Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
michael@0 | 1 | /* |
michael@0 | 2 | * Copyright 2012 The Android Open Source Project |
michael@0 | 3 | * |
michael@0 | 4 | * Use of this source code is governed by a BSD-style license that can be |
michael@0 | 5 | * found in the LICENSE file. |
michael@0 | 6 | */ |
michael@0 | 7 | |
michael@0 | 8 | |
michael@0 | 9 | #include "SkBlitRow_opts_SSE2.h" |
michael@0 | 10 | #include "SkBitmapProcState_opts_SSE2.h" |
michael@0 | 11 | #include "SkColorPriv.h" |
michael@0 | 12 | #include "SkColor_opts_SSE2.h" |
michael@0 | 13 | #include "SkDither.h" |
michael@0 | 14 | #include "SkUtils.h" |
michael@0 | 15 | |
michael@0 | 16 | #include <emmintrin.h> |
michael@0 | 17 | |
michael@0 | 18 | /* SSE2 version of S32_Blend_BlitRow32() |
michael@0 | 19 | * portable version is in core/SkBlitRow_D32.cpp |
michael@0 | 20 | */ |
michael@0 | 21 | void S32_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst, |
michael@0 | 22 | const SkPMColor* SK_RESTRICT src, |
michael@0 | 23 | int count, U8CPU alpha) { |
michael@0 | 24 | SkASSERT(alpha <= 255); |
michael@0 | 25 | if (count <= 0) { |
michael@0 | 26 | return; |
michael@0 | 27 | } |
michael@0 | 28 | |
michael@0 | 29 | uint32_t src_scale = SkAlpha255To256(alpha); |
michael@0 | 30 | uint32_t dst_scale = 256 - src_scale; |
michael@0 | 31 | |
michael@0 | 32 | if (count >= 4) { |
michael@0 | 33 | SkASSERT(((size_t)dst & 0x03) == 0); |
michael@0 | 34 | while (((size_t)dst & 0x0F) != 0) { |
michael@0 | 35 | *dst = SkAlphaMulQ(*src, src_scale) + SkAlphaMulQ(*dst, dst_scale); |
michael@0 | 36 | src++; |
michael@0 | 37 | dst++; |
michael@0 | 38 | count--; |
michael@0 | 39 | } |
michael@0 | 40 | |
michael@0 | 41 | const __m128i *s = reinterpret_cast<const __m128i*>(src); |
michael@0 | 42 | __m128i *d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 43 | __m128i rb_mask = _mm_set1_epi32(0x00FF00FF); |
michael@0 | 44 | __m128i ag_mask = _mm_set1_epi32(0xFF00FF00); |
michael@0 | 45 | |
michael@0 | 46 | // Move scale factors to upper byte of word |
michael@0 | 47 | __m128i src_scale_wide = _mm_set1_epi16(src_scale << 8); |
michael@0 | 48 | __m128i dst_scale_wide = _mm_set1_epi16(dst_scale << 8); |
michael@0 | 49 | while (count >= 4) { |
michael@0 | 50 | // Load 4 pixels each of src and dest. |
michael@0 | 51 | __m128i src_pixel = _mm_loadu_si128(s); |
michael@0 | 52 | __m128i dst_pixel = _mm_load_si128(d); |
michael@0 | 53 | |
michael@0 | 54 | // Interleave Atom port 0/1 operations based on the execution port |
michael@0 | 55 | // constraints that multiply can only be executed on port 0 (while |
michael@0 | 56 | // boolean operations can be executed on either port 0 or port 1) |
michael@0 | 57 | // because GCC currently doesn't do a good job scheduling |
michael@0 | 58 | // instructions based on these constraints. |
michael@0 | 59 | |
michael@0 | 60 | // Get red and blue pixels into lower byte of each word. |
michael@0 | 61 | // (0, r, 0, b, 0, r, 0, b, 0, r, 0, b, 0, r, 0, b) |
michael@0 | 62 | __m128i src_rb = _mm_and_si128(rb_mask, src_pixel); |
michael@0 | 63 | |
michael@0 | 64 | // Multiply by scale. |
michael@0 | 65 | // (4 x (0, rs.h, 0, bs.h)) |
michael@0 | 66 | // where rs.h stands for the higher byte of r * scale, and |
michael@0 | 67 | // bs.h the higher byte of b * scale. |
michael@0 | 68 | src_rb = _mm_mulhi_epu16(src_rb, src_scale_wide); |
michael@0 | 69 | |
michael@0 | 70 | // Get alpha and green pixels into higher byte of each word. |
michael@0 | 71 | // (a, 0, g, 0, a, 0, g, 0, a, 0, g, 0, a, 0, g, 0) |
michael@0 | 72 | __m128i src_ag = _mm_and_si128(ag_mask, src_pixel); |
michael@0 | 73 | |
michael@0 | 74 | // Multiply by scale. |
michael@0 | 75 | // (4 x (as.h, as.l, gs.h, gs.l)) |
michael@0 | 76 | src_ag = _mm_mulhi_epu16(src_ag, src_scale_wide); |
michael@0 | 77 | |
michael@0 | 78 | // Clear the lower byte of the a*scale and g*scale results |
michael@0 | 79 | // (4 x (as.h, 0, gs.h, 0)) |
michael@0 | 80 | src_ag = _mm_and_si128(src_ag, ag_mask); |
michael@0 | 81 | |
michael@0 | 82 | // Operations the destination pixels are the same as on the |
michael@0 | 83 | // source pixels. See the comments above. |
michael@0 | 84 | __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel); |
michael@0 | 85 | dst_rb = _mm_mulhi_epu16(dst_rb, dst_scale_wide); |
michael@0 | 86 | __m128i dst_ag = _mm_and_si128(ag_mask, dst_pixel); |
michael@0 | 87 | dst_ag = _mm_mulhi_epu16(dst_ag, dst_scale_wide); |
michael@0 | 88 | dst_ag = _mm_and_si128(dst_ag, ag_mask); |
michael@0 | 89 | |
michael@0 | 90 | // Combine back into RGBA. |
michael@0 | 91 | // (4 x (as.h, rs.h, gs.h, bs.h)) |
michael@0 | 92 | src_pixel = _mm_or_si128(src_rb, src_ag); |
michael@0 | 93 | dst_pixel = _mm_or_si128(dst_rb, dst_ag); |
michael@0 | 94 | |
michael@0 | 95 | // Add result |
michael@0 | 96 | __m128i result = _mm_add_epi8(src_pixel, dst_pixel); |
michael@0 | 97 | _mm_store_si128(d, result); |
michael@0 | 98 | s++; |
michael@0 | 99 | d++; |
michael@0 | 100 | count -= 4; |
michael@0 | 101 | } |
michael@0 | 102 | src = reinterpret_cast<const SkPMColor*>(s); |
michael@0 | 103 | dst = reinterpret_cast<SkPMColor*>(d); |
michael@0 | 104 | } |
michael@0 | 105 | |
michael@0 | 106 | while (count > 0) { |
michael@0 | 107 | *dst = SkAlphaMulQ(*src, src_scale) + SkAlphaMulQ(*dst, dst_scale); |
michael@0 | 108 | src++; |
michael@0 | 109 | dst++; |
michael@0 | 110 | count--; |
michael@0 | 111 | } |
michael@0 | 112 | } |
michael@0 | 113 | |
michael@0 | 114 | void S32A_Opaque_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst, |
michael@0 | 115 | const SkPMColor* SK_RESTRICT src, |
michael@0 | 116 | int count, U8CPU alpha) { |
michael@0 | 117 | SkASSERT(alpha == 255); |
michael@0 | 118 | if (count <= 0) { |
michael@0 | 119 | return; |
michael@0 | 120 | } |
michael@0 | 121 | |
michael@0 | 122 | if (count >= 4) { |
michael@0 | 123 | SkASSERT(((size_t)dst & 0x03) == 0); |
michael@0 | 124 | while (((size_t)dst & 0x0F) != 0) { |
michael@0 | 125 | *dst = SkPMSrcOver(*src, *dst); |
michael@0 | 126 | src++; |
michael@0 | 127 | dst++; |
michael@0 | 128 | count--; |
michael@0 | 129 | } |
michael@0 | 130 | |
michael@0 | 131 | const __m128i *s = reinterpret_cast<const __m128i*>(src); |
michael@0 | 132 | __m128i *d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 133 | #ifdef SK_USE_ACCURATE_BLENDING |
michael@0 | 134 | __m128i rb_mask = _mm_set1_epi32(0x00FF00FF); |
michael@0 | 135 | __m128i c_128 = _mm_set1_epi16(128); // 8 copies of 128 (16-bit) |
michael@0 | 136 | __m128i c_255 = _mm_set1_epi16(255); // 8 copies of 255 (16-bit) |
michael@0 | 137 | while (count >= 4) { |
michael@0 | 138 | // Load 4 pixels |
michael@0 | 139 | __m128i src_pixel = _mm_loadu_si128(s); |
michael@0 | 140 | __m128i dst_pixel = _mm_load_si128(d); |
michael@0 | 141 | |
michael@0 | 142 | __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel); |
michael@0 | 143 | __m128i dst_ag = _mm_srli_epi16(dst_pixel, 8); |
michael@0 | 144 | // Shift alphas down to lower 8 bits of each quad. |
michael@0 | 145 | __m128i alpha = _mm_srli_epi32(src_pixel, 24); |
michael@0 | 146 | |
michael@0 | 147 | // Copy alpha to upper 3rd byte of each quad |
michael@0 | 148 | alpha = _mm_or_si128(alpha, _mm_slli_epi32(alpha, 16)); |
michael@0 | 149 | |
michael@0 | 150 | // Subtract alphas from 255, to get 0..255 |
michael@0 | 151 | alpha = _mm_sub_epi16(c_255, alpha); |
michael@0 | 152 | |
michael@0 | 153 | // Multiply by red and blue by src alpha. |
michael@0 | 154 | dst_rb = _mm_mullo_epi16(dst_rb, alpha); |
michael@0 | 155 | // Multiply by alpha and green by src alpha. |
michael@0 | 156 | dst_ag = _mm_mullo_epi16(dst_ag, alpha); |
michael@0 | 157 | |
michael@0 | 158 | // dst_rb_low = (dst_rb >> 8) |
michael@0 | 159 | __m128i dst_rb_low = _mm_srli_epi16(dst_rb, 8); |
michael@0 | 160 | __m128i dst_ag_low = _mm_srli_epi16(dst_ag, 8); |
michael@0 | 161 | |
michael@0 | 162 | // dst_rb = (dst_rb + dst_rb_low + 128) >> 8 |
michael@0 | 163 | dst_rb = _mm_add_epi16(dst_rb, dst_rb_low); |
michael@0 | 164 | dst_rb = _mm_add_epi16(dst_rb, c_128); |
michael@0 | 165 | dst_rb = _mm_srli_epi16(dst_rb, 8); |
michael@0 | 166 | |
michael@0 | 167 | // dst_ag = (dst_ag + dst_ag_low + 128) & ag_mask |
michael@0 | 168 | dst_ag = _mm_add_epi16(dst_ag, dst_ag_low); |
michael@0 | 169 | dst_ag = _mm_add_epi16(dst_ag, c_128); |
michael@0 | 170 | dst_ag = _mm_andnot_si128(rb_mask, dst_ag); |
michael@0 | 171 | |
michael@0 | 172 | // Combine back into RGBA. |
michael@0 | 173 | dst_pixel = _mm_or_si128(dst_rb, dst_ag); |
michael@0 | 174 | |
michael@0 | 175 | // Add result |
michael@0 | 176 | __m128i result = _mm_add_epi8(src_pixel, dst_pixel); |
michael@0 | 177 | _mm_store_si128(d, result); |
michael@0 | 178 | s++; |
michael@0 | 179 | d++; |
michael@0 | 180 | count -= 4; |
michael@0 | 181 | } |
michael@0 | 182 | #else |
michael@0 | 183 | __m128i rb_mask = _mm_set1_epi32(0x00FF00FF); |
michael@0 | 184 | __m128i c_256 = _mm_set1_epi16(0x0100); // 8 copies of 256 (16-bit) |
michael@0 | 185 | while (count >= 4) { |
michael@0 | 186 | // Load 4 pixels |
michael@0 | 187 | __m128i src_pixel = _mm_loadu_si128(s); |
michael@0 | 188 | __m128i dst_pixel = _mm_load_si128(d); |
michael@0 | 189 | |
michael@0 | 190 | __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel); |
michael@0 | 191 | __m128i dst_ag = _mm_srli_epi16(dst_pixel, 8); |
michael@0 | 192 | |
michael@0 | 193 | // (a0, g0, a1, g1, a2, g2, a3, g3) (low byte of each word) |
michael@0 | 194 | __m128i alpha = _mm_srli_epi16(src_pixel, 8); |
michael@0 | 195 | |
michael@0 | 196 | // (a0, a0, a1, a1, a2, g2, a3, g3) |
michael@0 | 197 | alpha = _mm_shufflehi_epi16(alpha, 0xF5); |
michael@0 | 198 | |
michael@0 | 199 | // (a0, a0, a1, a1, a2, a2, a3, a3) |
michael@0 | 200 | alpha = _mm_shufflelo_epi16(alpha, 0xF5); |
michael@0 | 201 | |
michael@0 | 202 | // Subtract alphas from 256, to get 1..256 |
michael@0 | 203 | alpha = _mm_sub_epi16(c_256, alpha); |
michael@0 | 204 | |
michael@0 | 205 | // Multiply by red and blue by src alpha. |
michael@0 | 206 | dst_rb = _mm_mullo_epi16(dst_rb, alpha); |
michael@0 | 207 | // Multiply by alpha and green by src alpha. |
michael@0 | 208 | dst_ag = _mm_mullo_epi16(dst_ag, alpha); |
michael@0 | 209 | |
michael@0 | 210 | // Divide by 256. |
michael@0 | 211 | dst_rb = _mm_srli_epi16(dst_rb, 8); |
michael@0 | 212 | |
michael@0 | 213 | // Mask out high bits (already in the right place) |
michael@0 | 214 | dst_ag = _mm_andnot_si128(rb_mask, dst_ag); |
michael@0 | 215 | |
michael@0 | 216 | // Combine back into RGBA. |
michael@0 | 217 | dst_pixel = _mm_or_si128(dst_rb, dst_ag); |
michael@0 | 218 | |
michael@0 | 219 | // Add result |
michael@0 | 220 | __m128i result = _mm_add_epi8(src_pixel, dst_pixel); |
michael@0 | 221 | _mm_store_si128(d, result); |
michael@0 | 222 | s++; |
michael@0 | 223 | d++; |
michael@0 | 224 | count -= 4; |
michael@0 | 225 | } |
michael@0 | 226 | #endif |
michael@0 | 227 | src = reinterpret_cast<const SkPMColor*>(s); |
michael@0 | 228 | dst = reinterpret_cast<SkPMColor*>(d); |
michael@0 | 229 | } |
michael@0 | 230 | |
michael@0 | 231 | while (count > 0) { |
michael@0 | 232 | *dst = SkPMSrcOver(*src, *dst); |
michael@0 | 233 | src++; |
michael@0 | 234 | dst++; |
michael@0 | 235 | count--; |
michael@0 | 236 | } |
michael@0 | 237 | } |
michael@0 | 238 | |
michael@0 | 239 | void S32A_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst, |
michael@0 | 240 | const SkPMColor* SK_RESTRICT src, |
michael@0 | 241 | int count, U8CPU alpha) { |
michael@0 | 242 | SkASSERT(alpha <= 255); |
michael@0 | 243 | if (count <= 0) { |
michael@0 | 244 | return; |
michael@0 | 245 | } |
michael@0 | 246 | |
michael@0 | 247 | if (count >= 4) { |
michael@0 | 248 | while (((size_t)dst & 0x0F) != 0) { |
michael@0 | 249 | *dst = SkBlendARGB32(*src, *dst, alpha); |
michael@0 | 250 | src++; |
michael@0 | 251 | dst++; |
michael@0 | 252 | count--; |
michael@0 | 253 | } |
michael@0 | 254 | |
michael@0 | 255 | uint32_t src_scale = SkAlpha255To256(alpha); |
michael@0 | 256 | |
michael@0 | 257 | const __m128i *s = reinterpret_cast<const __m128i*>(src); |
michael@0 | 258 | __m128i *d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 259 | __m128i src_scale_wide = _mm_set1_epi16(src_scale << 8); |
michael@0 | 260 | __m128i rb_mask = _mm_set1_epi32(0x00FF00FF); |
michael@0 | 261 | __m128i c_256 = _mm_set1_epi16(256); // 8 copies of 256 (16-bit) |
michael@0 | 262 | while (count >= 4) { |
michael@0 | 263 | // Load 4 pixels each of src and dest. |
michael@0 | 264 | __m128i src_pixel = _mm_loadu_si128(s); |
michael@0 | 265 | __m128i dst_pixel = _mm_load_si128(d); |
michael@0 | 266 | |
michael@0 | 267 | // Get red and blue pixels into lower byte of each word. |
michael@0 | 268 | __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel); |
michael@0 | 269 | __m128i src_rb = _mm_and_si128(rb_mask, src_pixel); |
michael@0 | 270 | |
michael@0 | 271 | // Get alpha and green into lower byte of each word. |
michael@0 | 272 | __m128i dst_ag = _mm_srli_epi16(dst_pixel, 8); |
michael@0 | 273 | __m128i src_ag = _mm_srli_epi16(src_pixel, 8); |
michael@0 | 274 | |
michael@0 | 275 | // Put per-pixel alpha in low byte of each word. |
michael@0 | 276 | // After the following two statements, the dst_alpha looks like |
michael@0 | 277 | // (0, a0, 0, a0, 0, a1, 0, a1, 0, a2, 0, a2, 0, a3, 0, a3) |
michael@0 | 278 | __m128i dst_alpha = _mm_shufflehi_epi16(src_ag, 0xF5); |
michael@0 | 279 | dst_alpha = _mm_shufflelo_epi16(dst_alpha, 0xF5); |
michael@0 | 280 | |
michael@0 | 281 | // dst_alpha = dst_alpha * src_scale |
michael@0 | 282 | // Because src_scales are in the higher byte of each word and |
michael@0 | 283 | // we use mulhi here, the resulting alpha values are already |
michael@0 | 284 | // in the right place and don't need to be divided by 256. |
michael@0 | 285 | // (0, sa0, 0, sa0, 0, sa1, 0, sa1, 0, sa2, 0, sa2, 0, sa3, 0, sa3) |
michael@0 | 286 | dst_alpha = _mm_mulhi_epu16(dst_alpha, src_scale_wide); |
michael@0 | 287 | |
michael@0 | 288 | // Subtract alphas from 256, to get 1..256 |
michael@0 | 289 | dst_alpha = _mm_sub_epi16(c_256, dst_alpha); |
michael@0 | 290 | |
michael@0 | 291 | // Multiply red and blue by dst pixel alpha. |
michael@0 | 292 | dst_rb = _mm_mullo_epi16(dst_rb, dst_alpha); |
michael@0 | 293 | // Multiply alpha and green by dst pixel alpha. |
michael@0 | 294 | dst_ag = _mm_mullo_epi16(dst_ag, dst_alpha); |
michael@0 | 295 | |
michael@0 | 296 | // Multiply red and blue by global alpha. |
michael@0 | 297 | // (4 x (0, rs.h, 0, bs.h)) |
michael@0 | 298 | // where rs.h stands for the higher byte of r * src_scale, |
michael@0 | 299 | // and bs.h the higher byte of b * src_scale. |
michael@0 | 300 | // Again, because we use mulhi, the resuling red and blue |
michael@0 | 301 | // values are already in the right place and don't need to |
michael@0 | 302 | // be divided by 256. |
michael@0 | 303 | src_rb = _mm_mulhi_epu16(src_rb, src_scale_wide); |
michael@0 | 304 | // Multiply alpha and green by global alpha. |
michael@0 | 305 | // (4 x (0, as.h, 0, gs.h)) |
michael@0 | 306 | src_ag = _mm_mulhi_epu16(src_ag, src_scale_wide); |
michael@0 | 307 | |
michael@0 | 308 | // Divide by 256. |
michael@0 | 309 | dst_rb = _mm_srli_epi16(dst_rb, 8); |
michael@0 | 310 | |
michael@0 | 311 | // Mask out low bits (goodies already in the right place; no need to divide) |
michael@0 | 312 | dst_ag = _mm_andnot_si128(rb_mask, dst_ag); |
michael@0 | 313 | // Shift alpha and green to higher byte of each word. |
michael@0 | 314 | // (4 x (as.h, 0, gs.h, 0)) |
michael@0 | 315 | src_ag = _mm_slli_epi16(src_ag, 8); |
michael@0 | 316 | |
michael@0 | 317 | // Combine back into RGBA. |
michael@0 | 318 | dst_pixel = _mm_or_si128(dst_rb, dst_ag); |
michael@0 | 319 | src_pixel = _mm_or_si128(src_rb, src_ag); |
michael@0 | 320 | |
michael@0 | 321 | // Add two pixels into result. |
michael@0 | 322 | __m128i result = _mm_add_epi8(src_pixel, dst_pixel); |
michael@0 | 323 | _mm_store_si128(d, result); |
michael@0 | 324 | s++; |
michael@0 | 325 | d++; |
michael@0 | 326 | count -= 4; |
michael@0 | 327 | } |
michael@0 | 328 | src = reinterpret_cast<const SkPMColor*>(s); |
michael@0 | 329 | dst = reinterpret_cast<SkPMColor*>(d); |
michael@0 | 330 | } |
michael@0 | 331 | |
michael@0 | 332 | while (count > 0) { |
michael@0 | 333 | *dst = SkBlendARGB32(*src, *dst, alpha); |
michael@0 | 334 | src++; |
michael@0 | 335 | dst++; |
michael@0 | 336 | count--; |
michael@0 | 337 | } |
michael@0 | 338 | } |
michael@0 | 339 | |
michael@0 | 340 | /* SSE2 version of Color32() |
michael@0 | 341 | * portable version is in core/SkBlitRow_D32.cpp |
michael@0 | 342 | */ |
michael@0 | 343 | void Color32_SSE2(SkPMColor dst[], const SkPMColor src[], int count, |
michael@0 | 344 | SkPMColor color) { |
michael@0 | 345 | |
michael@0 | 346 | if (count <= 0) { |
michael@0 | 347 | return; |
michael@0 | 348 | } |
michael@0 | 349 | |
michael@0 | 350 | if (0 == color) { |
michael@0 | 351 | if (src != dst) { |
michael@0 | 352 | memcpy(dst, src, count * sizeof(SkPMColor)); |
michael@0 | 353 | } |
michael@0 | 354 | return; |
michael@0 | 355 | } |
michael@0 | 356 | |
michael@0 | 357 | unsigned colorA = SkGetPackedA32(color); |
michael@0 | 358 | if (255 == colorA) { |
michael@0 | 359 | sk_memset32(dst, color, count); |
michael@0 | 360 | } else { |
michael@0 | 361 | unsigned scale = 256 - SkAlpha255To256(colorA); |
michael@0 | 362 | |
michael@0 | 363 | if (count >= 4) { |
michael@0 | 364 | SkASSERT(((size_t)dst & 0x03) == 0); |
michael@0 | 365 | while (((size_t)dst & 0x0F) != 0) { |
michael@0 | 366 | *dst = color + SkAlphaMulQ(*src, scale); |
michael@0 | 367 | src++; |
michael@0 | 368 | dst++; |
michael@0 | 369 | count--; |
michael@0 | 370 | } |
michael@0 | 371 | |
michael@0 | 372 | const __m128i *s = reinterpret_cast<const __m128i*>(src); |
michael@0 | 373 | __m128i *d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 374 | __m128i rb_mask = _mm_set1_epi32(0x00FF00FF); |
michael@0 | 375 | __m128i src_scale_wide = _mm_set1_epi16(scale); |
michael@0 | 376 | __m128i color_wide = _mm_set1_epi32(color); |
michael@0 | 377 | while (count >= 4) { |
michael@0 | 378 | // Load 4 pixels each of src and dest. |
michael@0 | 379 | __m128i src_pixel = _mm_loadu_si128(s); |
michael@0 | 380 | |
michael@0 | 381 | // Get red and blue pixels into lower byte of each word. |
michael@0 | 382 | __m128i src_rb = _mm_and_si128(rb_mask, src_pixel); |
michael@0 | 383 | |
michael@0 | 384 | // Get alpha and green into lower byte of each word. |
michael@0 | 385 | __m128i src_ag = _mm_srli_epi16(src_pixel, 8); |
michael@0 | 386 | |
michael@0 | 387 | // Multiply by scale. |
michael@0 | 388 | src_rb = _mm_mullo_epi16(src_rb, src_scale_wide); |
michael@0 | 389 | src_ag = _mm_mullo_epi16(src_ag, src_scale_wide); |
michael@0 | 390 | |
michael@0 | 391 | // Divide by 256. |
michael@0 | 392 | src_rb = _mm_srli_epi16(src_rb, 8); |
michael@0 | 393 | src_ag = _mm_andnot_si128(rb_mask, src_ag); |
michael@0 | 394 | |
michael@0 | 395 | // Combine back into RGBA. |
michael@0 | 396 | src_pixel = _mm_or_si128(src_rb, src_ag); |
michael@0 | 397 | |
michael@0 | 398 | // Add color to result. |
michael@0 | 399 | __m128i result = _mm_add_epi8(color_wide, src_pixel); |
michael@0 | 400 | |
michael@0 | 401 | // Store result. |
michael@0 | 402 | _mm_store_si128(d, result); |
michael@0 | 403 | s++; |
michael@0 | 404 | d++; |
michael@0 | 405 | count -= 4; |
michael@0 | 406 | } |
michael@0 | 407 | src = reinterpret_cast<const SkPMColor*>(s); |
michael@0 | 408 | dst = reinterpret_cast<SkPMColor*>(d); |
michael@0 | 409 | } |
michael@0 | 410 | |
michael@0 | 411 | while (count > 0) { |
michael@0 | 412 | *dst = color + SkAlphaMulQ(*src, scale); |
michael@0 | 413 | src += 1; |
michael@0 | 414 | dst += 1; |
michael@0 | 415 | count--; |
michael@0 | 416 | } |
michael@0 | 417 | } |
michael@0 | 418 | } |
michael@0 | 419 | |
michael@0 | 420 | void SkARGB32_A8_BlitMask_SSE2(void* device, size_t dstRB, const void* maskPtr, |
michael@0 | 421 | size_t maskRB, SkColor origColor, |
michael@0 | 422 | int width, int height) { |
michael@0 | 423 | SkPMColor color = SkPreMultiplyColor(origColor); |
michael@0 | 424 | size_t dstOffset = dstRB - (width << 2); |
michael@0 | 425 | size_t maskOffset = maskRB - width; |
michael@0 | 426 | SkPMColor* dst = (SkPMColor *)device; |
michael@0 | 427 | const uint8_t* mask = (const uint8_t*)maskPtr; |
michael@0 | 428 | do { |
michael@0 | 429 | int count = width; |
michael@0 | 430 | if (count >= 4) { |
michael@0 | 431 | while (((size_t)dst & 0x0F) != 0 && (count > 0)) { |
michael@0 | 432 | *dst = SkBlendARGB32(color, *dst, *mask); |
michael@0 | 433 | mask++; |
michael@0 | 434 | dst++; |
michael@0 | 435 | count--; |
michael@0 | 436 | } |
michael@0 | 437 | __m128i *d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 438 | __m128i rb_mask = _mm_set1_epi32(0x00FF00FF); |
michael@0 | 439 | __m128i c_256 = _mm_set1_epi16(256); |
michael@0 | 440 | __m128i c_1 = _mm_set1_epi16(1); |
michael@0 | 441 | __m128i src_pixel = _mm_set1_epi32(color); |
michael@0 | 442 | while (count >= 4) { |
michael@0 | 443 | // Load 4 pixels each of src and dest. |
michael@0 | 444 | __m128i dst_pixel = _mm_load_si128(d); |
michael@0 | 445 | |
michael@0 | 446 | //set the aphla value |
michael@0 | 447 | __m128i src_scale_wide = _mm_set_epi8(0, *(mask+3),\ |
michael@0 | 448 | 0, *(mask+3),0, \ |
michael@0 | 449 | *(mask+2),0, *(mask+2),\ |
michael@0 | 450 | 0,*(mask+1), 0,*(mask+1),\ |
michael@0 | 451 | 0, *mask,0,*mask); |
michael@0 | 452 | |
michael@0 | 453 | //call SkAlpha255To256() |
michael@0 | 454 | src_scale_wide = _mm_add_epi16(src_scale_wide, c_1); |
michael@0 | 455 | |
michael@0 | 456 | // Get red and blue pixels into lower byte of each word. |
michael@0 | 457 | __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel); |
michael@0 | 458 | __m128i src_rb = _mm_and_si128(rb_mask, src_pixel); |
michael@0 | 459 | |
michael@0 | 460 | // Get alpha and green into lower byte of each word. |
michael@0 | 461 | __m128i dst_ag = _mm_srli_epi16(dst_pixel, 8); |
michael@0 | 462 | __m128i src_ag = _mm_srli_epi16(src_pixel, 8); |
michael@0 | 463 | |
michael@0 | 464 | // Put per-pixel alpha in low byte of each word. |
michael@0 | 465 | __m128i dst_alpha = _mm_shufflehi_epi16(src_ag, 0xF5); |
michael@0 | 466 | dst_alpha = _mm_shufflelo_epi16(dst_alpha, 0xF5); |
michael@0 | 467 | |
michael@0 | 468 | // dst_alpha = dst_alpha * src_scale |
michael@0 | 469 | dst_alpha = _mm_mullo_epi16(dst_alpha, src_scale_wide); |
michael@0 | 470 | |
michael@0 | 471 | // Divide by 256. |
michael@0 | 472 | dst_alpha = _mm_srli_epi16(dst_alpha, 8); |
michael@0 | 473 | |
michael@0 | 474 | // Subtract alphas from 256, to get 1..256 |
michael@0 | 475 | dst_alpha = _mm_sub_epi16(c_256, dst_alpha); |
michael@0 | 476 | // Multiply red and blue by dst pixel alpha. |
michael@0 | 477 | dst_rb = _mm_mullo_epi16(dst_rb, dst_alpha); |
michael@0 | 478 | // Multiply alpha and green by dst pixel alpha. |
michael@0 | 479 | dst_ag = _mm_mullo_epi16(dst_ag, dst_alpha); |
michael@0 | 480 | |
michael@0 | 481 | // Multiply red and blue by global alpha. |
michael@0 | 482 | src_rb = _mm_mullo_epi16(src_rb, src_scale_wide); |
michael@0 | 483 | // Multiply alpha and green by global alpha. |
michael@0 | 484 | src_ag = _mm_mullo_epi16(src_ag, src_scale_wide); |
michael@0 | 485 | // Divide by 256. |
michael@0 | 486 | dst_rb = _mm_srli_epi16(dst_rb, 8); |
michael@0 | 487 | src_rb = _mm_srli_epi16(src_rb, 8); |
michael@0 | 488 | |
michael@0 | 489 | // Mask out low bits (goodies already in the right place; no need to divide) |
michael@0 | 490 | dst_ag = _mm_andnot_si128(rb_mask, dst_ag); |
michael@0 | 491 | src_ag = _mm_andnot_si128(rb_mask, src_ag); |
michael@0 | 492 | |
michael@0 | 493 | // Combine back into RGBA. |
michael@0 | 494 | dst_pixel = _mm_or_si128(dst_rb, dst_ag); |
michael@0 | 495 | __m128i tmp_src_pixel = _mm_or_si128(src_rb, src_ag); |
michael@0 | 496 | |
michael@0 | 497 | // Add two pixels into result. |
michael@0 | 498 | __m128i result = _mm_add_epi8(tmp_src_pixel, dst_pixel); |
michael@0 | 499 | _mm_store_si128(d, result); |
michael@0 | 500 | // load the next 4 pixel |
michael@0 | 501 | mask = mask + 4; |
michael@0 | 502 | d++; |
michael@0 | 503 | count -= 4; |
michael@0 | 504 | } |
michael@0 | 505 | dst = reinterpret_cast<SkPMColor *>(d); |
michael@0 | 506 | } |
michael@0 | 507 | while(count > 0) { |
michael@0 | 508 | *dst= SkBlendARGB32(color, *dst, *mask); |
michael@0 | 509 | dst += 1; |
michael@0 | 510 | mask++; |
michael@0 | 511 | count --; |
michael@0 | 512 | } |
michael@0 | 513 | dst = (SkPMColor *)((char*)dst + dstOffset); |
michael@0 | 514 | mask += maskOffset; |
michael@0 | 515 | } while (--height != 0); |
michael@0 | 516 | } |
michael@0 | 517 | |
michael@0 | 518 | // The following (left) shifts cause the top 5 bits of the mask components to |
michael@0 | 519 | // line up with the corresponding components in an SkPMColor. |
michael@0 | 520 | // Note that the mask's RGB16 order may differ from the SkPMColor order. |
michael@0 | 521 | #define SK_R16x5_R32x5_SHIFT (SK_R32_SHIFT - SK_R16_SHIFT - SK_R16_BITS + 5) |
michael@0 | 522 | #define SK_G16x5_G32x5_SHIFT (SK_G32_SHIFT - SK_G16_SHIFT - SK_G16_BITS + 5) |
michael@0 | 523 | #define SK_B16x5_B32x5_SHIFT (SK_B32_SHIFT - SK_B16_SHIFT - SK_B16_BITS + 5) |
michael@0 | 524 | |
michael@0 | 525 | #if SK_R16x5_R32x5_SHIFT == 0 |
michael@0 | 526 | #define SkPackedR16x5ToUnmaskedR32x5_SSE2(x) (x) |
michael@0 | 527 | #elif SK_R16x5_R32x5_SHIFT > 0 |
michael@0 | 528 | #define SkPackedR16x5ToUnmaskedR32x5_SSE2(x) (_mm_slli_epi32(x, SK_R16x5_R32x5_SHIFT)) |
michael@0 | 529 | #else |
michael@0 | 530 | #define SkPackedR16x5ToUnmaskedR32x5_SSE2(x) (_mm_srli_epi32(x, -SK_R16x5_R32x5_SHIFT)) |
michael@0 | 531 | #endif |
michael@0 | 532 | |
michael@0 | 533 | #if SK_G16x5_G32x5_SHIFT == 0 |
michael@0 | 534 | #define SkPackedG16x5ToUnmaskedG32x5_SSE2(x) (x) |
michael@0 | 535 | #elif SK_G16x5_G32x5_SHIFT > 0 |
michael@0 | 536 | #define SkPackedG16x5ToUnmaskedG32x5_SSE2(x) (_mm_slli_epi32(x, SK_G16x5_G32x5_SHIFT)) |
michael@0 | 537 | #else |
michael@0 | 538 | #define SkPackedG16x5ToUnmaskedG32x5_SSE2(x) (_mm_srli_epi32(x, -SK_G16x5_G32x5_SHIFT)) |
michael@0 | 539 | #endif |
michael@0 | 540 | |
michael@0 | 541 | #if SK_B16x5_B32x5_SHIFT == 0 |
michael@0 | 542 | #define SkPackedB16x5ToUnmaskedB32x5_SSE2(x) (x) |
michael@0 | 543 | #elif SK_B16x5_B32x5_SHIFT > 0 |
michael@0 | 544 | #define SkPackedB16x5ToUnmaskedB32x5_SSE2(x) (_mm_slli_epi32(x, SK_B16x5_B32x5_SHIFT)) |
michael@0 | 545 | #else |
michael@0 | 546 | #define SkPackedB16x5ToUnmaskedB32x5_SSE2(x) (_mm_srli_epi32(x, -SK_B16x5_B32x5_SHIFT)) |
michael@0 | 547 | #endif |
michael@0 | 548 | |
michael@0 | 549 | static __m128i SkBlendLCD16_SSE2(__m128i &src, __m128i &dst, |
michael@0 | 550 | __m128i &mask, __m128i &srcA) { |
michael@0 | 551 | // In the following comments, the components of src, dst and mask are |
michael@0 | 552 | // abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked |
michael@0 | 553 | // by an R, G, B, or A suffix. Components of one of the four pixels that |
michael@0 | 554 | // are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for |
michael@0 | 555 | // example is the blue channel of the second destination pixel. Memory |
michael@0 | 556 | // layout is shown for an ARGB byte order in a color value. |
michael@0 | 557 | |
michael@0 | 558 | // src and srcA store 8-bit values interleaved with zeros. |
michael@0 | 559 | // src = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0) |
michael@0 | 560 | // srcA = (srcA, 0, srcA, 0, srcA, 0, srcA, 0, |
michael@0 | 561 | // srcA, 0, srcA, 0, srcA, 0, srcA, 0) |
michael@0 | 562 | // mask stores 16-bit values (compressed three channels) interleaved with zeros. |
michael@0 | 563 | // Lo and Hi denote the low and high bytes of a 16-bit value, respectively. |
michael@0 | 564 | // mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0, |
michael@0 | 565 | // m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0) |
michael@0 | 566 | |
michael@0 | 567 | // Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits. |
michael@0 | 568 | // r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0) |
michael@0 | 569 | __m128i r = _mm_and_si128(SkPackedR16x5ToUnmaskedR32x5_SSE2(mask), |
michael@0 | 570 | _mm_set1_epi32(0x1F << SK_R32_SHIFT)); |
michael@0 | 571 | |
michael@0 | 572 | // g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0) |
michael@0 | 573 | __m128i g = _mm_and_si128(SkPackedG16x5ToUnmaskedG32x5_SSE2(mask), |
michael@0 | 574 | _mm_set1_epi32(0x1F << SK_G32_SHIFT)); |
michael@0 | 575 | |
michael@0 | 576 | // b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B) |
michael@0 | 577 | __m128i b = _mm_and_si128(SkPackedB16x5ToUnmaskedB32x5_SSE2(mask), |
michael@0 | 578 | _mm_set1_epi32(0x1F << SK_B32_SHIFT)); |
michael@0 | 579 | |
michael@0 | 580 | // Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3) |
michael@0 | 581 | // Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an |
michael@0 | 582 | // 8-bit position |
michael@0 | 583 | // mask = (0, m0R, m0G, m0B, 0, m1R, m1G, m1B, |
michael@0 | 584 | // 0, m2R, m2G, m2B, 0, m3R, m3G, m3B) |
michael@0 | 585 | mask = _mm_or_si128(_mm_or_si128(r, g), b); |
michael@0 | 586 | |
michael@0 | 587 | // Interleave R,G,B into the lower byte of word. |
michael@0 | 588 | // i.e. split the sixteen 8-bit values from mask into two sets of eight |
michael@0 | 589 | // 16-bit values, padded by zero. |
michael@0 | 590 | __m128i maskLo, maskHi; |
michael@0 | 591 | // maskLo = (0, 0, m0R, 0, m0G, 0, m0B, 0, 0, 0, m1R, 0, m1G, 0, m1B, 0) |
michael@0 | 592 | maskLo = _mm_unpacklo_epi8(mask, _mm_setzero_si128()); |
michael@0 | 593 | // maskHi = (0, 0, m2R, 0, m2G, 0, m2B, 0, 0, 0, m3R, 0, m3G, 0, m3B, 0) |
michael@0 | 594 | maskHi = _mm_unpackhi_epi8(mask, _mm_setzero_si128()); |
michael@0 | 595 | |
michael@0 | 596 | // Upscale from 0..31 to 0..32 |
michael@0 | 597 | // (allows to replace division by left-shift further down) |
michael@0 | 598 | // Left-shift each component by 4 and add the result back to that component, |
michael@0 | 599 | // mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32 |
michael@0 | 600 | maskLo = _mm_add_epi16(maskLo, _mm_srli_epi16(maskLo, 4)); |
michael@0 | 601 | maskHi = _mm_add_epi16(maskHi, _mm_srli_epi16(maskHi, 4)); |
michael@0 | 602 | |
michael@0 | 603 | // Multiply each component of maskLo and maskHi by srcA |
michael@0 | 604 | maskLo = _mm_mullo_epi16(maskLo, srcA); |
michael@0 | 605 | maskHi = _mm_mullo_epi16(maskHi, srcA); |
michael@0 | 606 | |
michael@0 | 607 | // Left shift mask components by 8 (divide by 256) |
michael@0 | 608 | maskLo = _mm_srli_epi16(maskLo, 8); |
michael@0 | 609 | maskHi = _mm_srli_epi16(maskHi, 8); |
michael@0 | 610 | |
michael@0 | 611 | // Interleave R,G,B into the lower byte of the word |
michael@0 | 612 | // dstLo = (0, 0, d0R, 0, d0G, 0, d0B, 0, 0, 0, d1R, 0, d1G, 0, d1B, 0) |
michael@0 | 613 | __m128i dstLo = _mm_unpacklo_epi8(dst, _mm_setzero_si128()); |
michael@0 | 614 | // dstLo = (0, 0, d2R, 0, d2G, 0, d2B, 0, 0, 0, d3R, 0, d3G, 0, d3B, 0) |
michael@0 | 615 | __m128i dstHi = _mm_unpackhi_epi8(dst, _mm_setzero_si128()); |
michael@0 | 616 | |
michael@0 | 617 | // mask = (src - dst) * mask |
michael@0 | 618 | maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(src, dstLo)); |
michael@0 | 619 | maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(src, dstHi)); |
michael@0 | 620 | |
michael@0 | 621 | // mask = (src - dst) * mask >> 5 |
michael@0 | 622 | maskLo = _mm_srai_epi16(maskLo, 5); |
michael@0 | 623 | maskHi = _mm_srai_epi16(maskHi, 5); |
michael@0 | 624 | |
michael@0 | 625 | // Add two pixels into result. |
michael@0 | 626 | // result = dst + ((src - dst) * mask >> 5) |
michael@0 | 627 | __m128i resultLo = _mm_add_epi16(dstLo, maskLo); |
michael@0 | 628 | __m128i resultHi = _mm_add_epi16(dstHi, maskHi); |
michael@0 | 629 | |
michael@0 | 630 | // Pack into 4 32bit dst pixels. |
michael@0 | 631 | // resultLo and resultHi contain eight 16-bit components (two pixels) each. |
michael@0 | 632 | // Merge into one SSE regsiter with sixteen 8-bit values (four pixels), |
michael@0 | 633 | // clamping to 255 if necessary. |
michael@0 | 634 | return _mm_packus_epi16(resultLo, resultHi); |
michael@0 | 635 | } |
michael@0 | 636 | |
michael@0 | 637 | static __m128i SkBlendLCD16Opaque_SSE2(__m128i &src, __m128i &dst, |
michael@0 | 638 | __m128i &mask) { |
michael@0 | 639 | // In the following comments, the components of src, dst and mask are |
michael@0 | 640 | // abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked |
michael@0 | 641 | // by an R, G, B, or A suffix. Components of one of the four pixels that |
michael@0 | 642 | // are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for |
michael@0 | 643 | // example is the blue channel of the second destination pixel. Memory |
michael@0 | 644 | // layout is shown for an ARGB byte order in a color value. |
michael@0 | 645 | |
michael@0 | 646 | // src and srcA store 8-bit values interleaved with zeros. |
michael@0 | 647 | // src = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0) |
michael@0 | 648 | // mask stores 16-bit values (shown as high and low bytes) interleaved with |
michael@0 | 649 | // zeros |
michael@0 | 650 | // mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0, |
michael@0 | 651 | // m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0) |
michael@0 | 652 | |
michael@0 | 653 | // Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits. |
michael@0 | 654 | // r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0) |
michael@0 | 655 | __m128i r = _mm_and_si128(SkPackedR16x5ToUnmaskedR32x5_SSE2(mask), |
michael@0 | 656 | _mm_set1_epi32(0x1F << SK_R32_SHIFT)); |
michael@0 | 657 | |
michael@0 | 658 | // g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0) |
michael@0 | 659 | __m128i g = _mm_and_si128(SkPackedG16x5ToUnmaskedG32x5_SSE2(mask), |
michael@0 | 660 | _mm_set1_epi32(0x1F << SK_G32_SHIFT)); |
michael@0 | 661 | |
michael@0 | 662 | // b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B) |
michael@0 | 663 | __m128i b = _mm_and_si128(SkPackedB16x5ToUnmaskedB32x5_SSE2(mask), |
michael@0 | 664 | _mm_set1_epi32(0x1F << SK_B32_SHIFT)); |
michael@0 | 665 | |
michael@0 | 666 | // Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3) |
michael@0 | 667 | // Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an |
michael@0 | 668 | // 8-bit position |
michael@0 | 669 | // mask = (0, m0R, m0G, m0B, 0, m1R, m1G, m1B, |
michael@0 | 670 | // 0, m2R, m2G, m2B, 0, m3R, m3G, m3B) |
michael@0 | 671 | mask = _mm_or_si128(_mm_or_si128(r, g), b); |
michael@0 | 672 | |
michael@0 | 673 | // Interleave R,G,B into the lower byte of word. |
michael@0 | 674 | // i.e. split the sixteen 8-bit values from mask into two sets of eight |
michael@0 | 675 | // 16-bit values, padded by zero. |
michael@0 | 676 | __m128i maskLo, maskHi; |
michael@0 | 677 | // maskLo = (0, 0, m0R, 0, m0G, 0, m0B, 0, 0, 0, m1R, 0, m1G, 0, m1B, 0) |
michael@0 | 678 | maskLo = _mm_unpacklo_epi8(mask, _mm_setzero_si128()); |
michael@0 | 679 | // maskHi = (0, 0, m2R, 0, m2G, 0, m2B, 0, 0, 0, m3R, 0, m3G, 0, m3B, 0) |
michael@0 | 680 | maskHi = _mm_unpackhi_epi8(mask, _mm_setzero_si128()); |
michael@0 | 681 | |
michael@0 | 682 | // Upscale from 0..31 to 0..32 |
michael@0 | 683 | // (allows to replace division by left-shift further down) |
michael@0 | 684 | // Left-shift each component by 4 and add the result back to that component, |
michael@0 | 685 | // mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32 |
michael@0 | 686 | maskLo = _mm_add_epi16(maskLo, _mm_srli_epi16(maskLo, 4)); |
michael@0 | 687 | maskHi = _mm_add_epi16(maskHi, _mm_srli_epi16(maskHi, 4)); |
michael@0 | 688 | |
michael@0 | 689 | // Interleave R,G,B into the lower byte of the word |
michael@0 | 690 | // dstLo = (0, 0, d0R, 0, d0G, 0, d0B, 0, 0, 0, d1R, 0, d1G, 0, d1B, 0) |
michael@0 | 691 | __m128i dstLo = _mm_unpacklo_epi8(dst, _mm_setzero_si128()); |
michael@0 | 692 | // dstLo = (0, 0, d2R, 0, d2G, 0, d2B, 0, 0, 0, d3R, 0, d3G, 0, d3B, 0) |
michael@0 | 693 | __m128i dstHi = _mm_unpackhi_epi8(dst, _mm_setzero_si128()); |
michael@0 | 694 | |
michael@0 | 695 | // mask = (src - dst) * mask |
michael@0 | 696 | maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(src, dstLo)); |
michael@0 | 697 | maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(src, dstHi)); |
michael@0 | 698 | |
michael@0 | 699 | // mask = (src - dst) * mask >> 5 |
michael@0 | 700 | maskLo = _mm_srai_epi16(maskLo, 5); |
michael@0 | 701 | maskHi = _mm_srai_epi16(maskHi, 5); |
michael@0 | 702 | |
michael@0 | 703 | // Add two pixels into result. |
michael@0 | 704 | // result = dst + ((src - dst) * mask >> 5) |
michael@0 | 705 | __m128i resultLo = _mm_add_epi16(dstLo, maskLo); |
michael@0 | 706 | __m128i resultHi = _mm_add_epi16(dstHi, maskHi); |
michael@0 | 707 | |
michael@0 | 708 | // Pack into 4 32bit dst pixels and force opaque. |
michael@0 | 709 | // resultLo and resultHi contain eight 16-bit components (two pixels) each. |
michael@0 | 710 | // Merge into one SSE regsiter with sixteen 8-bit values (four pixels), |
michael@0 | 711 | // clamping to 255 if necessary. Set alpha components to 0xFF. |
michael@0 | 712 | return _mm_or_si128(_mm_packus_epi16(resultLo, resultHi), |
michael@0 | 713 | _mm_set1_epi32(SK_A32_MASK << SK_A32_SHIFT)); |
michael@0 | 714 | } |
michael@0 | 715 | |
michael@0 | 716 | void SkBlitLCD16Row_SSE2(SkPMColor dst[], const uint16_t mask[], |
michael@0 | 717 | SkColor src, int width, SkPMColor) { |
michael@0 | 718 | if (width <= 0) { |
michael@0 | 719 | return; |
michael@0 | 720 | } |
michael@0 | 721 | |
michael@0 | 722 | int srcA = SkColorGetA(src); |
michael@0 | 723 | int srcR = SkColorGetR(src); |
michael@0 | 724 | int srcG = SkColorGetG(src); |
michael@0 | 725 | int srcB = SkColorGetB(src); |
michael@0 | 726 | |
michael@0 | 727 | srcA = SkAlpha255To256(srcA); |
michael@0 | 728 | |
michael@0 | 729 | if (width >= 4) { |
michael@0 | 730 | SkASSERT(((size_t)dst & 0x03) == 0); |
michael@0 | 731 | while (((size_t)dst & 0x0F) != 0) { |
michael@0 | 732 | *dst = SkBlendLCD16(srcA, srcR, srcG, srcB, *dst, *mask); |
michael@0 | 733 | mask++; |
michael@0 | 734 | dst++; |
michael@0 | 735 | width--; |
michael@0 | 736 | } |
michael@0 | 737 | |
michael@0 | 738 | __m128i *d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 739 | // Set alpha to 0xFF and replicate source four times in SSE register. |
michael@0 | 740 | __m128i src_sse = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB)); |
michael@0 | 741 | // Interleave with zeros to get two sets of four 16-bit values. |
michael@0 | 742 | src_sse = _mm_unpacklo_epi8(src_sse, _mm_setzero_si128()); |
michael@0 | 743 | // Set srcA_sse to contain eight copies of srcA, padded with zero. |
michael@0 | 744 | // src_sse=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0) |
michael@0 | 745 | __m128i srcA_sse = _mm_set1_epi16(srcA); |
michael@0 | 746 | while (width >= 4) { |
michael@0 | 747 | // Load four destination pixels into dst_sse. |
michael@0 | 748 | __m128i dst_sse = _mm_load_si128(d); |
michael@0 | 749 | // Load four 16-bit masks into lower half of mask_sse. |
michael@0 | 750 | __m128i mask_sse = _mm_loadl_epi64( |
michael@0 | 751 | reinterpret_cast<const __m128i*>(mask)); |
michael@0 | 752 | |
michael@0 | 753 | // Check whether masks are equal to 0 and get the highest bit |
michael@0 | 754 | // of each byte of result, if masks are all zero, we will get |
michael@0 | 755 | // pack_cmp to 0xFFFF |
michael@0 | 756 | int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_sse, |
michael@0 | 757 | _mm_setzero_si128())); |
michael@0 | 758 | |
michael@0 | 759 | // if mask pixels are not all zero, we will blend the dst pixels |
michael@0 | 760 | if (pack_cmp != 0xFFFF) { |
michael@0 | 761 | // Unpack 4 16bit mask pixels to |
michael@0 | 762 | // mask_sse = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0, |
michael@0 | 763 | // m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0) |
michael@0 | 764 | mask_sse = _mm_unpacklo_epi16(mask_sse, |
michael@0 | 765 | _mm_setzero_si128()); |
michael@0 | 766 | |
michael@0 | 767 | // Process 4 32bit dst pixels |
michael@0 | 768 | __m128i result = SkBlendLCD16_SSE2(src_sse, dst_sse, |
michael@0 | 769 | mask_sse, srcA_sse); |
michael@0 | 770 | _mm_store_si128(d, result); |
michael@0 | 771 | } |
michael@0 | 772 | |
michael@0 | 773 | d++; |
michael@0 | 774 | mask += 4; |
michael@0 | 775 | width -= 4; |
michael@0 | 776 | } |
michael@0 | 777 | |
michael@0 | 778 | dst = reinterpret_cast<SkPMColor*>(d); |
michael@0 | 779 | } |
michael@0 | 780 | |
michael@0 | 781 | while (width > 0) { |
michael@0 | 782 | *dst = SkBlendLCD16(srcA, srcR, srcG, srcB, *dst, *mask); |
michael@0 | 783 | mask++; |
michael@0 | 784 | dst++; |
michael@0 | 785 | width--; |
michael@0 | 786 | } |
michael@0 | 787 | } |
michael@0 | 788 | |
michael@0 | 789 | void SkBlitLCD16OpaqueRow_SSE2(SkPMColor dst[], const uint16_t mask[], |
michael@0 | 790 | SkColor src, int width, SkPMColor opaqueDst) { |
michael@0 | 791 | if (width <= 0) { |
michael@0 | 792 | return; |
michael@0 | 793 | } |
michael@0 | 794 | |
michael@0 | 795 | int srcR = SkColorGetR(src); |
michael@0 | 796 | int srcG = SkColorGetG(src); |
michael@0 | 797 | int srcB = SkColorGetB(src); |
michael@0 | 798 | |
michael@0 | 799 | if (width >= 4) { |
michael@0 | 800 | SkASSERT(((size_t)dst & 0x03) == 0); |
michael@0 | 801 | while (((size_t)dst & 0x0F) != 0) { |
michael@0 | 802 | *dst = SkBlendLCD16Opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst); |
michael@0 | 803 | mask++; |
michael@0 | 804 | dst++; |
michael@0 | 805 | width--; |
michael@0 | 806 | } |
michael@0 | 807 | |
michael@0 | 808 | __m128i *d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 809 | // Set alpha to 0xFF and replicate source four times in SSE register. |
michael@0 | 810 | __m128i src_sse = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB)); |
michael@0 | 811 | // Set srcA_sse to contain eight copies of srcA, padded with zero. |
michael@0 | 812 | // src_sse=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0) |
michael@0 | 813 | src_sse = _mm_unpacklo_epi8(src_sse, _mm_setzero_si128()); |
michael@0 | 814 | while (width >= 4) { |
michael@0 | 815 | // Load four destination pixels into dst_sse. |
michael@0 | 816 | __m128i dst_sse = _mm_load_si128(d); |
michael@0 | 817 | // Load four 16-bit masks into lower half of mask_sse. |
michael@0 | 818 | __m128i mask_sse = _mm_loadl_epi64( |
michael@0 | 819 | reinterpret_cast<const __m128i*>(mask)); |
michael@0 | 820 | |
michael@0 | 821 | // Check whether masks are equal to 0 and get the highest bit |
michael@0 | 822 | // of each byte of result, if masks are all zero, we will get |
michael@0 | 823 | // pack_cmp to 0xFFFF |
michael@0 | 824 | int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_sse, |
michael@0 | 825 | _mm_setzero_si128())); |
michael@0 | 826 | |
michael@0 | 827 | // if mask pixels are not all zero, we will blend the dst pixels |
michael@0 | 828 | if (pack_cmp != 0xFFFF) { |
michael@0 | 829 | // Unpack 4 16bit mask pixels to |
michael@0 | 830 | // mask_sse = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0, |
michael@0 | 831 | // m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0) |
michael@0 | 832 | mask_sse = _mm_unpacklo_epi16(mask_sse, |
michael@0 | 833 | _mm_setzero_si128()); |
michael@0 | 834 | |
michael@0 | 835 | // Process 4 32bit dst pixels |
michael@0 | 836 | __m128i result = SkBlendLCD16Opaque_SSE2(src_sse, dst_sse, |
michael@0 | 837 | mask_sse); |
michael@0 | 838 | _mm_store_si128(d, result); |
michael@0 | 839 | } |
michael@0 | 840 | |
michael@0 | 841 | d++; |
michael@0 | 842 | mask += 4; |
michael@0 | 843 | width -= 4; |
michael@0 | 844 | } |
michael@0 | 845 | |
michael@0 | 846 | dst = reinterpret_cast<SkPMColor*>(d); |
michael@0 | 847 | } |
michael@0 | 848 | |
michael@0 | 849 | while (width > 0) { |
michael@0 | 850 | *dst = SkBlendLCD16Opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst); |
michael@0 | 851 | mask++; |
michael@0 | 852 | dst++; |
michael@0 | 853 | width--; |
michael@0 | 854 | } |
michael@0 | 855 | } |
michael@0 | 856 | |
michael@0 | 857 | /* SSE2 version of S32_D565_Opaque() |
michael@0 | 858 | * portable version is in core/SkBlitRow_D16.cpp |
michael@0 | 859 | */ |
michael@0 | 860 | void S32_D565_Opaque_SSE2(uint16_t* SK_RESTRICT dst, |
michael@0 | 861 | const SkPMColor* SK_RESTRICT src, int count, |
michael@0 | 862 | U8CPU alpha, int /*x*/, int /*y*/) { |
michael@0 | 863 | SkASSERT(255 == alpha); |
michael@0 | 864 | |
michael@0 | 865 | if (count <= 0) { |
michael@0 | 866 | return; |
michael@0 | 867 | } |
michael@0 | 868 | |
michael@0 | 869 | if (count >= 8) { |
michael@0 | 870 | while (((size_t)dst & 0x0F) != 0) { |
michael@0 | 871 | SkPMColor c = *src++; |
michael@0 | 872 | SkPMColorAssert(c); |
michael@0 | 873 | |
michael@0 | 874 | *dst++ = SkPixel32ToPixel16_ToU16(c); |
michael@0 | 875 | count--; |
michael@0 | 876 | } |
michael@0 | 877 | |
michael@0 | 878 | const __m128i* s = reinterpret_cast<const __m128i*>(src); |
michael@0 | 879 | __m128i* d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 880 | __m128i r16_mask = _mm_set1_epi32(SK_R16_MASK); |
michael@0 | 881 | __m128i g16_mask = _mm_set1_epi32(SK_G16_MASK); |
michael@0 | 882 | __m128i b16_mask = _mm_set1_epi32(SK_B16_MASK); |
michael@0 | 883 | |
michael@0 | 884 | while (count >= 8) { |
michael@0 | 885 | // Load 8 pixels of src. |
michael@0 | 886 | __m128i src_pixel1 = _mm_loadu_si128(s++); |
michael@0 | 887 | __m128i src_pixel2 = _mm_loadu_si128(s++); |
michael@0 | 888 | |
michael@0 | 889 | // Calculate result r. |
michael@0 | 890 | __m128i r1 = _mm_srli_epi32(src_pixel1, |
michael@0 | 891 | SK_R32_SHIFT + (8 - SK_R16_BITS)); |
michael@0 | 892 | r1 = _mm_and_si128(r1, r16_mask); |
michael@0 | 893 | __m128i r2 = _mm_srli_epi32(src_pixel2, |
michael@0 | 894 | SK_R32_SHIFT + (8 - SK_R16_BITS)); |
michael@0 | 895 | r2 = _mm_and_si128(r2, r16_mask); |
michael@0 | 896 | __m128i r = _mm_packs_epi32(r1, r2); |
michael@0 | 897 | |
michael@0 | 898 | // Calculate result g. |
michael@0 | 899 | __m128i g1 = _mm_srli_epi32(src_pixel1, |
michael@0 | 900 | SK_G32_SHIFT + (8 - SK_G16_BITS)); |
michael@0 | 901 | g1 = _mm_and_si128(g1, g16_mask); |
michael@0 | 902 | __m128i g2 = _mm_srli_epi32(src_pixel2, |
michael@0 | 903 | SK_G32_SHIFT + (8 - SK_G16_BITS)); |
michael@0 | 904 | g2 = _mm_and_si128(g2, g16_mask); |
michael@0 | 905 | __m128i g = _mm_packs_epi32(g1, g2); |
michael@0 | 906 | |
michael@0 | 907 | // Calculate result b. |
michael@0 | 908 | __m128i b1 = _mm_srli_epi32(src_pixel1, |
michael@0 | 909 | SK_B32_SHIFT + (8 - SK_B16_BITS)); |
michael@0 | 910 | b1 = _mm_and_si128(b1, b16_mask); |
michael@0 | 911 | __m128i b2 = _mm_srli_epi32(src_pixel2, |
michael@0 | 912 | SK_B32_SHIFT + (8 - SK_B16_BITS)); |
michael@0 | 913 | b2 = _mm_and_si128(b2, b16_mask); |
michael@0 | 914 | __m128i b = _mm_packs_epi32(b1, b2); |
michael@0 | 915 | |
michael@0 | 916 | // Store 8 16-bit colors in dst. |
michael@0 | 917 | __m128i d_pixel = SkPackRGB16_SSE(r, g, b); |
michael@0 | 918 | _mm_store_si128(d++, d_pixel); |
michael@0 | 919 | count -= 8; |
michael@0 | 920 | } |
michael@0 | 921 | src = reinterpret_cast<const SkPMColor*>(s); |
michael@0 | 922 | dst = reinterpret_cast<uint16_t*>(d); |
michael@0 | 923 | } |
michael@0 | 924 | |
michael@0 | 925 | if (count > 0) { |
michael@0 | 926 | do { |
michael@0 | 927 | SkPMColor c = *src++; |
michael@0 | 928 | SkPMColorAssert(c); |
michael@0 | 929 | *dst++ = SkPixel32ToPixel16_ToU16(c); |
michael@0 | 930 | } while (--count != 0); |
michael@0 | 931 | } |
michael@0 | 932 | } |
michael@0 | 933 | |
michael@0 | 934 | /* SSE2 version of S32A_D565_Opaque() |
michael@0 | 935 | * portable version is in core/SkBlitRow_D16.cpp |
michael@0 | 936 | */ |
michael@0 | 937 | void S32A_D565_Opaque_SSE2(uint16_t* SK_RESTRICT dst, |
michael@0 | 938 | const SkPMColor* SK_RESTRICT src, |
michael@0 | 939 | int count, U8CPU alpha, int /*x*/, int /*y*/) { |
michael@0 | 940 | SkASSERT(255 == alpha); |
michael@0 | 941 | |
michael@0 | 942 | if (count <= 0) { |
michael@0 | 943 | return; |
michael@0 | 944 | } |
michael@0 | 945 | |
michael@0 | 946 | if (count >= 8) { |
michael@0 | 947 | // Make dst 16 bytes alignment |
michael@0 | 948 | while (((size_t)dst & 0x0F) != 0) { |
michael@0 | 949 | SkPMColor c = *src++; |
michael@0 | 950 | if (c) { |
michael@0 | 951 | *dst = SkSrcOver32To16(c, *dst); |
michael@0 | 952 | } |
michael@0 | 953 | dst += 1; |
michael@0 | 954 | count--; |
michael@0 | 955 | } |
michael@0 | 956 | |
michael@0 | 957 | const __m128i* s = reinterpret_cast<const __m128i*>(src); |
michael@0 | 958 | __m128i* d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 959 | __m128i var255 = _mm_set1_epi16(255); |
michael@0 | 960 | __m128i r16_mask = _mm_set1_epi16(SK_R16_MASK); |
michael@0 | 961 | __m128i g16_mask = _mm_set1_epi16(SK_G16_MASK); |
michael@0 | 962 | __m128i b16_mask = _mm_set1_epi16(SK_B16_MASK); |
michael@0 | 963 | |
michael@0 | 964 | while (count >= 8) { |
michael@0 | 965 | // Load 8 pixels of src. |
michael@0 | 966 | __m128i src_pixel1 = _mm_loadu_si128(s++); |
michael@0 | 967 | __m128i src_pixel2 = _mm_loadu_si128(s++); |
michael@0 | 968 | |
michael@0 | 969 | // Check whether src pixels are equal to 0 and get the highest bit |
michael@0 | 970 | // of each byte of result, if src pixels are all zero, src_cmp1 and |
michael@0 | 971 | // src_cmp2 will be 0xFFFF. |
michael@0 | 972 | int src_cmp1 = _mm_movemask_epi8(_mm_cmpeq_epi16(src_pixel1, |
michael@0 | 973 | _mm_setzero_si128())); |
michael@0 | 974 | int src_cmp2 = _mm_movemask_epi8(_mm_cmpeq_epi16(src_pixel2, |
michael@0 | 975 | _mm_setzero_si128())); |
michael@0 | 976 | if (src_cmp1 == 0xFFFF && src_cmp2 == 0xFFFF) { |
michael@0 | 977 | d++; |
michael@0 | 978 | count -= 8; |
michael@0 | 979 | continue; |
michael@0 | 980 | } |
michael@0 | 981 | |
michael@0 | 982 | // Load 8 pixels of dst. |
michael@0 | 983 | __m128i dst_pixel = _mm_load_si128(d); |
michael@0 | 984 | |
michael@0 | 985 | // Extract A from src. |
michael@0 | 986 | __m128i sa1 = _mm_slli_epi32(src_pixel1,(24 - SK_A32_SHIFT)); |
michael@0 | 987 | sa1 = _mm_srli_epi32(sa1, 24); |
michael@0 | 988 | __m128i sa2 = _mm_slli_epi32(src_pixel2,(24 - SK_A32_SHIFT)); |
michael@0 | 989 | sa2 = _mm_srli_epi32(sa2, 24); |
michael@0 | 990 | __m128i sa = _mm_packs_epi32(sa1, sa2); |
michael@0 | 991 | |
michael@0 | 992 | // Extract R from src. |
michael@0 | 993 | __m128i sr1 = _mm_slli_epi32(src_pixel1,(24 - SK_R32_SHIFT)); |
michael@0 | 994 | sr1 = _mm_srli_epi32(sr1, 24); |
michael@0 | 995 | __m128i sr2 = _mm_slli_epi32(src_pixel2,(24 - SK_R32_SHIFT)); |
michael@0 | 996 | sr2 = _mm_srli_epi32(sr2, 24); |
michael@0 | 997 | __m128i sr = _mm_packs_epi32(sr1, sr2); |
michael@0 | 998 | |
michael@0 | 999 | // Extract G from src. |
michael@0 | 1000 | __m128i sg1 = _mm_slli_epi32(src_pixel1,(24 - SK_G32_SHIFT)); |
michael@0 | 1001 | sg1 = _mm_srli_epi32(sg1, 24); |
michael@0 | 1002 | __m128i sg2 = _mm_slli_epi32(src_pixel2,(24 - SK_G32_SHIFT)); |
michael@0 | 1003 | sg2 = _mm_srli_epi32(sg2, 24); |
michael@0 | 1004 | __m128i sg = _mm_packs_epi32(sg1, sg2); |
michael@0 | 1005 | |
michael@0 | 1006 | // Extract B from src. |
michael@0 | 1007 | __m128i sb1 = _mm_slli_epi32(src_pixel1,(24 - SK_B32_SHIFT)); |
michael@0 | 1008 | sb1 = _mm_srli_epi32(sb1, 24); |
michael@0 | 1009 | __m128i sb2 = _mm_slli_epi32(src_pixel2,(24 - SK_B32_SHIFT)); |
michael@0 | 1010 | sb2 = _mm_srli_epi32(sb2, 24); |
michael@0 | 1011 | __m128i sb = _mm_packs_epi32(sb1, sb2); |
michael@0 | 1012 | |
michael@0 | 1013 | // Extract R G B from dst. |
michael@0 | 1014 | __m128i dr = _mm_srli_epi16(dst_pixel,SK_R16_SHIFT); |
michael@0 | 1015 | dr = _mm_and_si128(dr, r16_mask); |
michael@0 | 1016 | __m128i dg = _mm_srli_epi16(dst_pixel,SK_G16_SHIFT); |
michael@0 | 1017 | dg = _mm_and_si128(dg, g16_mask); |
michael@0 | 1018 | __m128i db = _mm_srli_epi16(dst_pixel,SK_B16_SHIFT); |
michael@0 | 1019 | db = _mm_and_si128(db, b16_mask); |
michael@0 | 1020 | |
michael@0 | 1021 | __m128i isa = _mm_sub_epi16(var255, sa); // 255 -sa |
michael@0 | 1022 | |
michael@0 | 1023 | // Calculate R G B of result. |
michael@0 | 1024 | // Original algorithm is in SkSrcOver32To16(). |
michael@0 | 1025 | dr = _mm_add_epi16(sr, SkMul16ShiftRound_SSE(dr, isa, SK_R16_BITS)); |
michael@0 | 1026 | dr = _mm_srli_epi16(dr, 8 - SK_R16_BITS); |
michael@0 | 1027 | dg = _mm_add_epi16(sg, SkMul16ShiftRound_SSE(dg, isa, SK_G16_BITS)); |
michael@0 | 1028 | dg = _mm_srli_epi16(dg, 8 - SK_G16_BITS); |
michael@0 | 1029 | db = _mm_add_epi16(sb, SkMul16ShiftRound_SSE(db, isa, SK_B16_BITS)); |
michael@0 | 1030 | db = _mm_srli_epi16(db, 8 - SK_B16_BITS); |
michael@0 | 1031 | |
michael@0 | 1032 | // Pack R G B into 16-bit color. |
michael@0 | 1033 | __m128i d_pixel = SkPackRGB16_SSE(dr, dg, db); |
michael@0 | 1034 | |
michael@0 | 1035 | // Store 8 16-bit colors in dst. |
michael@0 | 1036 | _mm_store_si128(d++, d_pixel); |
michael@0 | 1037 | count -= 8; |
michael@0 | 1038 | } |
michael@0 | 1039 | |
michael@0 | 1040 | src = reinterpret_cast<const SkPMColor*>(s); |
michael@0 | 1041 | dst = reinterpret_cast<uint16_t*>(d); |
michael@0 | 1042 | } |
michael@0 | 1043 | |
michael@0 | 1044 | if (count > 0) { |
michael@0 | 1045 | do { |
michael@0 | 1046 | SkPMColor c = *src++; |
michael@0 | 1047 | SkPMColorAssert(c); |
michael@0 | 1048 | if (c) { |
michael@0 | 1049 | *dst = SkSrcOver32To16(c, *dst); |
michael@0 | 1050 | } |
michael@0 | 1051 | dst += 1; |
michael@0 | 1052 | } while (--count != 0); |
michael@0 | 1053 | } |
michael@0 | 1054 | } |
michael@0 | 1055 | |
michael@0 | 1056 | void S32_D565_Opaque_Dither_SSE2(uint16_t* SK_RESTRICT dst, |
michael@0 | 1057 | const SkPMColor* SK_RESTRICT src, |
michael@0 | 1058 | int count, U8CPU alpha, int x, int y) { |
michael@0 | 1059 | SkASSERT(255 == alpha); |
michael@0 | 1060 | |
michael@0 | 1061 | if (count <= 0) { |
michael@0 | 1062 | return; |
michael@0 | 1063 | } |
michael@0 | 1064 | |
michael@0 | 1065 | if (count >= 8) { |
michael@0 | 1066 | while (((size_t)dst & 0x0F) != 0) { |
michael@0 | 1067 | DITHER_565_SCAN(y); |
michael@0 | 1068 | SkPMColor c = *src++; |
michael@0 | 1069 | SkPMColorAssert(c); |
michael@0 | 1070 | |
michael@0 | 1071 | unsigned dither = DITHER_VALUE(x); |
michael@0 | 1072 | *dst++ = SkDitherRGB32To565(c, dither); |
michael@0 | 1073 | DITHER_INC_X(x); |
michael@0 | 1074 | count--; |
michael@0 | 1075 | } |
michael@0 | 1076 | |
michael@0 | 1077 | unsigned short dither_value[8]; |
michael@0 | 1078 | __m128i dither; |
michael@0 | 1079 | #ifdef ENABLE_DITHER_MATRIX_4X4 |
michael@0 | 1080 | const uint8_t* dither_scan = gDitherMatrix_3Bit_4X4[(y) & 3]; |
michael@0 | 1081 | dither_value[0] = dither_value[4] = dither_scan[(x) & 3]; |
michael@0 | 1082 | dither_value[1] = dither_value[5] = dither_scan[(x + 1) & 3]; |
michael@0 | 1083 | dither_value[2] = dither_value[6] = dither_scan[(x + 2) & 3]; |
michael@0 | 1084 | dither_value[3] = dither_value[7] = dither_scan[(x + 3) & 3]; |
michael@0 | 1085 | #else |
michael@0 | 1086 | const uint16_t dither_scan = gDitherMatrix_3Bit_16[(y) & 3]; |
michael@0 | 1087 | dither_value[0] = dither_value[4] = (dither_scan |
michael@0 | 1088 | >> (((x) & 3) << 2)) & 0xF; |
michael@0 | 1089 | dither_value[1] = dither_value[5] = (dither_scan |
michael@0 | 1090 | >> (((x + 1) & 3) << 2)) & 0xF; |
michael@0 | 1091 | dither_value[2] = dither_value[6] = (dither_scan |
michael@0 | 1092 | >> (((x + 2) & 3) << 2)) & 0xF; |
michael@0 | 1093 | dither_value[3] = dither_value[7] = (dither_scan |
michael@0 | 1094 | >> (((x + 3) & 3) << 2)) & 0xF; |
michael@0 | 1095 | #endif |
michael@0 | 1096 | dither = _mm_loadu_si128((__m128i*) dither_value); |
michael@0 | 1097 | |
michael@0 | 1098 | const __m128i* s = reinterpret_cast<const __m128i*>(src); |
michael@0 | 1099 | __m128i* d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 1100 | |
michael@0 | 1101 | while (count >= 8) { |
michael@0 | 1102 | // Load 8 pixels of src. |
michael@0 | 1103 | __m128i src_pixel1 = _mm_loadu_si128(s++); |
michael@0 | 1104 | __m128i src_pixel2 = _mm_loadu_si128(s++); |
michael@0 | 1105 | |
michael@0 | 1106 | // Extract R from src. |
michael@0 | 1107 | __m128i sr1 = _mm_slli_epi32(src_pixel1, (24 - SK_R32_SHIFT)); |
michael@0 | 1108 | sr1 = _mm_srli_epi32(sr1, 24); |
michael@0 | 1109 | __m128i sr2 = _mm_slli_epi32(src_pixel2, (24 - SK_R32_SHIFT)); |
michael@0 | 1110 | sr2 = _mm_srli_epi32(sr2, 24); |
michael@0 | 1111 | __m128i sr = _mm_packs_epi32(sr1, sr2); |
michael@0 | 1112 | |
michael@0 | 1113 | // SkDITHER_R32To565(sr, dither) |
michael@0 | 1114 | __m128i sr_offset = _mm_srli_epi16(sr, 5); |
michael@0 | 1115 | sr = _mm_add_epi16(sr, dither); |
michael@0 | 1116 | sr = _mm_sub_epi16(sr, sr_offset); |
michael@0 | 1117 | sr = _mm_srli_epi16(sr, SK_R32_BITS - SK_R16_BITS); |
michael@0 | 1118 | |
michael@0 | 1119 | // Extract G from src. |
michael@0 | 1120 | __m128i sg1 = _mm_slli_epi32(src_pixel1, (24 - SK_G32_SHIFT)); |
michael@0 | 1121 | sg1 = _mm_srli_epi32(sg1, 24); |
michael@0 | 1122 | __m128i sg2 = _mm_slli_epi32(src_pixel2, (24 - SK_G32_SHIFT)); |
michael@0 | 1123 | sg2 = _mm_srli_epi32(sg2, 24); |
michael@0 | 1124 | __m128i sg = _mm_packs_epi32(sg1, sg2); |
michael@0 | 1125 | |
michael@0 | 1126 | // SkDITHER_R32To565(sg, dither) |
michael@0 | 1127 | __m128i sg_offset = _mm_srli_epi16(sg, 6); |
michael@0 | 1128 | sg = _mm_add_epi16(sg, _mm_srli_epi16(dither, 1)); |
michael@0 | 1129 | sg = _mm_sub_epi16(sg, sg_offset); |
michael@0 | 1130 | sg = _mm_srli_epi16(sg, SK_G32_BITS - SK_G16_BITS); |
michael@0 | 1131 | |
michael@0 | 1132 | // Extract B from src. |
michael@0 | 1133 | __m128i sb1 = _mm_slli_epi32(src_pixel1, (24 - SK_B32_SHIFT)); |
michael@0 | 1134 | sb1 = _mm_srli_epi32(sb1, 24); |
michael@0 | 1135 | __m128i sb2 = _mm_slli_epi32(src_pixel2, (24 - SK_B32_SHIFT)); |
michael@0 | 1136 | sb2 = _mm_srli_epi32(sb2, 24); |
michael@0 | 1137 | __m128i sb = _mm_packs_epi32(sb1, sb2); |
michael@0 | 1138 | |
michael@0 | 1139 | // SkDITHER_R32To565(sb, dither) |
michael@0 | 1140 | __m128i sb_offset = _mm_srli_epi16(sb, 5); |
michael@0 | 1141 | sb = _mm_add_epi16(sb, dither); |
michael@0 | 1142 | sb = _mm_sub_epi16(sb, sb_offset); |
michael@0 | 1143 | sb = _mm_srli_epi16(sb, SK_B32_BITS - SK_B16_BITS); |
michael@0 | 1144 | |
michael@0 | 1145 | // Pack and store 16-bit dst pixel. |
michael@0 | 1146 | __m128i d_pixel = SkPackRGB16_SSE(sr, sg, sb); |
michael@0 | 1147 | _mm_store_si128(d++, d_pixel); |
michael@0 | 1148 | |
michael@0 | 1149 | count -= 8; |
michael@0 | 1150 | x += 8; |
michael@0 | 1151 | } |
michael@0 | 1152 | |
michael@0 | 1153 | src = reinterpret_cast<const SkPMColor*>(s); |
michael@0 | 1154 | dst = reinterpret_cast<uint16_t*>(d); |
michael@0 | 1155 | } |
michael@0 | 1156 | |
michael@0 | 1157 | if (count > 0) { |
michael@0 | 1158 | DITHER_565_SCAN(y); |
michael@0 | 1159 | do { |
michael@0 | 1160 | SkPMColor c = *src++; |
michael@0 | 1161 | SkPMColorAssert(c); |
michael@0 | 1162 | |
michael@0 | 1163 | unsigned dither = DITHER_VALUE(x); |
michael@0 | 1164 | *dst++ = SkDitherRGB32To565(c, dither); |
michael@0 | 1165 | DITHER_INC_X(x); |
michael@0 | 1166 | } while (--count != 0); |
michael@0 | 1167 | } |
michael@0 | 1168 | } |
michael@0 | 1169 | |
michael@0 | 1170 | /* SSE2 version of S32A_D565_Opaque_Dither() |
michael@0 | 1171 | * portable version is in core/SkBlitRow_D16.cpp |
michael@0 | 1172 | */ |
michael@0 | 1173 | void S32A_D565_Opaque_Dither_SSE2(uint16_t* SK_RESTRICT dst, |
michael@0 | 1174 | const SkPMColor* SK_RESTRICT src, |
michael@0 | 1175 | int count, U8CPU alpha, int x, int y) { |
michael@0 | 1176 | SkASSERT(255 == alpha); |
michael@0 | 1177 | |
michael@0 | 1178 | if (count <= 0) { |
michael@0 | 1179 | return; |
michael@0 | 1180 | } |
michael@0 | 1181 | |
michael@0 | 1182 | if (count >= 8) { |
michael@0 | 1183 | while (((size_t)dst & 0x0F) != 0) { |
michael@0 | 1184 | DITHER_565_SCAN(y); |
michael@0 | 1185 | SkPMColor c = *src++; |
michael@0 | 1186 | SkPMColorAssert(c); |
michael@0 | 1187 | if (c) { |
michael@0 | 1188 | unsigned a = SkGetPackedA32(c); |
michael@0 | 1189 | |
michael@0 | 1190 | int d = SkAlphaMul(DITHER_VALUE(x), SkAlpha255To256(a)); |
michael@0 | 1191 | |
michael@0 | 1192 | unsigned sr = SkGetPackedR32(c); |
michael@0 | 1193 | unsigned sg = SkGetPackedG32(c); |
michael@0 | 1194 | unsigned sb = SkGetPackedB32(c); |
michael@0 | 1195 | sr = SkDITHER_R32_FOR_565(sr, d); |
michael@0 | 1196 | sg = SkDITHER_G32_FOR_565(sg, d); |
michael@0 | 1197 | sb = SkDITHER_B32_FOR_565(sb, d); |
michael@0 | 1198 | |
michael@0 | 1199 | uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2); |
michael@0 | 1200 | uint32_t dst_expanded = SkExpand_rgb_16(*dst); |
michael@0 | 1201 | dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3); |
michael@0 | 1202 | // now src and dst expanded are in g:11 r:10 x:1 b:10 |
michael@0 | 1203 | *dst = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5); |
michael@0 | 1204 | } |
michael@0 | 1205 | dst += 1; |
michael@0 | 1206 | DITHER_INC_X(x); |
michael@0 | 1207 | count--; |
michael@0 | 1208 | } |
michael@0 | 1209 | |
michael@0 | 1210 | unsigned short dither_value[8]; |
michael@0 | 1211 | __m128i dither, dither_cur; |
michael@0 | 1212 | #ifdef ENABLE_DITHER_MATRIX_4X4 |
michael@0 | 1213 | const uint8_t* dither_scan = gDitherMatrix_3Bit_4X4[(y) & 3]; |
michael@0 | 1214 | dither_value[0] = dither_value[4] = dither_scan[(x) & 3]; |
michael@0 | 1215 | dither_value[1] = dither_value[5] = dither_scan[(x + 1) & 3]; |
michael@0 | 1216 | dither_value[2] = dither_value[6] = dither_scan[(x + 2) & 3]; |
michael@0 | 1217 | dither_value[3] = dither_value[7] = dither_scan[(x + 3) & 3]; |
michael@0 | 1218 | #else |
michael@0 | 1219 | const uint16_t dither_scan = gDitherMatrix_3Bit_16[(y) & 3]; |
michael@0 | 1220 | dither_value[0] = dither_value[4] = (dither_scan |
michael@0 | 1221 | >> (((x) & 3) << 2)) & 0xF; |
michael@0 | 1222 | dither_value[1] = dither_value[5] = (dither_scan |
michael@0 | 1223 | >> (((x + 1) & 3) << 2)) & 0xF; |
michael@0 | 1224 | dither_value[2] = dither_value[6] = (dither_scan |
michael@0 | 1225 | >> (((x + 2) & 3) << 2)) & 0xF; |
michael@0 | 1226 | dither_value[3] = dither_value[7] = (dither_scan |
michael@0 | 1227 | >> (((x + 3) & 3) << 2)) & 0xF; |
michael@0 | 1228 | #endif |
michael@0 | 1229 | dither = _mm_loadu_si128((__m128i*) dither_value); |
michael@0 | 1230 | |
michael@0 | 1231 | const __m128i* s = reinterpret_cast<const __m128i*>(src); |
michael@0 | 1232 | __m128i* d = reinterpret_cast<__m128i*>(dst); |
michael@0 | 1233 | __m128i var256 = _mm_set1_epi16(256); |
michael@0 | 1234 | __m128i r16_mask = _mm_set1_epi16(SK_R16_MASK); |
michael@0 | 1235 | __m128i g16_mask = _mm_set1_epi16(SK_G16_MASK); |
michael@0 | 1236 | __m128i b16_mask = _mm_set1_epi16(SK_B16_MASK); |
michael@0 | 1237 | |
michael@0 | 1238 | while (count >= 8) { |
michael@0 | 1239 | // Load 8 pixels of src and dst. |
michael@0 | 1240 | __m128i src_pixel1 = _mm_loadu_si128(s++); |
michael@0 | 1241 | __m128i src_pixel2 = _mm_loadu_si128(s++); |
michael@0 | 1242 | __m128i dst_pixel = _mm_load_si128(d); |
michael@0 | 1243 | |
michael@0 | 1244 | // Extract A from src. |
michael@0 | 1245 | __m128i sa1 = _mm_slli_epi32(src_pixel1,(24 - SK_A32_SHIFT)); |
michael@0 | 1246 | sa1 = _mm_srli_epi32(sa1, 24); |
michael@0 | 1247 | __m128i sa2 = _mm_slli_epi32(src_pixel2,(24 - SK_A32_SHIFT)); |
michael@0 | 1248 | sa2 = _mm_srli_epi32(sa2, 24); |
michael@0 | 1249 | __m128i sa = _mm_packs_epi32(sa1, sa2); |
michael@0 | 1250 | |
michael@0 | 1251 | // Calculate current dither value. |
michael@0 | 1252 | dither_cur = _mm_mullo_epi16(dither, |
michael@0 | 1253 | _mm_add_epi16(sa, _mm_set1_epi16(1))); |
michael@0 | 1254 | dither_cur = _mm_srli_epi16(dither_cur, 8); |
michael@0 | 1255 | |
michael@0 | 1256 | // Extract R from src. |
michael@0 | 1257 | __m128i sr1 = _mm_slli_epi32(src_pixel1, (24 - SK_R32_SHIFT)); |
michael@0 | 1258 | sr1 = _mm_srli_epi32(sr1, 24); |
michael@0 | 1259 | __m128i sr2 = _mm_slli_epi32(src_pixel2, (24 - SK_R32_SHIFT)); |
michael@0 | 1260 | sr2 = _mm_srli_epi32(sr2, 24); |
michael@0 | 1261 | __m128i sr = _mm_packs_epi32(sr1, sr2); |
michael@0 | 1262 | |
michael@0 | 1263 | // SkDITHER_R32_FOR_565(sr, d) |
michael@0 | 1264 | __m128i sr_offset = _mm_srli_epi16(sr, 5); |
michael@0 | 1265 | sr = _mm_add_epi16(sr, dither_cur); |
michael@0 | 1266 | sr = _mm_sub_epi16(sr, sr_offset); |
michael@0 | 1267 | |
michael@0 | 1268 | // Expand sr. |
michael@0 | 1269 | sr = _mm_slli_epi16(sr, 2); |
michael@0 | 1270 | |
michael@0 | 1271 | // Extract G from src. |
michael@0 | 1272 | __m128i sg1 = _mm_slli_epi32(src_pixel1, (24 - SK_G32_SHIFT)); |
michael@0 | 1273 | sg1 = _mm_srli_epi32(sg1, 24); |
michael@0 | 1274 | __m128i sg2 = _mm_slli_epi32(src_pixel2, (24 - SK_G32_SHIFT)); |
michael@0 | 1275 | sg2 = _mm_srli_epi32(sg2, 24); |
michael@0 | 1276 | __m128i sg = _mm_packs_epi32(sg1, sg2); |
michael@0 | 1277 | |
michael@0 | 1278 | // sg = SkDITHER_G32_FOR_565(sg, d). |
michael@0 | 1279 | __m128i sg_offset = _mm_srli_epi16(sg, 6); |
michael@0 | 1280 | sg = _mm_add_epi16(sg, _mm_srli_epi16(dither_cur, 1)); |
michael@0 | 1281 | sg = _mm_sub_epi16(sg, sg_offset); |
michael@0 | 1282 | |
michael@0 | 1283 | // Expand sg. |
michael@0 | 1284 | sg = _mm_slli_epi16(sg, 3); |
michael@0 | 1285 | |
michael@0 | 1286 | // Extract B from src. |
michael@0 | 1287 | __m128i sb1 = _mm_slli_epi32(src_pixel1, (24 - SK_B32_SHIFT)); |
michael@0 | 1288 | sb1 = _mm_srli_epi32(sb1, 24); |
michael@0 | 1289 | __m128i sb2 = _mm_slli_epi32(src_pixel2, (24 - SK_B32_SHIFT)); |
michael@0 | 1290 | sb2 = _mm_srli_epi32(sb2, 24); |
michael@0 | 1291 | __m128i sb = _mm_packs_epi32(sb1, sb2); |
michael@0 | 1292 | |
michael@0 | 1293 | // sb = SkDITHER_B32_FOR_565(sb, d). |
michael@0 | 1294 | __m128i sb_offset = _mm_srli_epi16(sb, 5); |
michael@0 | 1295 | sb = _mm_add_epi16(sb, dither_cur); |
michael@0 | 1296 | sb = _mm_sub_epi16(sb, sb_offset); |
michael@0 | 1297 | |
michael@0 | 1298 | // Expand sb. |
michael@0 | 1299 | sb = _mm_slli_epi16(sb, 2); |
michael@0 | 1300 | |
michael@0 | 1301 | // Extract R G B from dst. |
michael@0 | 1302 | __m128i dr = _mm_srli_epi16(dst_pixel, SK_R16_SHIFT); |
michael@0 | 1303 | dr = _mm_and_si128(dr, r16_mask); |
michael@0 | 1304 | __m128i dg = _mm_srli_epi16(dst_pixel, SK_G16_SHIFT); |
michael@0 | 1305 | dg = _mm_and_si128(dg, g16_mask); |
michael@0 | 1306 | __m128i db = _mm_srli_epi16(dst_pixel, SK_B16_SHIFT); |
michael@0 | 1307 | db = _mm_and_si128(db, b16_mask); |
michael@0 | 1308 | |
michael@0 | 1309 | // SkAlpha255To256(255 - a) >> 3 |
michael@0 | 1310 | __m128i isa = _mm_sub_epi16(var256, sa); |
michael@0 | 1311 | isa = _mm_srli_epi16(isa, 3); |
michael@0 | 1312 | |
michael@0 | 1313 | dr = _mm_mullo_epi16(dr, isa); |
michael@0 | 1314 | dr = _mm_add_epi16(dr, sr); |
michael@0 | 1315 | dr = _mm_srli_epi16(dr, 5); |
michael@0 | 1316 | |
michael@0 | 1317 | dg = _mm_mullo_epi16(dg, isa); |
michael@0 | 1318 | dg = _mm_add_epi16(dg, sg); |
michael@0 | 1319 | dg = _mm_srli_epi16(dg, 5); |
michael@0 | 1320 | |
michael@0 | 1321 | db = _mm_mullo_epi16(db, isa); |
michael@0 | 1322 | db = _mm_add_epi16(db, sb); |
michael@0 | 1323 | db = _mm_srli_epi16(db, 5); |
michael@0 | 1324 | |
michael@0 | 1325 | // Package and store dst pixel. |
michael@0 | 1326 | __m128i d_pixel = SkPackRGB16_SSE(dr, dg, db); |
michael@0 | 1327 | _mm_store_si128(d++, d_pixel); |
michael@0 | 1328 | |
michael@0 | 1329 | count -= 8; |
michael@0 | 1330 | x += 8; |
michael@0 | 1331 | } |
michael@0 | 1332 | |
michael@0 | 1333 | src = reinterpret_cast<const SkPMColor*>(s); |
michael@0 | 1334 | dst = reinterpret_cast<uint16_t*>(d); |
michael@0 | 1335 | } |
michael@0 | 1336 | |
michael@0 | 1337 | if (count > 0) { |
michael@0 | 1338 | DITHER_565_SCAN(y); |
michael@0 | 1339 | do { |
michael@0 | 1340 | SkPMColor c = *src++; |
michael@0 | 1341 | SkPMColorAssert(c); |
michael@0 | 1342 | if (c) { |
michael@0 | 1343 | unsigned a = SkGetPackedA32(c); |
michael@0 | 1344 | |
michael@0 | 1345 | int d = SkAlphaMul(DITHER_VALUE(x), SkAlpha255To256(a)); |
michael@0 | 1346 | |
michael@0 | 1347 | unsigned sr = SkGetPackedR32(c); |
michael@0 | 1348 | unsigned sg = SkGetPackedG32(c); |
michael@0 | 1349 | unsigned sb = SkGetPackedB32(c); |
michael@0 | 1350 | sr = SkDITHER_R32_FOR_565(sr, d); |
michael@0 | 1351 | sg = SkDITHER_G32_FOR_565(sg, d); |
michael@0 | 1352 | sb = SkDITHER_B32_FOR_565(sb, d); |
michael@0 | 1353 | |
michael@0 | 1354 | uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2); |
michael@0 | 1355 | uint32_t dst_expanded = SkExpand_rgb_16(*dst); |
michael@0 | 1356 | dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3); |
michael@0 | 1357 | // now src and dst expanded are in g:11 r:10 x:1 b:10 |
michael@0 | 1358 | *dst = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5); |
michael@0 | 1359 | } |
michael@0 | 1360 | dst += 1; |
michael@0 | 1361 | DITHER_INC_X(x); |
michael@0 | 1362 | } while (--count != 0); |
michael@0 | 1363 | } |
michael@0 | 1364 | } |