gfx/skia/trunk/src/utils/SkSHA1.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 /*
michael@0 2 * Copyright 2013 Google Inc.
michael@0 3 *
michael@0 4 * Use of this source code is governed by a BSD-style license that can be
michael@0 5 * found in the LICENSE file.
michael@0 6 *
michael@0 7 * The following code is based on the description in RFC 3174.
michael@0 8 * http://www.ietf.org/rfc/rfc3174.txt
michael@0 9 */
michael@0 10
michael@0 11 #include "SkTypes.h"
michael@0 12 #include "SkSHA1.h"
michael@0 13 #include <string.h>
michael@0 14
michael@0 15 /** SHA1 basic transformation. Transforms state based on block. */
michael@0 16 static void transform(uint32_t state[5], const uint8_t block[64]);
michael@0 17
michael@0 18 /** Encodes input into output (5 big endian 32 bit values). */
michael@0 19 static void encode(uint8_t output[20], const uint32_t input[5]);
michael@0 20
michael@0 21 /** Encodes input into output (big endian 64 bit value). */
michael@0 22 static void encode(uint8_t output[8], const uint64_t input);
michael@0 23
michael@0 24 SkSHA1::SkSHA1() : byteCount(0) {
michael@0 25 // These are magic numbers from the specification. The first four are the same as MD5.
michael@0 26 this->state[0] = 0x67452301;
michael@0 27 this->state[1] = 0xefcdab89;
michael@0 28 this->state[2] = 0x98badcfe;
michael@0 29 this->state[3] = 0x10325476;
michael@0 30 this->state[4] = 0xc3d2e1f0;
michael@0 31 }
michael@0 32
michael@0 33 void SkSHA1::update(const uint8_t* input, size_t inputLength) {
michael@0 34 unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
michael@0 35 unsigned int bufferAvailable = 64 - bufferIndex;
michael@0 36
michael@0 37 unsigned int inputIndex;
michael@0 38 if (inputLength >= bufferAvailable) {
michael@0 39 if (bufferIndex) {
michael@0 40 memcpy(&this->buffer[bufferIndex], input, bufferAvailable);
michael@0 41 transform(this->state, this->buffer);
michael@0 42 inputIndex = bufferAvailable;
michael@0 43 } else {
michael@0 44 inputIndex = 0;
michael@0 45 }
michael@0 46
michael@0 47 for (; inputIndex + 63 < inputLength; inputIndex += 64) {
michael@0 48 transform(this->state, &input[inputIndex]);
michael@0 49 }
michael@0 50
michael@0 51 bufferIndex = 0;
michael@0 52 } else {
michael@0 53 inputIndex = 0;
michael@0 54 }
michael@0 55
michael@0 56 memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex);
michael@0 57
michael@0 58 this->byteCount += inputLength;
michael@0 59 }
michael@0 60
michael@0 61 void SkSHA1::finish(Digest& digest) {
michael@0 62 // Get the number of bits before padding.
michael@0 63 uint8_t bits[8];
michael@0 64 encode(bits, this->byteCount << 3);
michael@0 65
michael@0 66 // Pad out to 56 mod 64.
michael@0 67 unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
michael@0 68 unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
michael@0 69 static uint8_t PADDING[64] = {
michael@0 70 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
michael@0 71 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
michael@0 72 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
michael@0 73 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
michael@0 74 };
michael@0 75 this->update(PADDING, paddingLength);
michael@0 76
michael@0 77 // Append length (length before padding, will cause final update).
michael@0 78 this->update(bits, 8);
michael@0 79
michael@0 80 // Write out digest.
michael@0 81 encode(digest.data, this->state);
michael@0 82
michael@0 83 #if defined(SK_SHA1_CLEAR_DATA)
michael@0 84 // Clear state.
michael@0 85 memset(this, 0, sizeof(*this));
michael@0 86 #endif
michael@0 87 }
michael@0 88
michael@0 89 struct F1 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) {
michael@0 90 return (B & C) | ((~B) & D);
michael@0 91 //return D ^ (B & (C ^ D));
michael@0 92 //return (B & C) ^ ((~B) & D);
michael@0 93 //return (B & C) + ((~B) & D);
michael@0 94 //return _mm_or_ps(_mm_andnot_ps(B, D), _mm_and_ps(B, C)); //SSE2
michael@0 95 //return vec_sel(D, C, B); //PPC
michael@0 96 }};
michael@0 97
michael@0 98 struct F2 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) {
michael@0 99 return B ^ C ^ D;
michael@0 100 }};
michael@0 101
michael@0 102 struct F3 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) {
michael@0 103 return (B & C) | (B & D) | (C & D);
michael@0 104 //return (B & C) | (D & (B | C));
michael@0 105 //return (B & C) | (D & (B ^ C));
michael@0 106 //return (B & C) + (D & (B ^ C));
michael@0 107 //return (B & C) ^ (B & D) ^ (C & D);
michael@0 108 }};
michael@0 109
michael@0 110 /** Rotates x left n bits. */
michael@0 111 static inline uint32_t rotate_left(uint32_t x, uint8_t n) {
michael@0 112 return (x << n) | (x >> (32 - n));
michael@0 113 }
michael@0 114
michael@0 115 template <typename T>
michael@0 116 static inline void operation(T operation,
michael@0 117 uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E,
michael@0 118 uint32_t w, uint32_t k) {
michael@0 119 E += rotate_left(A, 5) + operation(B, C, D) + w + k;
michael@0 120 B = rotate_left(B, 30);
michael@0 121 }
michael@0 122
michael@0 123 static void transform(uint32_t state[5], const uint8_t block[64]) {
michael@0 124 uint32_t A = state[0], B = state[1], C = state[2], D = state[3], E = state[4];
michael@0 125
michael@0 126 // Round constants defined in SHA-1.
michael@0 127 static const uint32_t K[] = {
michael@0 128 0x5A827999, //sqrt(2) * 2^30
michael@0 129 0x6ED9EBA1, //sqrt(3) * 2^30
michael@0 130 0x8F1BBCDC, //sqrt(5) * 2^30
michael@0 131 0xCA62C1D6, //sqrt(10) * 2^30
michael@0 132 };
michael@0 133
michael@0 134 uint32_t W[80];
michael@0 135
michael@0 136 // Initialize the array W.
michael@0 137 size_t i = 0;
michael@0 138 for (size_t j = 0; i < 16; ++i, j += 4) {
michael@0 139 W[i] = (((uint32_t)block[j ]) << 24) |
michael@0 140 (((uint32_t)block[j+1]) << 16) |
michael@0 141 (((uint32_t)block[j+2]) << 8) |
michael@0 142 (((uint32_t)block[j+3]) );
michael@0 143 }
michael@0 144 for (; i < 80; ++i) {
michael@0 145 W[i] = rotate_left(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
michael@0 146 //The following is equivelent and speeds up SSE implementations, but slows non-SSE.
michael@0 147 //W[i] = rotate_left(W[i-6] ^ W[i-16] ^ W[i-28] ^ W[i-32], 2);
michael@0 148 }
michael@0 149
michael@0 150 // Round 1
michael@0 151 operation(F1(), A, B, C, D, E, W[ 0], K[0]);
michael@0 152 operation(F1(), E, A, B, C, D, W[ 1], K[0]);
michael@0 153 operation(F1(), D, E, A, B, C, W[ 2], K[0]);
michael@0 154 operation(F1(), C, D, E, A, B, W[ 3], K[0]);
michael@0 155 operation(F1(), B, C, D, E, A, W[ 4], K[0]);
michael@0 156 operation(F1(), A, B, C, D, E, W[ 5], K[0]);
michael@0 157 operation(F1(), E, A, B, C, D, W[ 6], K[0]);
michael@0 158 operation(F1(), D, E, A, B, C, W[ 7], K[0]);
michael@0 159 operation(F1(), C, D, E, A, B, W[ 8], K[0]);
michael@0 160 operation(F1(), B, C, D, E, A, W[ 9], K[0]);
michael@0 161 operation(F1(), A, B, C, D, E, W[10], K[0]);
michael@0 162 operation(F1(), E, A, B, C, D, W[11], K[0]);
michael@0 163 operation(F1(), D, E, A, B, C, W[12], K[0]);
michael@0 164 operation(F1(), C, D, E, A, B, W[13], K[0]);
michael@0 165 operation(F1(), B, C, D, E, A, W[14], K[0]);
michael@0 166 operation(F1(), A, B, C, D, E, W[15], K[0]);
michael@0 167 operation(F1(), E, A, B, C, D, W[16], K[0]);
michael@0 168 operation(F1(), D, E, A, B, C, W[17], K[0]);
michael@0 169 operation(F1(), C, D, E, A, B, W[18], K[0]);
michael@0 170 operation(F1(), B, C, D, E, A, W[19], K[0]);
michael@0 171
michael@0 172 // Round 2
michael@0 173 operation(F2(), A, B, C, D, E, W[20], K[1]);
michael@0 174 operation(F2(), E, A, B, C, D, W[21], K[1]);
michael@0 175 operation(F2(), D, E, A, B, C, W[22], K[1]);
michael@0 176 operation(F2(), C, D, E, A, B, W[23], K[1]);
michael@0 177 operation(F2(), B, C, D, E, A, W[24], K[1]);
michael@0 178 operation(F2(), A, B, C, D, E, W[25], K[1]);
michael@0 179 operation(F2(), E, A, B, C, D, W[26], K[1]);
michael@0 180 operation(F2(), D, E, A, B, C, W[27], K[1]);
michael@0 181 operation(F2(), C, D, E, A, B, W[28], K[1]);
michael@0 182 operation(F2(), B, C, D, E, A, W[29], K[1]);
michael@0 183 operation(F2(), A, B, C, D, E, W[30], K[1]);
michael@0 184 operation(F2(), E, A, B, C, D, W[31], K[1]);
michael@0 185 operation(F2(), D, E, A, B, C, W[32], K[1]);
michael@0 186 operation(F2(), C, D, E, A, B, W[33], K[1]);
michael@0 187 operation(F2(), B, C, D, E, A, W[34], K[1]);
michael@0 188 operation(F2(), A, B, C, D, E, W[35], K[1]);
michael@0 189 operation(F2(), E, A, B, C, D, W[36], K[1]);
michael@0 190 operation(F2(), D, E, A, B, C, W[37], K[1]);
michael@0 191 operation(F2(), C, D, E, A, B, W[38], K[1]);
michael@0 192 operation(F2(), B, C, D, E, A, W[39], K[1]);
michael@0 193
michael@0 194 // Round 3
michael@0 195 operation(F3(), A, B, C, D, E, W[40], K[2]);
michael@0 196 operation(F3(), E, A, B, C, D, W[41], K[2]);
michael@0 197 operation(F3(), D, E, A, B, C, W[42], K[2]);
michael@0 198 operation(F3(), C, D, E, A, B, W[43], K[2]);
michael@0 199 operation(F3(), B, C, D, E, A, W[44], K[2]);
michael@0 200 operation(F3(), A, B, C, D, E, W[45], K[2]);
michael@0 201 operation(F3(), E, A, B, C, D, W[46], K[2]);
michael@0 202 operation(F3(), D, E, A, B, C, W[47], K[2]);
michael@0 203 operation(F3(), C, D, E, A, B, W[48], K[2]);
michael@0 204 operation(F3(), B, C, D, E, A, W[49], K[2]);
michael@0 205 operation(F3(), A, B, C, D, E, W[50], K[2]);
michael@0 206 operation(F3(), E, A, B, C, D, W[51], K[2]);
michael@0 207 operation(F3(), D, E, A, B, C, W[52], K[2]);
michael@0 208 operation(F3(), C, D, E, A, B, W[53], K[2]);
michael@0 209 operation(F3(), B, C, D, E, A, W[54], K[2]);
michael@0 210 operation(F3(), A, B, C, D, E, W[55], K[2]);
michael@0 211 operation(F3(), E, A, B, C, D, W[56], K[2]);
michael@0 212 operation(F3(), D, E, A, B, C, W[57], K[2]);
michael@0 213 operation(F3(), C, D, E, A, B, W[58], K[2]);
michael@0 214 operation(F3(), B, C, D, E, A, W[59], K[2]);
michael@0 215
michael@0 216 // Round 4
michael@0 217 operation(F2(), A, B, C, D, E, W[60], K[3]);
michael@0 218 operation(F2(), E, A, B, C, D, W[61], K[3]);
michael@0 219 operation(F2(), D, E, A, B, C, W[62], K[3]);
michael@0 220 operation(F2(), C, D, E, A, B, W[63], K[3]);
michael@0 221 operation(F2(), B, C, D, E, A, W[64], K[3]);
michael@0 222 operation(F2(), A, B, C, D, E, W[65], K[3]);
michael@0 223 operation(F2(), E, A, B, C, D, W[66], K[3]);
michael@0 224 operation(F2(), D, E, A, B, C, W[67], K[3]);
michael@0 225 operation(F2(), C, D, E, A, B, W[68], K[3]);
michael@0 226 operation(F2(), B, C, D, E, A, W[69], K[3]);
michael@0 227 operation(F2(), A, B, C, D, E, W[70], K[3]);
michael@0 228 operation(F2(), E, A, B, C, D, W[71], K[3]);
michael@0 229 operation(F2(), D, E, A, B, C, W[72], K[3]);
michael@0 230 operation(F2(), C, D, E, A, B, W[73], K[3]);
michael@0 231 operation(F2(), B, C, D, E, A, W[74], K[3]);
michael@0 232 operation(F2(), A, B, C, D, E, W[75], K[3]);
michael@0 233 operation(F2(), E, A, B, C, D, W[76], K[3]);
michael@0 234 operation(F2(), D, E, A, B, C, W[77], K[3]);
michael@0 235 operation(F2(), C, D, E, A, B, W[78], K[3]);
michael@0 236 operation(F2(), B, C, D, E, A, W[79], K[3]);
michael@0 237
michael@0 238 state[0] += A;
michael@0 239 state[1] += B;
michael@0 240 state[2] += C;
michael@0 241 state[3] += D;
michael@0 242 state[4] += E;
michael@0 243
michael@0 244 #if defined(SK_SHA1_CLEAR_DATA)
michael@0 245 // Clear sensitive information.
michael@0 246 memset(W, 0, sizeof(W));
michael@0 247 #endif
michael@0 248 }
michael@0 249
michael@0 250 static void encode(uint8_t output[20], const uint32_t input[5]) {
michael@0 251 for (size_t i = 0, j = 0; i < 5; i++, j += 4) {
michael@0 252 output[j ] = (uint8_t)((input[i] >> 24) & 0xff);
michael@0 253 output[j+1] = (uint8_t)((input[i] >> 16) & 0xff);
michael@0 254 output[j+2] = (uint8_t)((input[i] >> 8) & 0xff);
michael@0 255 output[j+3] = (uint8_t)((input[i] ) & 0xff);
michael@0 256 }
michael@0 257 }
michael@0 258
michael@0 259 static void encode(uint8_t output[8], const uint64_t input) {
michael@0 260 output[0] = (uint8_t)((input >> 56) & 0xff);
michael@0 261 output[1] = (uint8_t)((input >> 48) & 0xff);
michael@0 262 output[2] = (uint8_t)((input >> 40) & 0xff);
michael@0 263 output[3] = (uint8_t)((input >> 32) & 0xff);
michael@0 264 output[4] = (uint8_t)((input >> 24) & 0xff);
michael@0 265 output[5] = (uint8_t)((input >> 16) & 0xff);
michael@0 266 output[6] = (uint8_t)((input >> 8) & 0xff);
michael@0 267 output[7] = (uint8_t)((input ) & 0xff);
michael@0 268 }

mercurial