |
michael@0 | 2728 | return 0; |
michael@0 | 2729 | } |
michael@0 | 2730 | if (x > max) { |
michael@0 | 2731 | return dir; |
michael@0 | 2732 | } |
michael@0 | 2733 | |
michael@0 | 2734 | // compute the actual x(t) value |
michael@0 | 2735 | SkScalar t; |
michael@0 | 2736 | chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, &t); |
michael@0 | 2737 | SkScalar xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t); |
michael@0 | 2738 | return xt < x ? dir : 0; |
michael@0 | 2739 | } |
michael@0 | 2740 | |
michael@0 | 2741 | static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y) { |
michael@0 | 2742 | SkPoint dst[10]; |
michael@0 | 2743 | int n = SkChopCubicAtYExtrema(pts, dst); |
michael@0 | 2744 | int w = 0; |
michael@0 | 2745 | for (int i = 0; i <= n; ++i) { |
michael@0 | 2746 | w += winding_mono_cubic(&dst[i * 3], x, y); |
michael@0 | 2747 | } |
michael@0 | 2748 | return w; |
michael@0 | 2749 | } |
michael@0 | 2750 | |
michael@0 | 2751 | static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) { |
michael@0 | 2752 | SkScalar y0 = pts[0].fY; |
michael@0 | 2753 | SkScalar y2 = pts[2].fY; |
michael@0 | 2754 | |
michael@0 | 2755 | int dir = 1; |
michael@0 | 2756 | if (y0 > y2) { |
michael@0 | 2757 | SkTSwap(y0, y2); |
michael@0 | 2758 | dir = -1; |
michael@0 | 2759 | } |
michael@0 | 2760 | if (y < y0 || y >= y2) { |
michael@0 | 2761 | return 0; |
michael@0 | 2762 | } |
michael@0 | 2763 | |
michael@0 | 2764 | // bounds check on X (not required. is it faster?) |
michael@0 | 2765 | #if 0 |
michael@0 | 2766 | if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) { |
michael@0 | 2767 | return 0; |
michael@0 | 2768 | } |
michael@0 | 2769 | #endif |
michael@0 | 2770 | |
michael@0 | 2771 | SkScalar roots[2]; |
michael@0 | 2772 | int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY, |
michael@0 | 2773 | 2 * (pts[1].fY - pts[0].fY), |
michael@0 | 2774 | pts[0].fY - y, |
michael@0 | 2775 | roots); |
michael@0 | 2776 | SkASSERT(n <= 1); |
michael@0 | 2777 | SkScalar xt; |
michael@0 | 2778 | if (0 == n) { |
michael@0 | 2779 | SkScalar mid = SkScalarAve(y0, y2); |
michael@0 | 2780 | // Need [0] and [2] if dir == 1 |
michael@0 | 2781 | // and [2] and [0] if dir == -1 |
michael@0 | 2782 | xt = y < mid ? pts[1 - dir].fX : pts[dir - 1].fX; |
michael@0 | 2783 | } else { |
michael@0 | 2784 | SkScalar t = roots[0]; |
michael@0 | 2785 | SkScalar C = pts[0].fX; |
michael@0 | 2786 | SkScalar A = pts[2].fX - 2 * pts[1].fX + C; |
michael@0 | 2787 | SkScalar B = 2 * (pts[1].fX - C); |
michael@0 | 2788 | xt = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
michael@0 | 2789 | } |
michael@0 | 2790 | return xt < x ? dir : 0; |
michael@0 | 2791 | } |
michael@0 | 2792 | |
michael@0 | 2793 | static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) { |
michael@0 | 2794 | // return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0; |
michael@0 | 2795 | if (y0 == y1) { |
michael@0 | 2796 | return true; |
michael@0 | 2797 | } |
michael@0 | 2798 | if (y0 < y1) { |
michael@0 | 2799 | return y1 <= y2; |
michael@0 | 2800 | } else { |
michael@0 | 2801 | return y1 >= y2; |
michael@0 | 2802 | } |
michael@0 | 2803 | } |
michael@0 | 2804 | |
michael@0 | 2805 | static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y) { |
michael@0 | 2806 | SkPoint dst[5]; |
michael@0 | 2807 | int n = 0; |
michael@0 | 2808 | |
michael@0 | 2809 | if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) { |
michael@0 | 2810 | n = SkChopQuadAtYExtrema(pts, dst); |
michael@0 | 2811 | pts = dst; |
michael@0 | 2812 | } |
michael@0 | 2813 | int w = winding_mono_quad(pts, x, y); |
michael@0 | 2814 | if (n > 0) { |
michael@0 | 2815 | w += winding_mono_quad(&pts[2], x, y); |
michael@0 | 2816 | } |
michael@0 | 2817 | return w; |
michael@0 | 2818 | } |
michael@0 | 2819 | |
michael@0 | 2820 | static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y) { |
michael@0 | 2821 | SkScalar x0 = pts[0].fX; |
michael@0 | 2822 | SkScalar y0 = pts[0].fY; |
michael@0 | 2823 | SkScalar x1 = pts[1].fX; |
michael@0 | 2824 | SkScalar y1 = pts[1].fY; |
michael@0 | 2825 | |
michael@0 | 2826 | SkScalar dy = y1 - y0; |
michael@0 | 2827 | |
michael@0 | 2828 | int dir = 1; |
michael@0 | 2829 | if (y0 > y1) { |
michael@0 | 2830 | SkTSwap(y0, y1); |
michael@0 | 2831 | dir = -1; |
michael@0 | 2832 | } |
michael@0 | 2833 | if (y < y0 || y >= y1) { |
michael@0 | 2834 | return 0; |
michael@0 | 2835 | } |
michael@0 | 2836 | |
michael@0 | 2837 | SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) - |
michael@0 | 2838 | SkScalarMul(dy, x - pts[0].fX); |
michael@0 | 2839 | |
michael@0 | 2840 | if (SkScalarSignAsInt(cross) == dir) { |
michael@0 | 2841 | dir = 0; |
michael@0 | 2842 | } |
michael@0 | 2843 | return dir; |
michael@0 | 2844 | } |
michael@0 | 2845 | |
michael@0 | 2846 | static bool contains_inclusive(const SkRect& r, SkScalar x, SkScalar y) { |
michael@0 | 2847 | return r.fLeft <= x && x <= r.fRight && r.fTop <= y && y <= r.fBottom; |
michael@0 | 2848 | } |
michael@0 | 2849 | |
michael@0 | 2850 | bool SkPath::contains(SkScalar x, SkScalar y) const { |
michael@0 | 2851 | bool isInverse = this->isInverseFillType(); |
michael@0 | 2852 | if (this->isEmpty()) { |
michael@0 | 2853 | return isInverse; |
michael@0 | 2854 | } |
michael@0 | 2855 | |
michael@0 | 2856 | if (!contains_inclusive(this->getBounds(), x, y)) { |
michael@0 | 2857 | return isInverse; |
michael@0 | 2858 | } |
michael@0 | 2859 | |
michael@0 | 2860 | SkPath::Iter iter(*this, true); |
michael@0 | 2861 | bool done = false; |
michael@0 | 2862 | int w = 0; |
michael@0 | 2863 | do { |
michael@0 | 2864 | SkPoint pts[4]; |
michael@0 | 2865 | switch (iter.next(pts, false)) { |
michael@0 | 2866 | case SkPath::kMove_Verb: |
michael@0 | 2867 | case SkPath::kClose_Verb: |
michael@0 | 2868 | break; |
michael@0 | 2869 | case SkPath::kLine_Verb: |
michael@0 | 2870 | w += winding_line(pts, x, y); |
michael@0 | 2871 | break; |
michael@0 | 2872 | case SkPath::kQuad_Verb: |
michael@0 | 2873 | w += winding_quad(pts, x, y); |
michael@0 | 2874 | break; |
michael@0 | 2875 | case SkPath::kConic_Verb: |
michael@0 | 2876 | SkASSERT(0); |
michael@0 | 2877 | break; |
michael@0 | 2878 | case SkPath::kCubic_Verb: |
michael@0 | 2879 | w += winding_cubic(pts, x, y); |
michael@0 | 2880 | break; |
michael@0 | 2881 | case SkPath::kDone_Verb: |
michael@0 | 2882 | done = true; |
michael@0 | 2883 | break; |
michael@0 | 2884 | } |
michael@0 | 2885 | } while (!done); |
michael@0 | 2886 | |
michael@0 | 2887 | switch (this->getFillType()) { |
michael@0 | 2888 | case SkPath::kEvenOdd_FillType: |
michael@0 | 2889 | case SkPath::kInverseEvenOdd_FillType: |
michael@0 | 2890 | w &= 1; |
michael@0 | 2891 | break; |
michael@0 | 2892 | default: |
michael@0 | 2893 | break; |
michael@0 | 2894 | } |
michael@0 | 2895 | return SkToBool(w); |
michael@0 | 2896 | } |