gfx/skia/trunk/src/core/SkScan_AntiPath.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1
michael@0 2 /*
michael@0 3 * Copyright 2006 The Android Open Source Project
michael@0 4 *
michael@0 5 * Use of this source code is governed by a BSD-style license that can be
michael@0 6 * found in the LICENSE file.
michael@0 7 */
michael@0 8
michael@0 9
michael@0 10 #include "SkScanPriv.h"
michael@0 11 #include "SkPath.h"
michael@0 12 #include "SkMatrix.h"
michael@0 13 #include "SkBlitter.h"
michael@0 14 #include "SkRegion.h"
michael@0 15 #include "SkAntiRun.h"
michael@0 16
michael@0 17 #define SHIFT 2
michael@0 18 #define SCALE (1 << SHIFT)
michael@0 19 #define MASK (SCALE - 1)
michael@0 20
michael@0 21 /** @file
michael@0 22 We have two techniques for capturing the output of the supersampler:
michael@0 23 - SUPERMASK, which records a large mask-bitmap
michael@0 24 this is often faster for small, complex objects
michael@0 25 - RLE, which records a rle-encoded scanline
michael@0 26 this is often faster for large objects with big spans
michael@0 27
michael@0 28 These blitters use two coordinate systems:
michael@0 29 - destination coordinates, scale equal to the output - often
michael@0 30 abbreviated with 'i' or 'I' in variable names
michael@0 31 - supersampled coordinates, scale equal to the output * SCALE
michael@0 32
michael@0 33 Enabling SK_USE_LEGACY_AA_COVERAGE keeps the aa coverage calculations as
michael@0 34 they were before the fix that unified the output of the RLE and MASK
michael@0 35 supersamplers.
michael@0 36 */
michael@0 37
michael@0 38 //#define FORCE_SUPERMASK
michael@0 39 //#define FORCE_RLE
michael@0 40 //#define SK_USE_LEGACY_AA_COVERAGE
michael@0 41
michael@0 42 ///////////////////////////////////////////////////////////////////////////////
michael@0 43
michael@0 44 /// Base class for a single-pass supersampled blitter.
michael@0 45 class BaseSuperBlitter : public SkBlitter {
michael@0 46 public:
michael@0 47 BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
michael@0 48 const SkRegion& clip);
michael@0 49
michael@0 50 /// Must be explicitly defined on subclasses.
michael@0 51 virtual void blitAntiH(int x, int y, const SkAlpha antialias[],
michael@0 52 const int16_t runs[]) SK_OVERRIDE {
michael@0 53 SkDEBUGFAIL("How did I get here?");
michael@0 54 }
michael@0 55 /// May not be called on BaseSuperBlitter because it blits out of order.
michael@0 56 virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
michael@0 57 SkDEBUGFAIL("How did I get here?");
michael@0 58 }
michael@0 59
michael@0 60 protected:
michael@0 61 SkBlitter* fRealBlitter;
michael@0 62 /// Current y coordinate, in destination coordinates.
michael@0 63 int fCurrIY;
michael@0 64 /// Widest row of region to be blitted, in destination coordinates.
michael@0 65 int fWidth;
michael@0 66 /// Leftmost x coordinate in any row, in destination coordinates.
michael@0 67 int fLeft;
michael@0 68 /// Leftmost x coordinate in any row, in supersampled coordinates.
michael@0 69 int fSuperLeft;
michael@0 70
michael@0 71 SkDEBUGCODE(int fCurrX;)
michael@0 72 /// Current y coordinate in supersampled coordinates.
michael@0 73 int fCurrY;
michael@0 74 /// Initial y coordinate (top of bounds).
michael@0 75 int fTop;
michael@0 76 };
michael@0 77
michael@0 78 BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
michael@0 79 const SkRegion& clip) {
michael@0 80 fRealBlitter = realBlitter;
michael@0 81
michael@0 82 /*
michael@0 83 * We use the clip bounds instead of the ir, since we may be asked to
michael@0 84 * draw outside of the rect if we're a inverse filltype
michael@0 85 */
michael@0 86 const int left = clip.getBounds().fLeft;
michael@0 87 const int right = clip.getBounds().fRight;
michael@0 88
michael@0 89 fLeft = left;
michael@0 90 fSuperLeft = left << SHIFT;
michael@0 91 fWidth = right - left;
michael@0 92 #if 0
michael@0 93 fCurrIY = -1;
michael@0 94 fCurrY = -1;
michael@0 95 #else
michael@0 96 fTop = ir.fTop;
michael@0 97 fCurrIY = ir.fTop - 1;
michael@0 98 fCurrY = (ir.fTop << SHIFT) - 1;
michael@0 99 #endif
michael@0 100 SkDEBUGCODE(fCurrX = -1;)
michael@0 101 }
michael@0 102
michael@0 103 /// Run-length-encoded supersampling antialiased blitter.
michael@0 104 class SuperBlitter : public BaseSuperBlitter {
michael@0 105 public:
michael@0 106 SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
michael@0 107 const SkRegion& clip);
michael@0 108
michael@0 109 virtual ~SuperBlitter() {
michael@0 110 this->flush();
michael@0 111 sk_free(fRuns.fRuns);
michael@0 112 }
michael@0 113
michael@0 114 /// Once fRuns contains a complete supersampled row, flush() blits
michael@0 115 /// it out through the wrapped blitter.
michael@0 116 void flush();
michael@0 117
michael@0 118 /// Blits a row of pixels, with location and width specified
michael@0 119 /// in supersampled coordinates.
michael@0 120 virtual void blitH(int x, int y, int width) SK_OVERRIDE;
michael@0 121 /// Blits a rectangle of pixels, with location and size specified
michael@0 122 /// in supersampled coordinates.
michael@0 123 virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE;
michael@0 124
michael@0 125 private:
michael@0 126 SkAlphaRuns fRuns;
michael@0 127 int fOffsetX;
michael@0 128 };
michael@0 129
michael@0 130 SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
michael@0 131 const SkRegion& clip)
michael@0 132 : BaseSuperBlitter(realBlitter, ir, clip) {
michael@0 133 const int width = fWidth;
michael@0 134
michael@0 135 // extra one to store the zero at the end
michael@0 136 fRuns.fRuns = (int16_t*)sk_malloc_throw((width + 1 + (width + 2)/2) * sizeof(int16_t));
michael@0 137 fRuns.fAlpha = (uint8_t*)(fRuns.fRuns + width + 1);
michael@0 138 fRuns.reset(width);
michael@0 139
michael@0 140 fOffsetX = 0;
michael@0 141 }
michael@0 142
michael@0 143 void SuperBlitter::flush() {
michael@0 144 if (fCurrIY >= fTop) {
michael@0 145 if (!fRuns.empty()) {
michael@0 146 // SkDEBUGCODE(fRuns.dump();)
michael@0 147 fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns);
michael@0 148 fRuns.reset(fWidth);
michael@0 149 fOffsetX = 0;
michael@0 150 }
michael@0 151 fCurrIY = fTop - 1;
michael@0 152 SkDEBUGCODE(fCurrX = -1;)
michael@0 153 }
michael@0 154 }
michael@0 155
michael@0 156 /** coverage_to_partial_alpha() is being used by SkAlphaRuns, which
michael@0 157 *accumulates* SCALE pixels worth of "alpha" in [0,(256/SCALE)]
michael@0 158 to produce a final value in [0, 255] and handles clamping 256->255
michael@0 159 itself, with the same (alpha - (alpha >> 8)) correction as
michael@0 160 coverage_to_exact_alpha().
michael@0 161 */
michael@0 162 static inline int coverage_to_partial_alpha(int aa) {
michael@0 163 aa <<= 8 - 2*SHIFT;
michael@0 164 #ifdef SK_USE_LEGACY_AA_COVERAGE
michael@0 165 aa -= aa >> (8 - SHIFT - 1);
michael@0 166 #endif
michael@0 167 return aa;
michael@0 168 }
michael@0 169
michael@0 170 /** coverage_to_exact_alpha() is being used by our blitter, which wants
michael@0 171 a final value in [0, 255].
michael@0 172 */
michael@0 173 static inline int coverage_to_exact_alpha(int aa) {
michael@0 174 int alpha = (256 >> SHIFT) * aa;
michael@0 175 // clamp 256->255
michael@0 176 return alpha - (alpha >> 8);
michael@0 177 }
michael@0 178
michael@0 179 void SuperBlitter::blitH(int x, int y, int width) {
michael@0 180 SkASSERT(width > 0);
michael@0 181
michael@0 182 int iy = y >> SHIFT;
michael@0 183 SkASSERT(iy >= fCurrIY);
michael@0 184
michael@0 185 x -= fSuperLeft;
michael@0 186 // hack, until I figure out why my cubics (I think) go beyond the bounds
michael@0 187 if (x < 0) {
michael@0 188 width += x;
michael@0 189 x = 0;
michael@0 190 }
michael@0 191
michael@0 192 #ifdef SK_DEBUG
michael@0 193 SkASSERT(y != fCurrY || x >= fCurrX);
michael@0 194 #endif
michael@0 195 SkASSERT(y >= fCurrY);
michael@0 196 if (fCurrY != y) {
michael@0 197 fOffsetX = 0;
michael@0 198 fCurrY = y;
michael@0 199 }
michael@0 200
michael@0 201 if (iy != fCurrIY) { // new scanline
michael@0 202 this->flush();
michael@0 203 fCurrIY = iy;
michael@0 204 }
michael@0 205
michael@0 206 int start = x;
michael@0 207 int stop = x + width;
michael@0 208
michael@0 209 SkASSERT(start >= 0 && stop > start);
michael@0 210 // integer-pixel-aligned ends of blit, rounded out
michael@0 211 int fb = start & MASK;
michael@0 212 int fe = stop & MASK;
michael@0 213 int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
michael@0 214
michael@0 215 if (n < 0) {
michael@0 216 fb = fe - fb;
michael@0 217 n = 0;
michael@0 218 fe = 0;
michael@0 219 } else {
michael@0 220 if (fb == 0) {
michael@0 221 n += 1;
michael@0 222 } else {
michael@0 223 fb = SCALE - fb;
michael@0 224 }
michael@0 225 }
michael@0 226
michael@0 227 fOffsetX = fRuns.add(x >> SHIFT, coverage_to_partial_alpha(fb),
michael@0 228 n, coverage_to_partial_alpha(fe),
michael@0 229 (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT),
michael@0 230 fOffsetX);
michael@0 231
michael@0 232 #ifdef SK_DEBUG
michael@0 233 fRuns.assertValid(y & MASK, (1 << (8 - SHIFT)));
michael@0 234 fCurrX = x + width;
michael@0 235 #endif
michael@0 236 }
michael@0 237
michael@0 238 #if 0 // UNUSED
michael@0 239 static void set_left_rite_runs(SkAlphaRuns& runs, int ileft, U8CPU leftA,
michael@0 240 int n, U8CPU riteA) {
michael@0 241 SkASSERT(leftA <= 0xFF);
michael@0 242 SkASSERT(riteA <= 0xFF);
michael@0 243
michael@0 244 int16_t* run = runs.fRuns;
michael@0 245 uint8_t* aa = runs.fAlpha;
michael@0 246
michael@0 247 if (ileft > 0) {
michael@0 248 run[0] = ileft;
michael@0 249 aa[0] = 0;
michael@0 250 run += ileft;
michael@0 251 aa += ileft;
michael@0 252 }
michael@0 253
michael@0 254 SkASSERT(leftA < 0xFF);
michael@0 255 if (leftA > 0) {
michael@0 256 *run++ = 1;
michael@0 257 *aa++ = leftA;
michael@0 258 }
michael@0 259
michael@0 260 if (n > 0) {
michael@0 261 run[0] = n;
michael@0 262 aa[0] = 0xFF;
michael@0 263 run += n;
michael@0 264 aa += n;
michael@0 265 }
michael@0 266
michael@0 267 SkASSERT(riteA < 0xFF);
michael@0 268 if (riteA > 0) {
michael@0 269 *run++ = 1;
michael@0 270 *aa++ = riteA;
michael@0 271 }
michael@0 272 run[0] = 0;
michael@0 273 }
michael@0 274 #endif
michael@0 275
michael@0 276 void SuperBlitter::blitRect(int x, int y, int width, int height) {
michael@0 277 SkASSERT(width > 0);
michael@0 278 SkASSERT(height > 0);
michael@0 279
michael@0 280 // blit leading rows
michael@0 281 while ((y & MASK)) {
michael@0 282 this->blitH(x, y++, width);
michael@0 283 if (--height <= 0) {
michael@0 284 return;
michael@0 285 }
michael@0 286 }
michael@0 287 SkASSERT(height > 0);
michael@0 288
michael@0 289 // Since this is a rect, instead of blitting supersampled rows one at a
michael@0 290 // time and then resolving to the destination canvas, we can blit
michael@0 291 // directly to the destintion canvas one row per SCALE supersampled rows.
michael@0 292 int start_y = y >> SHIFT;
michael@0 293 int stop_y = (y + height) >> SHIFT;
michael@0 294 int count = stop_y - start_y;
michael@0 295 if (count > 0) {
michael@0 296 y += count << SHIFT;
michael@0 297 height -= count << SHIFT;
michael@0 298
michael@0 299 // save original X for our tail blitH() loop at the bottom
michael@0 300 int origX = x;
michael@0 301
michael@0 302 x -= fSuperLeft;
michael@0 303 // hack, until I figure out why my cubics (I think) go beyond the bounds
michael@0 304 if (x < 0) {
michael@0 305 width += x;
michael@0 306 x = 0;
michael@0 307 }
michael@0 308
michael@0 309 // There is always a left column, a middle, and a right column.
michael@0 310 // ileft is the destination x of the first pixel of the entire rect.
michael@0 311 // xleft is (SCALE - # of covered supersampled pixels) in that
michael@0 312 // destination pixel.
michael@0 313 int ileft = x >> SHIFT;
michael@0 314 int xleft = x & MASK;
michael@0 315 // irite is the destination x of the last pixel of the OPAQUE section.
michael@0 316 // xrite is the number of supersampled pixels extending beyond irite;
michael@0 317 // xrite/SCALE should give us alpha.
michael@0 318 int irite = (x + width) >> SHIFT;
michael@0 319 int xrite = (x + width) & MASK;
michael@0 320 if (!xrite) {
michael@0 321 xrite = SCALE;
michael@0 322 irite--;
michael@0 323 }
michael@0 324
michael@0 325 // Need to call flush() to clean up pending draws before we
michael@0 326 // even consider blitV(), since otherwise it can look nonmonotonic.
michael@0 327 SkASSERT(start_y > fCurrIY);
michael@0 328 this->flush();
michael@0 329
michael@0 330 int n = irite - ileft - 1;
michael@0 331 if (n < 0) {
michael@0 332 // If n < 0, we'll only have a single partially-transparent column
michael@0 333 // of pixels to render.
michael@0 334 xleft = xrite - xleft;
michael@0 335 SkASSERT(xleft <= SCALE);
michael@0 336 SkASSERT(xleft > 0);
michael@0 337 xrite = 0;
michael@0 338 fRealBlitter->blitV(ileft + fLeft, start_y, count,
michael@0 339 coverage_to_exact_alpha(xleft));
michael@0 340 } else {
michael@0 341 // With n = 0, we have two possibly-transparent columns of pixels
michael@0 342 // to render; with n > 0, we have opaque columns between them.
michael@0 343
michael@0 344 xleft = SCALE - xleft;
michael@0 345
michael@0 346 // Using coverage_to_exact_alpha is not consistent with blitH()
michael@0 347 const int coverageL = coverage_to_exact_alpha(xleft);
michael@0 348 const int coverageR = coverage_to_exact_alpha(xrite);
michael@0 349
michael@0 350 SkASSERT(coverageL > 0 || n > 0 || coverageR > 0);
michael@0 351 SkASSERT((coverageL != 0) + n + (coverageR != 0) <= fWidth);
michael@0 352
michael@0 353 fRealBlitter->blitAntiRect(ileft + fLeft, start_y, n, count,
michael@0 354 coverageL, coverageR);
michael@0 355 }
michael@0 356
michael@0 357 // preamble for our next call to blitH()
michael@0 358 fCurrIY = stop_y - 1;
michael@0 359 fOffsetX = 0;
michael@0 360 fCurrY = y - 1;
michael@0 361 fRuns.reset(fWidth);
michael@0 362 x = origX;
michael@0 363 }
michael@0 364
michael@0 365 // catch any remaining few rows
michael@0 366 SkASSERT(height <= MASK);
michael@0 367 while (--height >= 0) {
michael@0 368 this->blitH(x, y++, width);
michael@0 369 }
michael@0 370 }
michael@0 371
michael@0 372 ///////////////////////////////////////////////////////////////////////////////
michael@0 373
michael@0 374 /// Masked supersampling antialiased blitter.
michael@0 375 class MaskSuperBlitter : public BaseSuperBlitter {
michael@0 376 public:
michael@0 377 MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
michael@0 378 const SkRegion& clip);
michael@0 379 virtual ~MaskSuperBlitter() {
michael@0 380 fRealBlitter->blitMask(fMask, fClipRect);
michael@0 381 }
michael@0 382
michael@0 383 virtual void blitH(int x, int y, int width) SK_OVERRIDE;
michael@0 384
michael@0 385 static bool CanHandleRect(const SkIRect& bounds) {
michael@0 386 #ifdef FORCE_RLE
michael@0 387 return false;
michael@0 388 #endif
michael@0 389 int width = bounds.width();
michael@0 390 int64_t rb = SkAlign4(width);
michael@0 391 // use 64bits to detect overflow
michael@0 392 int64_t storage = rb * bounds.height();
michael@0 393
michael@0 394 return (width <= MaskSuperBlitter::kMAX_WIDTH) &&
michael@0 395 (storage <= MaskSuperBlitter::kMAX_STORAGE);
michael@0 396 }
michael@0 397
michael@0 398 private:
michael@0 399 enum {
michael@0 400 #ifdef FORCE_SUPERMASK
michael@0 401 kMAX_WIDTH = 2048,
michael@0 402 kMAX_STORAGE = 1024 * 1024 * 2
michael@0 403 #else
michael@0 404 kMAX_WIDTH = 32, // so we don't try to do very wide things, where the RLE blitter would be faster
michael@0 405 kMAX_STORAGE = 1024
michael@0 406 #endif
michael@0 407 };
michael@0 408
michael@0 409 SkMask fMask;
michael@0 410 SkIRect fClipRect;
michael@0 411 // we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than
michael@0 412 // perform a test to see if stopAlpha != 0
michael@0 413 uint32_t fStorage[(kMAX_STORAGE >> 2) + 1];
michael@0 414 };
michael@0 415
michael@0 416 MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
michael@0 417 const SkRegion& clip)
michael@0 418 : BaseSuperBlitter(realBlitter, ir, clip) {
michael@0 419 SkASSERT(CanHandleRect(ir));
michael@0 420
michael@0 421 fMask.fImage = (uint8_t*)fStorage;
michael@0 422 fMask.fBounds = ir;
michael@0 423 fMask.fRowBytes = ir.width();
michael@0 424 fMask.fFormat = SkMask::kA8_Format;
michael@0 425
michael@0 426 fClipRect = ir;
michael@0 427 fClipRect.intersect(clip.getBounds());
michael@0 428
michael@0 429 // For valgrind, write 1 extra byte at the end so we don't read
michael@0 430 // uninitialized memory. See comment in add_aa_span and fStorage[].
michael@0 431 memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1);
michael@0 432 }
michael@0 433
michael@0 434 static void add_aa_span(uint8_t* alpha, U8CPU startAlpha) {
michael@0 435 /* I should be able to just add alpha[x] + startAlpha.
michael@0 436 However, if the trailing edge of the previous span and the leading
michael@0 437 edge of the current span round to the same super-sampled x value,
michael@0 438 I might overflow to 256 with this add, hence the funny subtract.
michael@0 439 */
michael@0 440 unsigned tmp = *alpha + startAlpha;
michael@0 441 SkASSERT(tmp <= 256);
michael@0 442 *alpha = SkToU8(tmp - (tmp >> 8));
michael@0 443 }
michael@0 444
michael@0 445 static inline uint32_t quadplicate_byte(U8CPU value) {
michael@0 446 uint32_t pair = (value << 8) | value;
michael@0 447 return (pair << 16) | pair;
michael@0 448 }
michael@0 449
michael@0 450 // Perform this tricky subtract, to avoid overflowing to 256. Our caller should
michael@0 451 // only ever call us with at most enough to hit 256 (never larger), so it is
michael@0 452 // enough to just subtract the high-bit. Actually clamping with a branch would
michael@0 453 // be slower (e.g. if (tmp > 255) tmp = 255;)
michael@0 454 //
michael@0 455 static inline void saturated_add(uint8_t* ptr, U8CPU add) {
michael@0 456 unsigned tmp = *ptr + add;
michael@0 457 SkASSERT(tmp <= 256);
michael@0 458 *ptr = SkToU8(tmp - (tmp >> 8));
michael@0 459 }
michael@0 460
michael@0 461 // minimum count before we want to setup an inner loop, adding 4-at-a-time
michael@0 462 #define MIN_COUNT_FOR_QUAD_LOOP 16
michael@0 463
michael@0 464 static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount,
michael@0 465 U8CPU stopAlpha, U8CPU maxValue) {
michael@0 466 SkASSERT(middleCount >= 0);
michael@0 467
michael@0 468 saturated_add(alpha, startAlpha);
michael@0 469 alpha += 1;
michael@0 470
michael@0 471 if (middleCount >= MIN_COUNT_FOR_QUAD_LOOP) {
michael@0 472 // loop until we're quad-byte aligned
michael@0 473 while (SkTCast<intptr_t>(alpha) & 0x3) {
michael@0 474 alpha[0] = SkToU8(alpha[0] + maxValue);
michael@0 475 alpha += 1;
michael@0 476 middleCount -= 1;
michael@0 477 }
michael@0 478
michael@0 479 int bigCount = middleCount >> 2;
michael@0 480 uint32_t* qptr = reinterpret_cast<uint32_t*>(alpha);
michael@0 481 uint32_t qval = quadplicate_byte(maxValue);
michael@0 482 do {
michael@0 483 *qptr++ += qval;
michael@0 484 } while (--bigCount > 0);
michael@0 485
michael@0 486 middleCount &= 3;
michael@0 487 alpha = reinterpret_cast<uint8_t*> (qptr);
michael@0 488 // fall through to the following while-loop
michael@0 489 }
michael@0 490
michael@0 491 while (--middleCount >= 0) {
michael@0 492 alpha[0] = SkToU8(alpha[0] + maxValue);
michael@0 493 alpha += 1;
michael@0 494 }
michael@0 495
michael@0 496 // potentially this can be off the end of our "legal" alpha values, but that
michael@0 497 // only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0
michael@0 498 // every time (slow), we just do it, and ensure that we've allocated extra space
michael@0 499 // (see the + 1 comment in fStorage[]
michael@0 500 saturated_add(alpha, stopAlpha);
michael@0 501 }
michael@0 502
michael@0 503 void MaskSuperBlitter::blitH(int x, int y, int width) {
michael@0 504 int iy = (y >> SHIFT);
michael@0 505
michael@0 506 SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom);
michael@0 507 iy -= fMask.fBounds.fTop; // make it relative to 0
michael@0 508
michael@0 509 // This should never happen, but it does. Until the true cause is
michael@0 510 // discovered, let's skip this span instead of crashing.
michael@0 511 // See http://crbug.com/17569.
michael@0 512 if (iy < 0) {
michael@0 513 return;
michael@0 514 }
michael@0 515
michael@0 516 #ifdef SK_DEBUG
michael@0 517 {
michael@0 518 int ix = x >> SHIFT;
michael@0 519 SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight);
michael@0 520 }
michael@0 521 #endif
michael@0 522
michael@0 523 x -= (fMask.fBounds.fLeft << SHIFT);
michael@0 524
michael@0 525 // hack, until I figure out why my cubics (I think) go beyond the bounds
michael@0 526 if (x < 0) {
michael@0 527 width += x;
michael@0 528 x = 0;
michael@0 529 }
michael@0 530
michael@0 531 uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT);
michael@0 532
michael@0 533 int start = x;
michael@0 534 int stop = x + width;
michael@0 535
michael@0 536 SkASSERT(start >= 0 && stop > start);
michael@0 537 int fb = start & MASK;
michael@0 538 int fe = stop & MASK;
michael@0 539 int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
michael@0 540
michael@0 541
michael@0 542 if (n < 0) {
michael@0 543 SkASSERT(row >= fMask.fImage);
michael@0 544 SkASSERT(row < fMask.fImage + kMAX_STORAGE + 1);
michael@0 545 add_aa_span(row, coverage_to_partial_alpha(fe - fb));
michael@0 546 } else {
michael@0 547 fb = SCALE - fb;
michael@0 548 SkASSERT(row >= fMask.fImage);
michael@0 549 SkASSERT(row + n + 1 < fMask.fImage + kMAX_STORAGE + 1);
michael@0 550 add_aa_span(row, coverage_to_partial_alpha(fb),
michael@0 551 n, coverage_to_partial_alpha(fe),
michael@0 552 (1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
michael@0 553 }
michael@0 554
michael@0 555 #ifdef SK_DEBUG
michael@0 556 fCurrX = x + width;
michael@0 557 #endif
michael@0 558 }
michael@0 559
michael@0 560 ///////////////////////////////////////////////////////////////////////////////
michael@0 561
michael@0 562 static bool fitsInsideLimit(const SkRect& r, SkScalar max) {
michael@0 563 const SkScalar min = -max;
michael@0 564 return r.fLeft > min && r.fTop > min &&
michael@0 565 r.fRight < max && r.fBottom < max;
michael@0 566 }
michael@0 567
michael@0 568 static int overflows_short_shift(int value, int shift) {
michael@0 569 const int s = 16 + shift;
michael@0 570 return (value << s >> s) - value;
michael@0 571 }
michael@0 572
michael@0 573 /**
michael@0 574 Would any of the coordinates of this rectangle not fit in a short,
michael@0 575 when left-shifted by shift?
michael@0 576 */
michael@0 577 static int rect_overflows_short_shift(SkIRect rect, int shift) {
michael@0 578 SkASSERT(!overflows_short_shift(8191, SHIFT));
michael@0 579 SkASSERT(overflows_short_shift(8192, SHIFT));
michael@0 580 SkASSERT(!overflows_short_shift(32767, 0));
michael@0 581 SkASSERT(overflows_short_shift(32768, 0));
michael@0 582
michael@0 583 // Since we expect these to succeed, we bit-or together
michael@0 584 // for a tiny extra bit of speed.
michael@0 585 return overflows_short_shift(rect.fLeft, SHIFT) |
michael@0 586 overflows_short_shift(rect.fRight, SHIFT) |
michael@0 587 overflows_short_shift(rect.fTop, SHIFT) |
michael@0 588 overflows_short_shift(rect.fBottom, SHIFT);
michael@0 589 }
michael@0 590
michael@0 591 static bool safeRoundOut(const SkRect& src, SkIRect* dst, int32_t maxInt) {
michael@0 592 const SkScalar maxScalar = SkIntToScalar(maxInt);
michael@0 593
michael@0 594 if (fitsInsideLimit(src, maxScalar)) {
michael@0 595 src.roundOut(dst);
michael@0 596 return true;
michael@0 597 }
michael@0 598 return false;
michael@0 599 }
michael@0 600
michael@0 601 void SkScan::AntiFillPath(const SkPath& path, const SkRegion& origClip,
michael@0 602 SkBlitter* blitter, bool forceRLE) {
michael@0 603 if (origClip.isEmpty()) {
michael@0 604 return;
michael@0 605 }
michael@0 606
michael@0 607 SkIRect ir;
michael@0 608
michael@0 609 if (!safeRoundOut(path.getBounds(), &ir, SK_MaxS32 >> SHIFT)) {
michael@0 610 #if 0
michael@0 611 const SkRect& r = path.getBounds();
michael@0 612 SkDebugf("--- bounds can't fit in SkIRect\n", r.fLeft, r.fTop, r.fRight, r.fBottom);
michael@0 613 #endif
michael@0 614 return;
michael@0 615 }
michael@0 616 if (ir.isEmpty()) {
michael@0 617 if (path.isInverseFillType()) {
michael@0 618 blitter->blitRegion(origClip);
michael@0 619 }
michael@0 620 return;
michael@0 621 }
michael@0 622
michael@0 623 // If the intersection of the path bounds and the clip bounds
michael@0 624 // will overflow 32767 when << by SHIFT, we can't supersample,
michael@0 625 // so draw without antialiasing.
michael@0 626 SkIRect clippedIR;
michael@0 627 if (path.isInverseFillType()) {
michael@0 628 // If the path is an inverse fill, it's going to fill the entire
michael@0 629 // clip, and we care whether the entire clip exceeds our limits.
michael@0 630 clippedIR = origClip.getBounds();
michael@0 631 } else {
michael@0 632 if (!clippedIR.intersect(ir, origClip.getBounds())) {
michael@0 633 return;
michael@0 634 }
michael@0 635 }
michael@0 636 if (rect_overflows_short_shift(clippedIR, SHIFT)) {
michael@0 637 SkScan::FillPath(path, origClip, blitter);
michael@0 638 return;
michael@0 639 }
michael@0 640
michael@0 641 // Our antialiasing can't handle a clip larger than 32767, so we restrict
michael@0 642 // the clip to that limit here. (the runs[] uses int16_t for its index).
michael@0 643 //
michael@0 644 // A more general solution (one that could also eliminate the need to
michael@0 645 // disable aa based on ir bounds (see overflows_short_shift) would be
michael@0 646 // to tile the clip/target...
michael@0 647 SkRegion tmpClipStorage;
michael@0 648 const SkRegion* clipRgn = &origClip;
michael@0 649 {
michael@0 650 static const int32_t kMaxClipCoord = 32767;
michael@0 651 const SkIRect& bounds = origClip.getBounds();
michael@0 652 if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
michael@0 653 SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
michael@0 654 tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
michael@0 655 clipRgn = &tmpClipStorage;
michael@0 656 }
michael@0 657 }
michael@0 658 // for here down, use clipRgn, not origClip
michael@0 659
michael@0 660 SkScanClipper clipper(blitter, clipRgn, ir);
michael@0 661 const SkIRect* clipRect = clipper.getClipRect();
michael@0 662
michael@0 663 if (clipper.getBlitter() == NULL) { // clipped out
michael@0 664 if (path.isInverseFillType()) {
michael@0 665 blitter->blitRegion(*clipRgn);
michael@0 666 }
michael@0 667 return;
michael@0 668 }
michael@0 669
michael@0 670 // now use the (possibly wrapped) blitter
michael@0 671 blitter = clipper.getBlitter();
michael@0 672
michael@0 673 if (path.isInverseFillType()) {
michael@0 674 sk_blit_above(blitter, ir, *clipRgn);
michael@0 675 }
michael@0 676
michael@0 677 SkIRect superRect, *superClipRect = NULL;
michael@0 678
michael@0 679 if (clipRect) {
michael@0 680 superRect.set( clipRect->fLeft << SHIFT, clipRect->fTop << SHIFT,
michael@0 681 clipRect->fRight << SHIFT, clipRect->fBottom << SHIFT);
michael@0 682 superClipRect = &superRect;
michael@0 683 }
michael@0 684
michael@0 685 SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
michael@0 686
michael@0 687 // MaskSuperBlitter can't handle drawing outside of ir, so we can't use it
michael@0 688 // if we're an inverse filltype
michael@0 689 if (!path.isInverseFillType() && MaskSuperBlitter::CanHandleRect(ir) && !forceRLE) {
michael@0 690 MaskSuperBlitter superBlit(blitter, ir, *clipRgn);
michael@0 691 SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
michael@0 692 sk_fill_path(path, superClipRect, &superBlit, ir.fTop, ir.fBottom, SHIFT, *clipRgn);
michael@0 693 } else {
michael@0 694 SuperBlitter superBlit(blitter, ir, *clipRgn);
michael@0 695 sk_fill_path(path, superClipRect, &superBlit, ir.fTop, ir.fBottom, SHIFT, *clipRgn);
michael@0 696 }
michael@0 697
michael@0 698 if (path.isInverseFillType()) {
michael@0 699 sk_blit_below(blitter, ir, *clipRgn);
michael@0 700 }
michael@0 701 }
michael@0 702
michael@0 703 ///////////////////////////////////////////////////////////////////////////////
michael@0 704
michael@0 705 #include "SkRasterClip.h"
michael@0 706
michael@0 707 void SkScan::FillPath(const SkPath& path, const SkRasterClip& clip,
michael@0 708 SkBlitter* blitter) {
michael@0 709 if (clip.isEmpty()) {
michael@0 710 return;
michael@0 711 }
michael@0 712
michael@0 713 if (clip.isBW()) {
michael@0 714 FillPath(path, clip.bwRgn(), blitter);
michael@0 715 } else {
michael@0 716 SkRegion tmp;
michael@0 717 SkAAClipBlitter aaBlitter;
michael@0 718
michael@0 719 tmp.setRect(clip.getBounds());
michael@0 720 aaBlitter.init(blitter, &clip.aaRgn());
michael@0 721 SkScan::FillPath(path, tmp, &aaBlitter);
michael@0 722 }
michael@0 723 }
michael@0 724
michael@0 725 void SkScan::AntiFillPath(const SkPath& path, const SkRasterClip& clip,
michael@0 726 SkBlitter* blitter) {
michael@0 727 if (clip.isEmpty()) {
michael@0 728 return;
michael@0 729 }
michael@0 730
michael@0 731 if (clip.isBW()) {
michael@0 732 AntiFillPath(path, clip.bwRgn(), blitter);
michael@0 733 } else {
michael@0 734 SkRegion tmp;
michael@0 735 SkAAClipBlitter aaBlitter;
michael@0 736
michael@0 737 tmp.setRect(clip.getBounds());
michael@0 738 aaBlitter.init(blitter, &clip.aaRgn());
michael@0 739 SkScan::AntiFillPath(path, tmp, &aaBlitter, true);
michael@0 740 }
michael@0 741 }

mercurial