Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
michael@0 | 1 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
michael@0 | 2 | * vim: set ts=8 sts=4 et sw=4 tw=99: |
michael@0 | 3 | * This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 4 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 5 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 6 | |
michael@0 | 7 | #include "jit/IonAnalysis.h" |
michael@0 | 8 | |
michael@0 | 9 | #include "jsanalyze.h" |
michael@0 | 10 | |
michael@0 | 11 | #include "jit/BaselineInspector.h" |
michael@0 | 12 | #include "jit/BaselineJIT.h" |
michael@0 | 13 | #include "jit/Ion.h" |
michael@0 | 14 | #include "jit/IonBuilder.h" |
michael@0 | 15 | #include "jit/IonOptimizationLevels.h" |
michael@0 | 16 | #include "jit/LIR.h" |
michael@0 | 17 | #include "jit/Lowering.h" |
michael@0 | 18 | #include "jit/MIRGraph.h" |
michael@0 | 19 | |
michael@0 | 20 | #include "jsinferinlines.h" |
michael@0 | 21 | #include "jsobjinlines.h" |
michael@0 | 22 | #include "jsopcodeinlines.h" |
michael@0 | 23 | |
michael@0 | 24 | using namespace js; |
michael@0 | 25 | using namespace js::jit; |
michael@0 | 26 | |
michael@0 | 27 | using mozilla::DebugOnly; |
michael@0 | 28 | |
michael@0 | 29 | // A critical edge is an edge which is neither its successor's only predecessor |
michael@0 | 30 | // nor its predecessor's only successor. Critical edges must be split to |
michael@0 | 31 | // prevent copy-insertion and code motion from affecting other edges. |
michael@0 | 32 | bool |
michael@0 | 33 | jit::SplitCriticalEdges(MIRGraph &graph) |
michael@0 | 34 | { |
michael@0 | 35 | for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { |
michael@0 | 36 | if (block->numSuccessors() < 2) |
michael@0 | 37 | continue; |
michael@0 | 38 | for (size_t i = 0; i < block->numSuccessors(); i++) { |
michael@0 | 39 | MBasicBlock *target = block->getSuccessor(i); |
michael@0 | 40 | if (target->numPredecessors() < 2) |
michael@0 | 41 | continue; |
michael@0 | 42 | |
michael@0 | 43 | // Create a new block inheriting from the predecessor. |
michael@0 | 44 | MBasicBlock *split = MBasicBlock::NewSplitEdge(graph, block->info(), *block); |
michael@0 | 45 | if (!split) |
michael@0 | 46 | return false; |
michael@0 | 47 | split->setLoopDepth(block->loopDepth()); |
michael@0 | 48 | graph.insertBlockAfter(*block, split); |
michael@0 | 49 | split->end(MGoto::New(graph.alloc(), target)); |
michael@0 | 50 | |
michael@0 | 51 | block->replaceSuccessor(i, split); |
michael@0 | 52 | target->replacePredecessor(*block, split); |
michael@0 | 53 | } |
michael@0 | 54 | } |
michael@0 | 55 | return true; |
michael@0 | 56 | } |
michael@0 | 57 | |
michael@0 | 58 | // Operands to a resume point which are dead at the point of the resume can be |
michael@0 | 59 | // replaced with undefined values. This analysis supports limited detection of |
michael@0 | 60 | // dead operands, pruning those which are defined in the resume point's basic |
michael@0 | 61 | // block and have no uses outside the block or at points later than the resume |
michael@0 | 62 | // point. |
michael@0 | 63 | // |
michael@0 | 64 | // This is intended to ensure that extra resume points within a basic block |
michael@0 | 65 | // will not artificially extend the lifetimes of any SSA values. This could |
michael@0 | 66 | // otherwise occur if the new resume point captured a value which is created |
michael@0 | 67 | // between the old and new resume point and is dead at the new resume point. |
michael@0 | 68 | bool |
michael@0 | 69 | jit::EliminateDeadResumePointOperands(MIRGenerator *mir, MIRGraph &graph) |
michael@0 | 70 | { |
michael@0 | 71 | // If we are compiling try blocks, locals and arguments may be observable |
michael@0 | 72 | // from catch or finally blocks (which Ion does not compile). For now just |
michael@0 | 73 | // disable the pass in this case. |
michael@0 | 74 | if (graph.hasTryBlock()) |
michael@0 | 75 | return true; |
michael@0 | 76 | |
michael@0 | 77 | for (PostorderIterator block = graph.poBegin(); block != graph.poEnd(); block++) { |
michael@0 | 78 | if (mir->shouldCancel("Eliminate Dead Resume Point Operands (main loop)")) |
michael@0 | 79 | return false; |
michael@0 | 80 | |
michael@0 | 81 | // The logic below can get confused on infinite loops. |
michael@0 | 82 | if (block->isLoopHeader() && block->backedge() == *block) |
michael@0 | 83 | continue; |
michael@0 | 84 | |
michael@0 | 85 | for (MInstructionIterator ins = block->begin(); ins != block->end(); ins++) { |
michael@0 | 86 | // No benefit to replacing constant operands with other constants. |
michael@0 | 87 | if (ins->isConstant()) |
michael@0 | 88 | continue; |
michael@0 | 89 | |
michael@0 | 90 | // Scanning uses does not give us sufficient information to tell |
michael@0 | 91 | // where instructions that are involved in box/unbox operations or |
michael@0 | 92 | // parameter passing might be live. Rewriting uses of these terms |
michael@0 | 93 | // in resume points may affect the interpreter's behavior. Rather |
michael@0 | 94 | // than doing a more sophisticated analysis, just ignore these. |
michael@0 | 95 | if (ins->isUnbox() || ins->isParameter() || ins->isTypeBarrier() || ins->isComputeThis()) |
michael@0 | 96 | continue; |
michael@0 | 97 | |
michael@0 | 98 | // If the instruction's behavior has been constant folded into a |
michael@0 | 99 | // separate instruction, we can't determine precisely where the |
michael@0 | 100 | // instruction becomes dead and can't eliminate its uses. |
michael@0 | 101 | if (ins->isImplicitlyUsed()) |
michael@0 | 102 | continue; |
michael@0 | 103 | |
michael@0 | 104 | // Check if this instruction's result is only used within the |
michael@0 | 105 | // current block, and keep track of its last use in a definition |
michael@0 | 106 | // (not resume point). This requires the instructions in the block |
michael@0 | 107 | // to be numbered, ensured by running this immediately after alias |
michael@0 | 108 | // analysis. |
michael@0 | 109 | uint32_t maxDefinition = 0; |
michael@0 | 110 | for (MUseDefIterator uses(*ins); uses; uses++) { |
michael@0 | 111 | if (uses.def()->block() != *block || |
michael@0 | 112 | uses.def()->isBox() || |
michael@0 | 113 | uses.def()->isPhi()) |
michael@0 | 114 | { |
michael@0 | 115 | maxDefinition = UINT32_MAX; |
michael@0 | 116 | break; |
michael@0 | 117 | } |
michael@0 | 118 | maxDefinition = Max(maxDefinition, uses.def()->id()); |
michael@0 | 119 | } |
michael@0 | 120 | if (maxDefinition == UINT32_MAX) |
michael@0 | 121 | continue; |
michael@0 | 122 | |
michael@0 | 123 | // Walk the uses a second time, removing any in resume points after |
michael@0 | 124 | // the last use in a definition. |
michael@0 | 125 | for (MUseIterator uses(ins->usesBegin()); uses != ins->usesEnd(); ) { |
michael@0 | 126 | if (uses->consumer()->isDefinition()) { |
michael@0 | 127 | uses++; |
michael@0 | 128 | continue; |
michael@0 | 129 | } |
michael@0 | 130 | MResumePoint *mrp = uses->consumer()->toResumePoint(); |
michael@0 | 131 | if (mrp->block() != *block || |
michael@0 | 132 | !mrp->instruction() || |
michael@0 | 133 | mrp->instruction() == *ins || |
michael@0 | 134 | mrp->instruction()->id() <= maxDefinition) |
michael@0 | 135 | { |
michael@0 | 136 | uses++; |
michael@0 | 137 | continue; |
michael@0 | 138 | } |
michael@0 | 139 | |
michael@0 | 140 | // The operand is an uneliminable slot. This currently |
michael@0 | 141 | // includes argument slots in non-strict scripts (due to being |
michael@0 | 142 | // observable via Function.arguments). |
michael@0 | 143 | if (!block->info().canOptimizeOutSlot(uses->index())) { |
michael@0 | 144 | uses++; |
michael@0 | 145 | continue; |
michael@0 | 146 | } |
michael@0 | 147 | |
michael@0 | 148 | // Store an optimized out magic value in place of all dead |
michael@0 | 149 | // resume point operands. Making any such substitution can in |
michael@0 | 150 | // general alter the interpreter's behavior, even though the |
michael@0 | 151 | // code is dead, as the interpreter will still execute opcodes |
michael@0 | 152 | // whose effects cannot be observed. If the undefined value |
michael@0 | 153 | // were to flow to, say, a dead property access the |
michael@0 | 154 | // interpreter could throw an exception; we avoid this problem |
michael@0 | 155 | // by removing dead operands before removing dead code. |
michael@0 | 156 | MConstant *constant = MConstant::New(graph.alloc(), MagicValue(JS_OPTIMIZED_OUT)); |
michael@0 | 157 | block->insertBefore(*(block->begin()), constant); |
michael@0 | 158 | uses = mrp->replaceOperand(uses, constant); |
michael@0 | 159 | } |
michael@0 | 160 | } |
michael@0 | 161 | } |
michael@0 | 162 | |
michael@0 | 163 | return true; |
michael@0 | 164 | } |
michael@0 | 165 | |
michael@0 | 166 | // Instructions are useless if they are unused and have no side effects. |
michael@0 | 167 | // This pass eliminates useless instructions. |
michael@0 | 168 | // The graph itself is unchanged. |
michael@0 | 169 | bool |
michael@0 | 170 | jit::EliminateDeadCode(MIRGenerator *mir, MIRGraph &graph) |
michael@0 | 171 | { |
michael@0 | 172 | // Traverse in postorder so that we hit uses before definitions. |
michael@0 | 173 | // Traverse instruction list backwards for the same reason. |
michael@0 | 174 | for (PostorderIterator block = graph.poBegin(); block != graph.poEnd(); block++) { |
michael@0 | 175 | if (mir->shouldCancel("Eliminate Dead Code (main loop)")) |
michael@0 | 176 | return false; |
michael@0 | 177 | |
michael@0 | 178 | // Remove unused instructions. |
michael@0 | 179 | for (MInstructionReverseIterator inst = block->rbegin(); inst != block->rend(); ) { |
michael@0 | 180 | if (!inst->isEffectful() && !inst->resumePoint() && |
michael@0 | 181 | !inst->hasUses() && !inst->isGuard() && |
michael@0 | 182 | !inst->isControlInstruction()) { |
michael@0 | 183 | inst = block->discardAt(inst); |
michael@0 | 184 | } else { |
michael@0 | 185 | inst++; |
michael@0 | 186 | } |
michael@0 | 187 | } |
michael@0 | 188 | } |
michael@0 | 189 | |
michael@0 | 190 | return true; |
michael@0 | 191 | } |
michael@0 | 192 | |
michael@0 | 193 | static inline bool |
michael@0 | 194 | IsPhiObservable(MPhi *phi, Observability observe) |
michael@0 | 195 | { |
michael@0 | 196 | // If the phi has uses which are not reflected in SSA, then behavior in the |
michael@0 | 197 | // interpreter may be affected by removing the phi. |
michael@0 | 198 | if (phi->isImplicitlyUsed()) |
michael@0 | 199 | return true; |
michael@0 | 200 | |
michael@0 | 201 | // Check for uses of this phi node outside of other phi nodes. |
michael@0 | 202 | // Note that, initially, we skip reading resume points, which we |
michael@0 | 203 | // don't count as actual uses. If the only uses are resume points, |
michael@0 | 204 | // then the SSA name is never consumed by the program. However, |
michael@0 | 205 | // after optimizations have been performed, it's possible that the |
michael@0 | 206 | // actual uses in the program have been (incorrectly) optimized |
michael@0 | 207 | // away, so we must be more conservative and consider resume |
michael@0 | 208 | // points as well. |
michael@0 | 209 | switch (observe) { |
michael@0 | 210 | case AggressiveObservability: |
michael@0 | 211 | for (MUseDefIterator iter(phi); iter; iter++) { |
michael@0 | 212 | if (!iter.def()->isPhi()) |
michael@0 | 213 | return true; |
michael@0 | 214 | } |
michael@0 | 215 | break; |
michael@0 | 216 | |
michael@0 | 217 | case ConservativeObservability: |
michael@0 | 218 | for (MUseIterator iter(phi->usesBegin()); iter != phi->usesEnd(); iter++) { |
michael@0 | 219 | if (!iter->consumer()->isDefinition() || |
michael@0 | 220 | !iter->consumer()->toDefinition()->isPhi()) |
michael@0 | 221 | return true; |
michael@0 | 222 | } |
michael@0 | 223 | break; |
michael@0 | 224 | } |
michael@0 | 225 | |
michael@0 | 226 | uint32_t slot = phi->slot(); |
michael@0 | 227 | CompileInfo &info = phi->block()->info(); |
michael@0 | 228 | JSFunction *fun = info.funMaybeLazy(); |
michael@0 | 229 | |
michael@0 | 230 | // If the Phi is of the |this| value, it must always be observable. |
michael@0 | 231 | if (fun && slot == info.thisSlot()) |
michael@0 | 232 | return true; |
michael@0 | 233 | |
michael@0 | 234 | // If the function may need an arguments object, then make sure to |
michael@0 | 235 | // preserve the scope chain, because it may be needed to construct the |
michael@0 | 236 | // arguments object during bailout. If we've already created an arguments |
michael@0 | 237 | // object (or got one via OSR), preserve that as well. |
michael@0 | 238 | if (fun && info.hasArguments() && |
michael@0 | 239 | (slot == info.scopeChainSlot() || slot == info.argsObjSlot())) |
michael@0 | 240 | { |
michael@0 | 241 | return true; |
michael@0 | 242 | } |
michael@0 | 243 | |
michael@0 | 244 | // The Phi is an uneliminable slot. Currently this includes argument slots |
michael@0 | 245 | // in non-strict scripts (due to being observable via Function.arguments). |
michael@0 | 246 | if (fun && !info.canOptimizeOutSlot(slot)) |
michael@0 | 247 | return true; |
michael@0 | 248 | |
michael@0 | 249 | return false; |
michael@0 | 250 | } |
michael@0 | 251 | |
michael@0 | 252 | // Handles cases like: |
michael@0 | 253 | // x is phi(a, x) --> a |
michael@0 | 254 | // x is phi(a, a) --> a |
michael@0 | 255 | static inline MDefinition * |
michael@0 | 256 | IsPhiRedundant(MPhi *phi) |
michael@0 | 257 | { |
michael@0 | 258 | MDefinition *first = phi->operandIfRedundant(); |
michael@0 | 259 | if (first == nullptr) |
michael@0 | 260 | return nullptr; |
michael@0 | 261 | |
michael@0 | 262 | // Propagate the ImplicitlyUsed flag if |phi| is replaced with another phi. |
michael@0 | 263 | if (phi->isImplicitlyUsed()) |
michael@0 | 264 | first->setImplicitlyUsedUnchecked(); |
michael@0 | 265 | |
michael@0 | 266 | return first; |
michael@0 | 267 | } |
michael@0 | 268 | |
michael@0 | 269 | bool |
michael@0 | 270 | jit::EliminatePhis(MIRGenerator *mir, MIRGraph &graph, |
michael@0 | 271 | Observability observe) |
michael@0 | 272 | { |
michael@0 | 273 | // Eliminates redundant or unobservable phis from the graph. A |
michael@0 | 274 | // redundant phi is something like b = phi(a, a) or b = phi(a, b), |
michael@0 | 275 | // both of which can be replaced with a. An unobservable phi is |
michael@0 | 276 | // one that whose value is never used in the program. |
michael@0 | 277 | // |
michael@0 | 278 | // Note that we must be careful not to eliminate phis representing |
michael@0 | 279 | // values that the interpreter will require later. When the graph |
michael@0 | 280 | // is first constructed, we can be more aggressive, because there |
michael@0 | 281 | // is a greater correspondence between the CFG and the bytecode. |
michael@0 | 282 | // After optimizations such as GVN have been performed, however, |
michael@0 | 283 | // the bytecode and CFG may not correspond as closely to one |
michael@0 | 284 | // another. In that case, we must be more conservative. The flag |
michael@0 | 285 | // |conservativeObservability| is used to indicate that eliminate |
michael@0 | 286 | // phis is being run after some optimizations have been performed, |
michael@0 | 287 | // and thus we should use more conservative rules about |
michael@0 | 288 | // observability. The particular danger is that we can optimize |
michael@0 | 289 | // away uses of a phi because we think they are not executable, |
michael@0 | 290 | // but the foundation for that assumption is false TI information |
michael@0 | 291 | // that will eventually be invalidated. Therefore, if |
michael@0 | 292 | // |conservativeObservability| is set, we will consider any use |
michael@0 | 293 | // from a resume point to be observable. Otherwise, we demand a |
michael@0 | 294 | // use from an actual instruction. |
michael@0 | 295 | |
michael@0 | 296 | Vector<MPhi *, 16, SystemAllocPolicy> worklist; |
michael@0 | 297 | |
michael@0 | 298 | // Add all observable phis to a worklist. We use the "in worklist" bit to |
michael@0 | 299 | // mean "this phi is live". |
michael@0 | 300 | for (PostorderIterator block = graph.poBegin(); block != graph.poEnd(); block++) { |
michael@0 | 301 | if (mir->shouldCancel("Eliminate Phis (populate loop)")) |
michael@0 | 302 | return false; |
michael@0 | 303 | |
michael@0 | 304 | MPhiIterator iter = block->phisBegin(); |
michael@0 | 305 | while (iter != block->phisEnd()) { |
michael@0 | 306 | // Flag all as unused, only observable phis would be marked as used |
michael@0 | 307 | // when processed by the work list. |
michael@0 | 308 | iter->setUnused(); |
michael@0 | 309 | |
michael@0 | 310 | // If the phi is redundant, remove it here. |
michael@0 | 311 | if (MDefinition *redundant = IsPhiRedundant(*iter)) { |
michael@0 | 312 | iter->replaceAllUsesWith(redundant); |
michael@0 | 313 | iter = block->discardPhiAt(iter); |
michael@0 | 314 | continue; |
michael@0 | 315 | } |
michael@0 | 316 | |
michael@0 | 317 | // Enqueue observable Phis. |
michael@0 | 318 | if (IsPhiObservable(*iter, observe)) { |
michael@0 | 319 | iter->setInWorklist(); |
michael@0 | 320 | if (!worklist.append(*iter)) |
michael@0 | 321 | return false; |
michael@0 | 322 | } |
michael@0 | 323 | iter++; |
michael@0 | 324 | } |
michael@0 | 325 | } |
michael@0 | 326 | |
michael@0 | 327 | // Iteratively mark all phis reachable from live phis. |
michael@0 | 328 | while (!worklist.empty()) { |
michael@0 | 329 | if (mir->shouldCancel("Eliminate Phis (worklist)")) |
michael@0 | 330 | return false; |
michael@0 | 331 | |
michael@0 | 332 | MPhi *phi = worklist.popCopy(); |
michael@0 | 333 | JS_ASSERT(phi->isUnused()); |
michael@0 | 334 | phi->setNotInWorklist(); |
michael@0 | 335 | |
michael@0 | 336 | // The removal of Phis can produce newly redundant phis. |
michael@0 | 337 | if (MDefinition *redundant = IsPhiRedundant(phi)) { |
michael@0 | 338 | // Add to the worklist the used phis which are impacted. |
michael@0 | 339 | for (MUseDefIterator it(phi); it; it++) { |
michael@0 | 340 | if (it.def()->isPhi()) { |
michael@0 | 341 | MPhi *use = it.def()->toPhi(); |
michael@0 | 342 | if (!use->isUnused()) { |
michael@0 | 343 | use->setUnusedUnchecked(); |
michael@0 | 344 | use->setInWorklist(); |
michael@0 | 345 | if (!worklist.append(use)) |
michael@0 | 346 | return false; |
michael@0 | 347 | } |
michael@0 | 348 | } |
michael@0 | 349 | } |
michael@0 | 350 | phi->replaceAllUsesWith(redundant); |
michael@0 | 351 | } else { |
michael@0 | 352 | // Otherwise flag them as used. |
michael@0 | 353 | phi->setNotUnused(); |
michael@0 | 354 | } |
michael@0 | 355 | |
michael@0 | 356 | // The current phi is/was used, so all its operands are used. |
michael@0 | 357 | for (size_t i = 0, e = phi->numOperands(); i < e; i++) { |
michael@0 | 358 | MDefinition *in = phi->getOperand(i); |
michael@0 | 359 | if (!in->isPhi() || !in->isUnused() || in->isInWorklist()) |
michael@0 | 360 | continue; |
michael@0 | 361 | in->setInWorklist(); |
michael@0 | 362 | if (!worklist.append(in->toPhi())) |
michael@0 | 363 | return false; |
michael@0 | 364 | } |
michael@0 | 365 | } |
michael@0 | 366 | |
michael@0 | 367 | // Sweep dead phis. |
michael@0 | 368 | for (PostorderIterator block = graph.poBegin(); block != graph.poEnd(); block++) { |
michael@0 | 369 | MPhiIterator iter = block->phisBegin(); |
michael@0 | 370 | while (iter != block->phisEnd()) { |
michael@0 | 371 | if (iter->isUnused()) |
michael@0 | 372 | iter = block->discardPhiAt(iter); |
michael@0 | 373 | else |
michael@0 | 374 | iter++; |
michael@0 | 375 | } |
michael@0 | 376 | } |
michael@0 | 377 | |
michael@0 | 378 | return true; |
michael@0 | 379 | } |
michael@0 | 380 | |
michael@0 | 381 | namespace { |
michael@0 | 382 | |
michael@0 | 383 | // The type analysis algorithm inserts conversions and box/unbox instructions |
michael@0 | 384 | // to make the IR graph well-typed for future passes. |
michael@0 | 385 | // |
michael@0 | 386 | // Phi adjustment: If a phi's inputs are all the same type, the phi is |
michael@0 | 387 | // specialized to return that type. |
michael@0 | 388 | // |
michael@0 | 389 | // Input adjustment: Each input is asked to apply conversion operations to its |
michael@0 | 390 | // inputs. This may include Box, Unbox, or other instruction-specific type |
michael@0 | 391 | // conversion operations. |
michael@0 | 392 | // |
michael@0 | 393 | class TypeAnalyzer |
michael@0 | 394 | { |
michael@0 | 395 | MIRGenerator *mir; |
michael@0 | 396 | MIRGraph &graph; |
michael@0 | 397 | Vector<MPhi *, 0, SystemAllocPolicy> phiWorklist_; |
michael@0 | 398 | |
michael@0 | 399 | TempAllocator &alloc() const { |
michael@0 | 400 | return graph.alloc(); |
michael@0 | 401 | } |
michael@0 | 402 | |
michael@0 | 403 | bool addPhiToWorklist(MPhi *phi) { |
michael@0 | 404 | if (phi->isInWorklist()) |
michael@0 | 405 | return true; |
michael@0 | 406 | if (!phiWorklist_.append(phi)) |
michael@0 | 407 | return false; |
michael@0 | 408 | phi->setInWorklist(); |
michael@0 | 409 | return true; |
michael@0 | 410 | } |
michael@0 | 411 | MPhi *popPhi() { |
michael@0 | 412 | MPhi *phi = phiWorklist_.popCopy(); |
michael@0 | 413 | phi->setNotInWorklist(); |
michael@0 | 414 | return phi; |
michael@0 | 415 | } |
michael@0 | 416 | |
michael@0 | 417 | bool respecialize(MPhi *phi, MIRType type); |
michael@0 | 418 | bool propagateSpecialization(MPhi *phi); |
michael@0 | 419 | bool specializePhis(); |
michael@0 | 420 | void replaceRedundantPhi(MPhi *phi); |
michael@0 | 421 | void adjustPhiInputs(MPhi *phi); |
michael@0 | 422 | bool adjustInputs(MDefinition *def); |
michael@0 | 423 | bool insertConversions(); |
michael@0 | 424 | |
michael@0 | 425 | bool checkFloatCoherency(); |
michael@0 | 426 | bool graphContainsFloat32(); |
michael@0 | 427 | bool markPhiConsumers(); |
michael@0 | 428 | bool markPhiProducers(); |
michael@0 | 429 | bool specializeValidFloatOps(); |
michael@0 | 430 | bool tryEmitFloatOperations(); |
michael@0 | 431 | |
michael@0 | 432 | public: |
michael@0 | 433 | TypeAnalyzer(MIRGenerator *mir, MIRGraph &graph) |
michael@0 | 434 | : mir(mir), graph(graph) |
michael@0 | 435 | { } |
michael@0 | 436 | |
michael@0 | 437 | bool analyze(); |
michael@0 | 438 | }; |
michael@0 | 439 | |
michael@0 | 440 | } /* anonymous namespace */ |
michael@0 | 441 | |
michael@0 | 442 | // Try to specialize this phi based on its non-cyclic inputs. |
michael@0 | 443 | static MIRType |
michael@0 | 444 | GuessPhiType(MPhi *phi, bool *hasInputsWithEmptyTypes) |
michael@0 | 445 | { |
michael@0 | 446 | #ifdef DEBUG |
michael@0 | 447 | // Check that different magic constants aren't flowing together. Ignore |
michael@0 | 448 | // JS_OPTIMIZED_OUT, since an operand could be legitimately optimized |
michael@0 | 449 | // away. |
michael@0 | 450 | MIRType magicType = MIRType_None; |
michael@0 | 451 | for (size_t i = 0; i < phi->numOperands(); i++) { |
michael@0 | 452 | MDefinition *in = phi->getOperand(i); |
michael@0 | 453 | if (in->type() == MIRType_MagicOptimizedArguments || |
michael@0 | 454 | in->type() == MIRType_MagicHole || |
michael@0 | 455 | in->type() == MIRType_MagicIsConstructing) |
michael@0 | 456 | { |
michael@0 | 457 | if (magicType == MIRType_None) |
michael@0 | 458 | magicType = in->type(); |
michael@0 | 459 | MOZ_ASSERT(magicType == in->type()); |
michael@0 | 460 | } |
michael@0 | 461 | } |
michael@0 | 462 | #endif |
michael@0 | 463 | |
michael@0 | 464 | *hasInputsWithEmptyTypes = false; |
michael@0 | 465 | |
michael@0 | 466 | MIRType type = MIRType_None; |
michael@0 | 467 | bool convertibleToFloat32 = false; |
michael@0 | 468 | bool hasPhiInputs = false; |
michael@0 | 469 | for (size_t i = 0, e = phi->numOperands(); i < e; i++) { |
michael@0 | 470 | MDefinition *in = phi->getOperand(i); |
michael@0 | 471 | if (in->isPhi()) { |
michael@0 | 472 | hasPhiInputs = true; |
michael@0 | 473 | if (!in->toPhi()->triedToSpecialize()) |
michael@0 | 474 | continue; |
michael@0 | 475 | if (in->type() == MIRType_None) { |
michael@0 | 476 | // The operand is a phi we tried to specialize, but we were |
michael@0 | 477 | // unable to guess its type. propagateSpecialization will |
michael@0 | 478 | // propagate the type to this phi when it becomes known. |
michael@0 | 479 | continue; |
michael@0 | 480 | } |
michael@0 | 481 | } |
michael@0 | 482 | |
michael@0 | 483 | // Ignore operands which we've never observed. |
michael@0 | 484 | if (in->resultTypeSet() && in->resultTypeSet()->empty()) { |
michael@0 | 485 | *hasInputsWithEmptyTypes = true; |
michael@0 | 486 | continue; |
michael@0 | 487 | } |
michael@0 | 488 | |
michael@0 | 489 | if (type == MIRType_None) { |
michael@0 | 490 | type = in->type(); |
michael@0 | 491 | if (in->canProduceFloat32()) |
michael@0 | 492 | convertibleToFloat32 = true; |
michael@0 | 493 | continue; |
michael@0 | 494 | } |
michael@0 | 495 | if (type != in->type()) { |
michael@0 | 496 | if (convertibleToFloat32 && in->type() == MIRType_Float32) { |
michael@0 | 497 | // If we only saw definitions that can be converted into Float32 before and |
michael@0 | 498 | // encounter a Float32 value, promote previous values to Float32 |
michael@0 | 499 | type = MIRType_Float32; |
michael@0 | 500 | } else if (IsNumberType(type) && IsNumberType(in->type())) { |
michael@0 | 501 | // Specialize phis with int32 and double operands as double. |
michael@0 | 502 | type = MIRType_Double; |
michael@0 | 503 | convertibleToFloat32 &= in->canProduceFloat32(); |
michael@0 | 504 | } else { |
michael@0 | 505 | return MIRType_Value; |
michael@0 | 506 | } |
michael@0 | 507 | } |
michael@0 | 508 | } |
michael@0 | 509 | |
michael@0 | 510 | if (type == MIRType_None && !hasPhiInputs) { |
michael@0 | 511 | // All inputs are non-phis with empty typesets. Use MIRType_Value |
michael@0 | 512 | // in this case, as it's impossible to get better type information. |
michael@0 | 513 | JS_ASSERT(*hasInputsWithEmptyTypes); |
michael@0 | 514 | type = MIRType_Value; |
michael@0 | 515 | } |
michael@0 | 516 | |
michael@0 | 517 | return type; |
michael@0 | 518 | } |
michael@0 | 519 | |
michael@0 | 520 | bool |
michael@0 | 521 | TypeAnalyzer::respecialize(MPhi *phi, MIRType type) |
michael@0 | 522 | { |
michael@0 | 523 | if (phi->type() == type) |
michael@0 | 524 | return true; |
michael@0 | 525 | phi->specialize(type); |
michael@0 | 526 | return addPhiToWorklist(phi); |
michael@0 | 527 | } |
michael@0 | 528 | |
michael@0 | 529 | bool |
michael@0 | 530 | TypeAnalyzer::propagateSpecialization(MPhi *phi) |
michael@0 | 531 | { |
michael@0 | 532 | JS_ASSERT(phi->type() != MIRType_None); |
michael@0 | 533 | |
michael@0 | 534 | // Verify that this specialization matches any phis depending on it. |
michael@0 | 535 | for (MUseDefIterator iter(phi); iter; iter++) { |
michael@0 | 536 | if (!iter.def()->isPhi()) |
michael@0 | 537 | continue; |
michael@0 | 538 | MPhi *use = iter.def()->toPhi(); |
michael@0 | 539 | if (!use->triedToSpecialize()) |
michael@0 | 540 | continue; |
michael@0 | 541 | if (use->type() == MIRType_None) { |
michael@0 | 542 | // We tried to specialize this phi, but were unable to guess its |
michael@0 | 543 | // type. Now that we know the type of one of its operands, we can |
michael@0 | 544 | // specialize it. |
michael@0 | 545 | if (!respecialize(use, phi->type())) |
michael@0 | 546 | return false; |
michael@0 | 547 | continue; |
michael@0 | 548 | } |
michael@0 | 549 | if (use->type() != phi->type()) { |
michael@0 | 550 | // Specialize phis with int32 that can be converted to float and float operands as floats. |
michael@0 | 551 | if ((use->type() == MIRType_Int32 && use->canProduceFloat32() && phi->type() == MIRType_Float32) || |
michael@0 | 552 | (phi->type() == MIRType_Int32 && phi->canProduceFloat32() && use->type() == MIRType_Float32)) |
michael@0 | 553 | { |
michael@0 | 554 | if (!respecialize(use, MIRType_Float32)) |
michael@0 | 555 | return false; |
michael@0 | 556 | continue; |
michael@0 | 557 | } |
michael@0 | 558 | |
michael@0 | 559 | // Specialize phis with int32 and double operands as double. |
michael@0 | 560 | if (IsNumberType(use->type()) && IsNumberType(phi->type())) { |
michael@0 | 561 | if (!respecialize(use, MIRType_Double)) |
michael@0 | 562 | return false; |
michael@0 | 563 | continue; |
michael@0 | 564 | } |
michael@0 | 565 | |
michael@0 | 566 | // This phi in our use chain can now no longer be specialized. |
michael@0 | 567 | if (!respecialize(use, MIRType_Value)) |
michael@0 | 568 | return false; |
michael@0 | 569 | } |
michael@0 | 570 | } |
michael@0 | 571 | |
michael@0 | 572 | return true; |
michael@0 | 573 | } |
michael@0 | 574 | |
michael@0 | 575 | bool |
michael@0 | 576 | TypeAnalyzer::specializePhis() |
michael@0 | 577 | { |
michael@0 | 578 | Vector<MPhi *, 0, SystemAllocPolicy> phisWithEmptyInputTypes; |
michael@0 | 579 | |
michael@0 | 580 | for (PostorderIterator block(graph.poBegin()); block != graph.poEnd(); block++) { |
michael@0 | 581 | if (mir->shouldCancel("Specialize Phis (main loop)")) |
michael@0 | 582 | return false; |
michael@0 | 583 | |
michael@0 | 584 | for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd(); phi++) { |
michael@0 | 585 | bool hasInputsWithEmptyTypes; |
michael@0 | 586 | MIRType type = GuessPhiType(*phi, &hasInputsWithEmptyTypes); |
michael@0 | 587 | phi->specialize(type); |
michael@0 | 588 | if (type == MIRType_None) { |
michael@0 | 589 | // We tried to guess the type but failed because all operands are |
michael@0 | 590 | // phis we still have to visit. Set the triedToSpecialize flag but |
michael@0 | 591 | // don't propagate the type to other phis, propagateSpecialization |
michael@0 | 592 | // will do that once we know the type of one of the operands. |
michael@0 | 593 | |
michael@0 | 594 | // Edge case: when this phi has a non-phi input with an empty |
michael@0 | 595 | // typeset, it's possible for two phis to have a cyclic |
michael@0 | 596 | // dependency and they will both have MIRType_None. Specialize |
michael@0 | 597 | // such phis to MIRType_Value later on. |
michael@0 | 598 | if (hasInputsWithEmptyTypes && !phisWithEmptyInputTypes.append(*phi)) |
michael@0 | 599 | return false; |
michael@0 | 600 | continue; |
michael@0 | 601 | } |
michael@0 | 602 | if (!propagateSpecialization(*phi)) |
michael@0 | 603 | return false; |
michael@0 | 604 | } |
michael@0 | 605 | } |
michael@0 | 606 | |
michael@0 | 607 | do { |
michael@0 | 608 | while (!phiWorklist_.empty()) { |
michael@0 | 609 | if (mir->shouldCancel("Specialize Phis (worklist)")) |
michael@0 | 610 | return false; |
michael@0 | 611 | |
michael@0 | 612 | MPhi *phi = popPhi(); |
michael@0 | 613 | if (!propagateSpecialization(phi)) |
michael@0 | 614 | return false; |
michael@0 | 615 | } |
michael@0 | 616 | |
michael@0 | 617 | // When two phis have a cyclic dependency and inputs that have an empty |
michael@0 | 618 | // typeset (which are ignored by GuessPhiType), we may still have to |
michael@0 | 619 | // specialize these to MIRType_Value. |
michael@0 | 620 | while (!phisWithEmptyInputTypes.empty()) { |
michael@0 | 621 | if (mir->shouldCancel("Specialize Phis (phisWithEmptyInputTypes)")) |
michael@0 | 622 | return false; |
michael@0 | 623 | |
michael@0 | 624 | MPhi *phi = phisWithEmptyInputTypes.popCopy(); |
michael@0 | 625 | if (phi->type() == MIRType_None) { |
michael@0 | 626 | phi->specialize(MIRType_Value); |
michael@0 | 627 | if (!propagateSpecialization(phi)) |
michael@0 | 628 | return false; |
michael@0 | 629 | } |
michael@0 | 630 | } |
michael@0 | 631 | } while (!phiWorklist_.empty()); |
michael@0 | 632 | |
michael@0 | 633 | return true; |
michael@0 | 634 | } |
michael@0 | 635 | |
michael@0 | 636 | void |
michael@0 | 637 | TypeAnalyzer::adjustPhiInputs(MPhi *phi) |
michael@0 | 638 | { |
michael@0 | 639 | MIRType phiType = phi->type(); |
michael@0 | 640 | JS_ASSERT(phiType != MIRType_None); |
michael@0 | 641 | |
michael@0 | 642 | // If we specialized a type that's not Value, there are 3 cases: |
michael@0 | 643 | // 1. Every input is of that type. |
michael@0 | 644 | // 2. Every observed input is of that type (i.e., some inputs haven't been executed yet). |
michael@0 | 645 | // 3. Inputs were doubles and int32s, and was specialized to double. |
michael@0 | 646 | if (phiType != MIRType_Value) { |
michael@0 | 647 | for (size_t i = 0, e = phi->numOperands(); i < e; i++) { |
michael@0 | 648 | MDefinition *in = phi->getOperand(i); |
michael@0 | 649 | if (in->type() == phiType) |
michael@0 | 650 | continue; |
michael@0 | 651 | |
michael@0 | 652 | if (in->isBox() && in->toBox()->input()->type() == phiType) { |
michael@0 | 653 | phi->replaceOperand(i, in->toBox()->input()); |
michael@0 | 654 | } else { |
michael@0 | 655 | MInstruction *replacement; |
michael@0 | 656 | |
michael@0 | 657 | if (phiType == MIRType_Double && IsFloatType(in->type())) { |
michael@0 | 658 | // Convert int32 operands to double. |
michael@0 | 659 | replacement = MToDouble::New(alloc(), in); |
michael@0 | 660 | } else if (phiType == MIRType_Float32) { |
michael@0 | 661 | if (in->type() == MIRType_Int32 || in->type() == MIRType_Double) { |
michael@0 | 662 | replacement = MToFloat32::New(alloc(), in); |
michael@0 | 663 | } else { |
michael@0 | 664 | // See comment below |
michael@0 | 665 | if (in->type() != MIRType_Value) { |
michael@0 | 666 | MBox *box = MBox::New(alloc(), in); |
michael@0 | 667 | in->block()->insertBefore(in->block()->lastIns(), box); |
michael@0 | 668 | in = box; |
michael@0 | 669 | } |
michael@0 | 670 | |
michael@0 | 671 | MUnbox *unbox = MUnbox::New(alloc(), in, MIRType_Double, MUnbox::Fallible); |
michael@0 | 672 | in->block()->insertBefore(in->block()->lastIns(), unbox); |
michael@0 | 673 | replacement = MToFloat32::New(alloc(), in); |
michael@0 | 674 | } |
michael@0 | 675 | } else { |
michael@0 | 676 | // If we know this branch will fail to convert to phiType, |
michael@0 | 677 | // insert a box that'll immediately fail in the fallible unbox |
michael@0 | 678 | // below. |
michael@0 | 679 | if (in->type() != MIRType_Value) { |
michael@0 | 680 | MBox *box = MBox::New(alloc(), in); |
michael@0 | 681 | in->block()->insertBefore(in->block()->lastIns(), box); |
michael@0 | 682 | in = box; |
michael@0 | 683 | } |
michael@0 | 684 | |
michael@0 | 685 | // Be optimistic and insert unboxes when the operand is a |
michael@0 | 686 | // value. |
michael@0 | 687 | replacement = MUnbox::New(alloc(), in, phiType, MUnbox::Fallible); |
michael@0 | 688 | } |
michael@0 | 689 | |
michael@0 | 690 | in->block()->insertBefore(in->block()->lastIns(), replacement); |
michael@0 | 691 | phi->replaceOperand(i, replacement); |
michael@0 | 692 | } |
michael@0 | 693 | } |
michael@0 | 694 | |
michael@0 | 695 | return; |
michael@0 | 696 | } |
michael@0 | 697 | |
michael@0 | 698 | // Box every typed input. |
michael@0 | 699 | for (size_t i = 0, e = phi->numOperands(); i < e; i++) { |
michael@0 | 700 | MDefinition *in = phi->getOperand(i); |
michael@0 | 701 | if (in->type() == MIRType_Value) |
michael@0 | 702 | continue; |
michael@0 | 703 | |
michael@0 | 704 | if (in->isUnbox() && phi->typeIncludes(in->toUnbox()->input())) { |
michael@0 | 705 | // The input is being explicitly unboxed, so sneak past and grab |
michael@0 | 706 | // the original box. |
michael@0 | 707 | phi->replaceOperand(i, in->toUnbox()->input()); |
michael@0 | 708 | } else { |
michael@0 | 709 | MDefinition *box = BoxInputsPolicy::alwaysBoxAt(alloc(), in->block()->lastIns(), in); |
michael@0 | 710 | phi->replaceOperand(i, box); |
michael@0 | 711 | } |
michael@0 | 712 | } |
michael@0 | 713 | } |
michael@0 | 714 | |
michael@0 | 715 | bool |
michael@0 | 716 | TypeAnalyzer::adjustInputs(MDefinition *def) |
michael@0 | 717 | { |
michael@0 | 718 | TypePolicy *policy = def->typePolicy(); |
michael@0 | 719 | if (policy && !policy->adjustInputs(alloc(), def->toInstruction())) |
michael@0 | 720 | return false; |
michael@0 | 721 | return true; |
michael@0 | 722 | } |
michael@0 | 723 | |
michael@0 | 724 | void |
michael@0 | 725 | TypeAnalyzer::replaceRedundantPhi(MPhi *phi) |
michael@0 | 726 | { |
michael@0 | 727 | MBasicBlock *block = phi->block(); |
michael@0 | 728 | js::Value v; |
michael@0 | 729 | switch (phi->type()) { |
michael@0 | 730 | case MIRType_Undefined: |
michael@0 | 731 | v = UndefinedValue(); |
michael@0 | 732 | break; |
michael@0 | 733 | case MIRType_Null: |
michael@0 | 734 | v = NullValue(); |
michael@0 | 735 | break; |
michael@0 | 736 | case MIRType_MagicOptimizedArguments: |
michael@0 | 737 | v = MagicValue(JS_OPTIMIZED_ARGUMENTS); |
michael@0 | 738 | break; |
michael@0 | 739 | case MIRType_MagicOptimizedOut: |
michael@0 | 740 | v = MagicValue(JS_OPTIMIZED_OUT); |
michael@0 | 741 | break; |
michael@0 | 742 | default: |
michael@0 | 743 | MOZ_ASSUME_UNREACHABLE("unexpected type"); |
michael@0 | 744 | } |
michael@0 | 745 | MConstant *c = MConstant::New(alloc(), v); |
michael@0 | 746 | // The instruction pass will insert the box |
michael@0 | 747 | block->insertBefore(*(block->begin()), c); |
michael@0 | 748 | phi->replaceAllUsesWith(c); |
michael@0 | 749 | } |
michael@0 | 750 | |
michael@0 | 751 | bool |
michael@0 | 752 | TypeAnalyzer::insertConversions() |
michael@0 | 753 | { |
michael@0 | 754 | // Instructions are processed in reverse postorder: all uses are defs are |
michael@0 | 755 | // seen before uses. This ensures that output adjustment (which may rewrite |
michael@0 | 756 | // inputs of uses) does not conflict with input adjustment. |
michael@0 | 757 | for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) { |
michael@0 | 758 | if (mir->shouldCancel("Insert Conversions")) |
michael@0 | 759 | return false; |
michael@0 | 760 | |
michael@0 | 761 | for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd();) { |
michael@0 | 762 | if (phi->type() == MIRType_Undefined || |
michael@0 | 763 | phi->type() == MIRType_Null || |
michael@0 | 764 | phi->type() == MIRType_MagicOptimizedArguments || |
michael@0 | 765 | phi->type() == MIRType_MagicOptimizedOut) |
michael@0 | 766 | { |
michael@0 | 767 | replaceRedundantPhi(*phi); |
michael@0 | 768 | phi = block->discardPhiAt(phi); |
michael@0 | 769 | } else { |
michael@0 | 770 | adjustPhiInputs(*phi); |
michael@0 | 771 | phi++; |
michael@0 | 772 | } |
michael@0 | 773 | } |
michael@0 | 774 | for (MInstructionIterator iter(block->begin()); iter != block->end(); iter++) { |
michael@0 | 775 | if (!adjustInputs(*iter)) |
michael@0 | 776 | return false; |
michael@0 | 777 | } |
michael@0 | 778 | } |
michael@0 | 779 | return true; |
michael@0 | 780 | } |
michael@0 | 781 | |
michael@0 | 782 | // This function tries to emit Float32 specialized operations whenever it's possible. |
michael@0 | 783 | // MIR nodes are flagged as: |
michael@0 | 784 | // - Producers, when they can create Float32 that might need to be coerced into a Double. |
michael@0 | 785 | // Loads in Float32 arrays and conversions to Float32 are producers. |
michael@0 | 786 | // - Consumers, when they can have Float32 as inputs and validate a legal use of a Float32. |
michael@0 | 787 | // Stores in Float32 arrays and conversions to Float32 are consumers. |
michael@0 | 788 | // - Float32 commutative, when using the Float32 instruction instead of the Double instruction |
michael@0 | 789 | // does not result in a compound loss of precision. This is the case for +, -, /, * with 2 |
michael@0 | 790 | // operands, for instance. However, an addition with 3 operands is not commutative anymore, |
michael@0 | 791 | // so an intermediate coercion is needed. |
michael@0 | 792 | // Except for phis, all these flags are known after Ion building, so they cannot change during |
michael@0 | 793 | // the process. |
michael@0 | 794 | // |
michael@0 | 795 | // The idea behind the algorithm is easy: whenever we can prove that a commutative operation |
michael@0 | 796 | // has only producers as inputs and consumers as uses, we can specialize the operation as a |
michael@0 | 797 | // float32 operation. Otherwise, we have to convert all float32 inputs to doubles. Even |
michael@0 | 798 | // if a lot of conversions are produced, GVN will take care of eliminating the redundant ones. |
michael@0 | 799 | // |
michael@0 | 800 | // Phis have a special status. Phis need to be flagged as producers or consumers as they can |
michael@0 | 801 | // be inputs or outputs of commutative instructions. Fortunately, producers and consumers |
michael@0 | 802 | // properties are such that we can deduce the property using all non phis inputs first (which form |
michael@0 | 803 | // an initial phi graph) and then propagate all properties from one phi to another using a |
michael@0 | 804 | // fixed point algorithm. The algorithm is ensured to terminate as each iteration has less or as |
michael@0 | 805 | // many flagged phis as the previous iteration (so the worst steady state case is all phis being |
michael@0 | 806 | // flagged as false). |
michael@0 | 807 | // |
michael@0 | 808 | // In a nutshell, the algorithm applies three passes: |
michael@0 | 809 | // 1 - Determine which phis are consumers. Each phi gets an initial value by making a global AND on |
michael@0 | 810 | // all its non-phi inputs. Then each phi propagates its value to other phis. If after propagation, |
michael@0 | 811 | // the flag value changed, we have to reapply the algorithm on all phi operands, as a phi is a |
michael@0 | 812 | // consumer if all of its uses are consumers. |
michael@0 | 813 | // 2 - Determine which phis are producers. It's the same algorithm, except that we have to reapply |
michael@0 | 814 | // the algorithm on all phi uses, as a phi is a producer if all of its operands are producers. |
michael@0 | 815 | // 3 - Go through all commutative operations and ensure their inputs are all producers and their |
michael@0 | 816 | // uses are all consumers. |
michael@0 | 817 | bool |
michael@0 | 818 | TypeAnalyzer::markPhiConsumers() |
michael@0 | 819 | { |
michael@0 | 820 | JS_ASSERT(phiWorklist_.empty()); |
michael@0 | 821 | |
michael@0 | 822 | // Iterate in postorder so worklist is initialized to RPO. |
michael@0 | 823 | for (PostorderIterator block(graph.poBegin()); block != graph.poEnd(); ++block) { |
michael@0 | 824 | if (mir->shouldCancel("Ensure Float32 commutativity - Consumer Phis - Initial state")) |
michael@0 | 825 | return false; |
michael@0 | 826 | |
michael@0 | 827 | for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd(); ++phi) { |
michael@0 | 828 | JS_ASSERT(!phi->isInWorklist()); |
michael@0 | 829 | bool canConsumeFloat32 = true; |
michael@0 | 830 | for (MUseDefIterator use(*phi); canConsumeFloat32 && use; use++) { |
michael@0 | 831 | MDefinition *usedef = use.def(); |
michael@0 | 832 | canConsumeFloat32 &= usedef->isPhi() || usedef->canConsumeFloat32(use.use()); |
michael@0 | 833 | } |
michael@0 | 834 | phi->setCanConsumeFloat32(canConsumeFloat32); |
michael@0 | 835 | if (canConsumeFloat32 && !addPhiToWorklist(*phi)) |
michael@0 | 836 | return false; |
michael@0 | 837 | } |
michael@0 | 838 | } |
michael@0 | 839 | |
michael@0 | 840 | while (!phiWorklist_.empty()) { |
michael@0 | 841 | if (mir->shouldCancel("Ensure Float32 commutativity - Consumer Phis - Fixed point")) |
michael@0 | 842 | return false; |
michael@0 | 843 | |
michael@0 | 844 | MPhi *phi = popPhi(); |
michael@0 | 845 | JS_ASSERT(phi->canConsumeFloat32(nullptr /* unused */)); |
michael@0 | 846 | |
michael@0 | 847 | bool validConsumer = true; |
michael@0 | 848 | for (MUseDefIterator use(phi); use; use++) { |
michael@0 | 849 | MDefinition *def = use.def(); |
michael@0 | 850 | if (def->isPhi() && !def->canConsumeFloat32(use.use())) { |
michael@0 | 851 | validConsumer = false; |
michael@0 | 852 | break; |
michael@0 | 853 | } |
michael@0 | 854 | } |
michael@0 | 855 | |
michael@0 | 856 | if (validConsumer) |
michael@0 | 857 | continue; |
michael@0 | 858 | |
michael@0 | 859 | // Propagate invalidated phis |
michael@0 | 860 | phi->setCanConsumeFloat32(false); |
michael@0 | 861 | for (size_t i = 0, e = phi->numOperands(); i < e; ++i) { |
michael@0 | 862 | MDefinition *input = phi->getOperand(i); |
michael@0 | 863 | if (input->isPhi() && !input->isInWorklist() && input->canConsumeFloat32(nullptr /* unused */)) |
michael@0 | 864 | { |
michael@0 | 865 | if (!addPhiToWorklist(input->toPhi())) |
michael@0 | 866 | return false; |
michael@0 | 867 | } |
michael@0 | 868 | } |
michael@0 | 869 | } |
michael@0 | 870 | return true; |
michael@0 | 871 | } |
michael@0 | 872 | |
michael@0 | 873 | bool |
michael@0 | 874 | TypeAnalyzer::markPhiProducers() |
michael@0 | 875 | { |
michael@0 | 876 | JS_ASSERT(phiWorklist_.empty()); |
michael@0 | 877 | |
michael@0 | 878 | // Iterate in reverse postorder so worklist is initialized to PO. |
michael@0 | 879 | for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); ++block) { |
michael@0 | 880 | if (mir->shouldCancel("Ensure Float32 commutativity - Producer Phis - initial state")) |
michael@0 | 881 | return false; |
michael@0 | 882 | |
michael@0 | 883 | for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd(); ++phi) { |
michael@0 | 884 | JS_ASSERT(!phi->isInWorklist()); |
michael@0 | 885 | bool canProduceFloat32 = true; |
michael@0 | 886 | for (size_t i = 0, e = phi->numOperands(); canProduceFloat32 && i < e; ++i) { |
michael@0 | 887 | MDefinition *input = phi->getOperand(i); |
michael@0 | 888 | canProduceFloat32 &= input->isPhi() || input->canProduceFloat32(); |
michael@0 | 889 | } |
michael@0 | 890 | phi->setCanProduceFloat32(canProduceFloat32); |
michael@0 | 891 | if (canProduceFloat32 && !addPhiToWorklist(*phi)) |
michael@0 | 892 | return false; |
michael@0 | 893 | } |
michael@0 | 894 | } |
michael@0 | 895 | |
michael@0 | 896 | while (!phiWorklist_.empty()) { |
michael@0 | 897 | if (mir->shouldCancel("Ensure Float32 commutativity - Producer Phis - Fixed point")) |
michael@0 | 898 | return false; |
michael@0 | 899 | |
michael@0 | 900 | MPhi *phi = popPhi(); |
michael@0 | 901 | JS_ASSERT(phi->canProduceFloat32()); |
michael@0 | 902 | |
michael@0 | 903 | bool validProducer = true; |
michael@0 | 904 | for (size_t i = 0, e = phi->numOperands(); i < e; ++i) { |
michael@0 | 905 | MDefinition *input = phi->getOperand(i); |
michael@0 | 906 | if (input->isPhi() && !input->canProduceFloat32()) { |
michael@0 | 907 | validProducer = false; |
michael@0 | 908 | break; |
michael@0 | 909 | } |
michael@0 | 910 | } |
michael@0 | 911 | |
michael@0 | 912 | if (validProducer) |
michael@0 | 913 | continue; |
michael@0 | 914 | |
michael@0 | 915 | // Propagate invalidated phis |
michael@0 | 916 | phi->setCanProduceFloat32(false); |
michael@0 | 917 | for (MUseDefIterator use(phi); use; use++) { |
michael@0 | 918 | MDefinition *def = use.def(); |
michael@0 | 919 | if (def->isPhi() && !def->isInWorklist() && def->canProduceFloat32()) |
michael@0 | 920 | { |
michael@0 | 921 | if (!addPhiToWorklist(def->toPhi())) |
michael@0 | 922 | return false; |
michael@0 | 923 | } |
michael@0 | 924 | } |
michael@0 | 925 | } |
michael@0 | 926 | return true; |
michael@0 | 927 | } |
michael@0 | 928 | |
michael@0 | 929 | bool |
michael@0 | 930 | TypeAnalyzer::specializeValidFloatOps() |
michael@0 | 931 | { |
michael@0 | 932 | for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); ++block) { |
michael@0 | 933 | if (mir->shouldCancel("Ensure Float32 commutativity - Instructions")) |
michael@0 | 934 | return false; |
michael@0 | 935 | |
michael@0 | 936 | for (MInstructionIterator ins(block->begin()); ins != block->end(); ++ins) { |
michael@0 | 937 | if (!ins->isFloat32Commutative()) |
michael@0 | 938 | continue; |
michael@0 | 939 | |
michael@0 | 940 | if (ins->type() == MIRType_Float32) |
michael@0 | 941 | continue; |
michael@0 | 942 | |
michael@0 | 943 | // This call will try to specialize the instruction iff all uses are consumers and |
michael@0 | 944 | // all inputs are producers. |
michael@0 | 945 | ins->trySpecializeFloat32(alloc()); |
michael@0 | 946 | } |
michael@0 | 947 | } |
michael@0 | 948 | return true; |
michael@0 | 949 | } |
michael@0 | 950 | |
michael@0 | 951 | bool |
michael@0 | 952 | TypeAnalyzer::graphContainsFloat32() |
michael@0 | 953 | { |
michael@0 | 954 | for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); ++block) { |
michael@0 | 955 | if (mir->shouldCancel("Ensure Float32 commutativity - Graph contains Float32")) |
michael@0 | 956 | return false; |
michael@0 | 957 | |
michael@0 | 958 | for (MDefinitionIterator def(*block); def; def++) { |
michael@0 | 959 | if (def->type() == MIRType_Float32) |
michael@0 | 960 | return true; |
michael@0 | 961 | } |
michael@0 | 962 | } |
michael@0 | 963 | return false; |
michael@0 | 964 | } |
michael@0 | 965 | |
michael@0 | 966 | bool |
michael@0 | 967 | TypeAnalyzer::tryEmitFloatOperations() |
michael@0 | 968 | { |
michael@0 | 969 | // Backends that currently don't know how to generate Float32 specialized instructions |
michael@0 | 970 | // shouldn't run this pass and just let all instructions as specialized for Double. |
michael@0 | 971 | if (!LIRGenerator::allowFloat32Optimizations()) |
michael@0 | 972 | return true; |
michael@0 | 973 | |
michael@0 | 974 | // Asm.js uses the ahead of time type checks to specialize operations, no need to check |
michael@0 | 975 | // them again at this point. |
michael@0 | 976 | if (mir->compilingAsmJS()) |
michael@0 | 977 | return true; |
michael@0 | 978 | |
michael@0 | 979 | // Check ahead of time that there is at least one definition typed as Float32, otherwise we |
michael@0 | 980 | // don't need this pass. |
michael@0 | 981 | if (!graphContainsFloat32()) |
michael@0 | 982 | return true; |
michael@0 | 983 | |
michael@0 | 984 | if (!markPhiConsumers()) |
michael@0 | 985 | return false; |
michael@0 | 986 | if (!markPhiProducers()) |
michael@0 | 987 | return false; |
michael@0 | 988 | if (!specializeValidFloatOps()) |
michael@0 | 989 | return false; |
michael@0 | 990 | return true; |
michael@0 | 991 | } |
michael@0 | 992 | |
michael@0 | 993 | bool |
michael@0 | 994 | TypeAnalyzer::checkFloatCoherency() |
michael@0 | 995 | { |
michael@0 | 996 | #ifdef DEBUG |
michael@0 | 997 | // Asserts that all Float32 instructions are flowing into Float32 consumers or specialized |
michael@0 | 998 | // operations |
michael@0 | 999 | for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); ++block) { |
michael@0 | 1000 | if (mir->shouldCancel("Check Float32 coherency")) |
michael@0 | 1001 | return false; |
michael@0 | 1002 | |
michael@0 | 1003 | for (MDefinitionIterator def(*block); def; def++) { |
michael@0 | 1004 | if (def->type() != MIRType_Float32) |
michael@0 | 1005 | continue; |
michael@0 | 1006 | |
michael@0 | 1007 | for (MUseDefIterator use(*def); use; use++) { |
michael@0 | 1008 | MDefinition *consumer = use.def(); |
michael@0 | 1009 | JS_ASSERT(consumer->isConsistentFloat32Use(use.use())); |
michael@0 | 1010 | } |
michael@0 | 1011 | } |
michael@0 | 1012 | } |
michael@0 | 1013 | #endif |
michael@0 | 1014 | return true; |
michael@0 | 1015 | } |
michael@0 | 1016 | |
michael@0 | 1017 | bool |
michael@0 | 1018 | TypeAnalyzer::analyze() |
michael@0 | 1019 | { |
michael@0 | 1020 | if (!tryEmitFloatOperations()) |
michael@0 | 1021 | return false; |
michael@0 | 1022 | if (!specializePhis()) |
michael@0 | 1023 | return false; |
michael@0 | 1024 | if (!insertConversions()) |
michael@0 | 1025 | return false; |
michael@0 | 1026 | if (!checkFloatCoherency()) |
michael@0 | 1027 | return false; |
michael@0 | 1028 | return true; |
michael@0 | 1029 | } |
michael@0 | 1030 | |
michael@0 | 1031 | bool |
michael@0 | 1032 | jit::ApplyTypeInformation(MIRGenerator *mir, MIRGraph &graph) |
michael@0 | 1033 | { |
michael@0 | 1034 | TypeAnalyzer analyzer(mir, graph); |
michael@0 | 1035 | |
michael@0 | 1036 | if (!analyzer.analyze()) |
michael@0 | 1037 | return false; |
michael@0 | 1038 | |
michael@0 | 1039 | return true; |
michael@0 | 1040 | } |
michael@0 | 1041 | |
michael@0 | 1042 | bool |
michael@0 | 1043 | jit::MakeMRegExpHoistable(MIRGraph &graph) |
michael@0 | 1044 | { |
michael@0 | 1045 | for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) { |
michael@0 | 1046 | for (MDefinitionIterator iter(*block); iter; iter++) { |
michael@0 | 1047 | if (!iter->isRegExp()) |
michael@0 | 1048 | continue; |
michael@0 | 1049 | |
michael@0 | 1050 | MRegExp *regexp = iter->toRegExp(); |
michael@0 | 1051 | |
michael@0 | 1052 | // Test if MRegExp is hoistable by looking at all uses. |
michael@0 | 1053 | bool hoistable = true; |
michael@0 | 1054 | for (MUseIterator i = regexp->usesBegin(); i != regexp->usesEnd(); i++) { |
michael@0 | 1055 | // Ignore resume points. At this point all uses are listed. |
michael@0 | 1056 | // No DCE or GVN or something has happened. |
michael@0 | 1057 | if (i->consumer()->isResumePoint()) |
michael@0 | 1058 | continue; |
michael@0 | 1059 | |
michael@0 | 1060 | JS_ASSERT(i->consumer()->isDefinition()); |
michael@0 | 1061 | |
michael@0 | 1062 | // All MRegExp* MIR's don't adjust the regexp. |
michael@0 | 1063 | MDefinition *use = i->consumer()->toDefinition(); |
michael@0 | 1064 | if (use->isRegExpReplace()) |
michael@0 | 1065 | continue; |
michael@0 | 1066 | if (use->isRegExpExec()) |
michael@0 | 1067 | continue; |
michael@0 | 1068 | if (use->isRegExpTest()) |
michael@0 | 1069 | continue; |
michael@0 | 1070 | |
michael@0 | 1071 | hoistable = false; |
michael@0 | 1072 | break; |
michael@0 | 1073 | } |
michael@0 | 1074 | |
michael@0 | 1075 | if (!hoistable) |
michael@0 | 1076 | continue; |
michael@0 | 1077 | |
michael@0 | 1078 | // Make MRegExp hoistable |
michael@0 | 1079 | regexp->setMovable(); |
michael@0 | 1080 | |
michael@0 | 1081 | // That would be incorrect for global/sticky, because lastIndex could be wrong. |
michael@0 | 1082 | // Therefore setting the lastIndex to 0. That is faster than a not movable regexp. |
michael@0 | 1083 | RegExpObject *source = regexp->source(); |
michael@0 | 1084 | if (source->sticky() || source->global()) { |
michael@0 | 1085 | JS_ASSERT(regexp->mustClone()); |
michael@0 | 1086 | MConstant *zero = MConstant::New(graph.alloc(), Int32Value(0)); |
michael@0 | 1087 | regexp->block()->insertAfter(regexp, zero); |
michael@0 | 1088 | |
michael@0 | 1089 | MStoreFixedSlot *lastIndex = |
michael@0 | 1090 | MStoreFixedSlot::New(graph.alloc(), regexp, RegExpObject::lastIndexSlot(), zero); |
michael@0 | 1091 | regexp->block()->insertAfter(zero, lastIndex); |
michael@0 | 1092 | } |
michael@0 | 1093 | } |
michael@0 | 1094 | } |
michael@0 | 1095 | |
michael@0 | 1096 | return true; |
michael@0 | 1097 | } |
michael@0 | 1098 | |
michael@0 | 1099 | bool |
michael@0 | 1100 | jit::RenumberBlocks(MIRGraph &graph) |
michael@0 | 1101 | { |
michael@0 | 1102 | size_t id = 0; |
michael@0 | 1103 | for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) |
michael@0 | 1104 | block->setId(id++); |
michael@0 | 1105 | |
michael@0 | 1106 | return true; |
michael@0 | 1107 | } |
michael@0 | 1108 | |
michael@0 | 1109 | // A Simple, Fast Dominance Algorithm by Cooper et al. |
michael@0 | 1110 | // Modified to support empty intersections for OSR, and in RPO. |
michael@0 | 1111 | static MBasicBlock * |
michael@0 | 1112 | IntersectDominators(MBasicBlock *block1, MBasicBlock *block2) |
michael@0 | 1113 | { |
michael@0 | 1114 | MBasicBlock *finger1 = block1; |
michael@0 | 1115 | MBasicBlock *finger2 = block2; |
michael@0 | 1116 | |
michael@0 | 1117 | JS_ASSERT(finger1); |
michael@0 | 1118 | JS_ASSERT(finger2); |
michael@0 | 1119 | |
michael@0 | 1120 | // In the original paper, the block ID comparisons are on the postorder index. |
michael@0 | 1121 | // This implementation iterates in RPO, so the comparisons are reversed. |
michael@0 | 1122 | |
michael@0 | 1123 | // For this function to be called, the block must have multiple predecessors. |
michael@0 | 1124 | // If a finger is then found to be self-dominating, it must therefore be |
michael@0 | 1125 | // reachable from multiple roots through non-intersecting control flow. |
michael@0 | 1126 | // nullptr is returned in this case, to denote an empty intersection. |
michael@0 | 1127 | |
michael@0 | 1128 | while (finger1->id() != finger2->id()) { |
michael@0 | 1129 | while (finger1->id() > finger2->id()) { |
michael@0 | 1130 | MBasicBlock *idom = finger1->immediateDominator(); |
michael@0 | 1131 | if (idom == finger1) |
michael@0 | 1132 | return nullptr; // Empty intersection. |
michael@0 | 1133 | finger1 = idom; |
michael@0 | 1134 | } |
michael@0 | 1135 | |
michael@0 | 1136 | while (finger2->id() > finger1->id()) { |
michael@0 | 1137 | MBasicBlock *idom = finger2->immediateDominator(); |
michael@0 | 1138 | if (idom == finger2) |
michael@0 | 1139 | return nullptr; // Empty intersection. |
michael@0 | 1140 | finger2 = idom; |
michael@0 | 1141 | } |
michael@0 | 1142 | } |
michael@0 | 1143 | return finger1; |
michael@0 | 1144 | } |
michael@0 | 1145 | |
michael@0 | 1146 | static void |
michael@0 | 1147 | ComputeImmediateDominators(MIRGraph &graph) |
michael@0 | 1148 | { |
michael@0 | 1149 | // The default start block is a root and therefore only self-dominates. |
michael@0 | 1150 | MBasicBlock *startBlock = *graph.begin(); |
michael@0 | 1151 | startBlock->setImmediateDominator(startBlock); |
michael@0 | 1152 | |
michael@0 | 1153 | // Any OSR block is a root and therefore only self-dominates. |
michael@0 | 1154 | MBasicBlock *osrBlock = graph.osrBlock(); |
michael@0 | 1155 | if (osrBlock) |
michael@0 | 1156 | osrBlock->setImmediateDominator(osrBlock); |
michael@0 | 1157 | |
michael@0 | 1158 | bool changed = true; |
michael@0 | 1159 | |
michael@0 | 1160 | while (changed) { |
michael@0 | 1161 | changed = false; |
michael@0 | 1162 | |
michael@0 | 1163 | ReversePostorderIterator block = graph.rpoBegin(); |
michael@0 | 1164 | |
michael@0 | 1165 | // For each block in RPO, intersect all dominators. |
michael@0 | 1166 | for (; block != graph.rpoEnd(); block++) { |
michael@0 | 1167 | // If a node has once been found to have no exclusive dominator, |
michael@0 | 1168 | // it will never have an exclusive dominator, so it may be skipped. |
michael@0 | 1169 | if (block->immediateDominator() == *block) |
michael@0 | 1170 | continue; |
michael@0 | 1171 | |
michael@0 | 1172 | MBasicBlock *newIdom = block->getPredecessor(0); |
michael@0 | 1173 | |
michael@0 | 1174 | // Find the first common dominator. |
michael@0 | 1175 | for (size_t i = 1; i < block->numPredecessors(); i++) { |
michael@0 | 1176 | MBasicBlock *pred = block->getPredecessor(i); |
michael@0 | 1177 | if (pred->immediateDominator() == nullptr) |
michael@0 | 1178 | continue; |
michael@0 | 1179 | |
michael@0 | 1180 | newIdom = IntersectDominators(pred, newIdom); |
michael@0 | 1181 | |
michael@0 | 1182 | // If there is no common dominator, the block self-dominates. |
michael@0 | 1183 | if (newIdom == nullptr) { |
michael@0 | 1184 | block->setImmediateDominator(*block); |
michael@0 | 1185 | changed = true; |
michael@0 | 1186 | break; |
michael@0 | 1187 | } |
michael@0 | 1188 | } |
michael@0 | 1189 | |
michael@0 | 1190 | if (newIdom && block->immediateDominator() != newIdom) { |
michael@0 | 1191 | block->setImmediateDominator(newIdom); |
michael@0 | 1192 | changed = true; |
michael@0 | 1193 | } |
michael@0 | 1194 | } |
michael@0 | 1195 | } |
michael@0 | 1196 | |
michael@0 | 1197 | #ifdef DEBUG |
michael@0 | 1198 | // Assert that all blocks have dominator information. |
michael@0 | 1199 | for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { |
michael@0 | 1200 | JS_ASSERT(block->immediateDominator() != nullptr); |
michael@0 | 1201 | } |
michael@0 | 1202 | #endif |
michael@0 | 1203 | } |
michael@0 | 1204 | |
michael@0 | 1205 | bool |
michael@0 | 1206 | jit::BuildDominatorTree(MIRGraph &graph) |
michael@0 | 1207 | { |
michael@0 | 1208 | ComputeImmediateDominators(graph); |
michael@0 | 1209 | |
michael@0 | 1210 | // Traversing through the graph in post-order means that every use |
michael@0 | 1211 | // of a definition is visited before the def itself. Since a def |
michael@0 | 1212 | // dominates its uses, by the time we reach a particular |
michael@0 | 1213 | // block, we have processed all of its dominated children, so |
michael@0 | 1214 | // block->numDominated() is accurate. |
michael@0 | 1215 | for (PostorderIterator i(graph.poBegin()); i != graph.poEnd(); i++) { |
michael@0 | 1216 | MBasicBlock *child = *i; |
michael@0 | 1217 | MBasicBlock *parent = child->immediateDominator(); |
michael@0 | 1218 | |
michael@0 | 1219 | // If the block only self-dominates, it has no definite parent. |
michael@0 | 1220 | if (child == parent) |
michael@0 | 1221 | continue; |
michael@0 | 1222 | |
michael@0 | 1223 | if (!parent->addImmediatelyDominatedBlock(child)) |
michael@0 | 1224 | return false; |
michael@0 | 1225 | |
michael@0 | 1226 | // An additional +1 for the child block. |
michael@0 | 1227 | parent->addNumDominated(child->numDominated() + 1); |
michael@0 | 1228 | } |
michael@0 | 1229 | |
michael@0 | 1230 | #ifdef DEBUG |
michael@0 | 1231 | // If compiling with OSR, many blocks will self-dominate. |
michael@0 | 1232 | // Without OSR, there is only one root block which dominates all. |
michael@0 | 1233 | if (!graph.osrBlock()) |
michael@0 | 1234 | JS_ASSERT(graph.begin()->numDominated() == graph.numBlocks() - 1); |
michael@0 | 1235 | #endif |
michael@0 | 1236 | // Now, iterate through the dominator tree and annotate every |
michael@0 | 1237 | // block with its index in the pre-order traversal of the |
michael@0 | 1238 | // dominator tree. |
michael@0 | 1239 | Vector<MBasicBlock *, 1, IonAllocPolicy> worklist(graph.alloc()); |
michael@0 | 1240 | |
michael@0 | 1241 | // The index of the current block in the CFG traversal. |
michael@0 | 1242 | size_t index = 0; |
michael@0 | 1243 | |
michael@0 | 1244 | // Add all self-dominating blocks to the worklist. |
michael@0 | 1245 | // This includes all roots. Order does not matter. |
michael@0 | 1246 | for (MBasicBlockIterator i(graph.begin()); i != graph.end(); i++) { |
michael@0 | 1247 | MBasicBlock *block = *i; |
michael@0 | 1248 | if (block->immediateDominator() == block) { |
michael@0 | 1249 | if (!worklist.append(block)) |
michael@0 | 1250 | return false; |
michael@0 | 1251 | } |
michael@0 | 1252 | } |
michael@0 | 1253 | // Starting from each self-dominating block, traverse the CFG in pre-order. |
michael@0 | 1254 | while (!worklist.empty()) { |
michael@0 | 1255 | MBasicBlock *block = worklist.popCopy(); |
michael@0 | 1256 | block->setDomIndex(index); |
michael@0 | 1257 | |
michael@0 | 1258 | if (!worklist.append(block->immediatelyDominatedBlocksBegin(), |
michael@0 | 1259 | block->immediatelyDominatedBlocksEnd())) { |
michael@0 | 1260 | return false; |
michael@0 | 1261 | } |
michael@0 | 1262 | index++; |
michael@0 | 1263 | } |
michael@0 | 1264 | |
michael@0 | 1265 | return true; |
michael@0 | 1266 | } |
michael@0 | 1267 | |
michael@0 | 1268 | bool |
michael@0 | 1269 | jit::BuildPhiReverseMapping(MIRGraph &graph) |
michael@0 | 1270 | { |
michael@0 | 1271 | // Build a mapping such that given a basic block, whose successor has one or |
michael@0 | 1272 | // more phis, we can find our specific input to that phi. To make this fast |
michael@0 | 1273 | // mapping work we rely on a specific property of our structured control |
michael@0 | 1274 | // flow graph: For a block with phis, its predecessors each have only one |
michael@0 | 1275 | // successor with phis. Consider each case: |
michael@0 | 1276 | // * Blocks with less than two predecessors cannot have phis. |
michael@0 | 1277 | // * Breaks. A break always has exactly one successor, and the break |
michael@0 | 1278 | // catch block has exactly one predecessor for each break, as |
michael@0 | 1279 | // well as a final predecessor for the actual loop exit. |
michael@0 | 1280 | // * Continues. A continue always has exactly one successor, and the |
michael@0 | 1281 | // continue catch block has exactly one predecessor for each |
michael@0 | 1282 | // continue, as well as a final predecessor for the actual |
michael@0 | 1283 | // loop continuation. The continue itself has exactly one |
michael@0 | 1284 | // successor. |
michael@0 | 1285 | // * An if. Each branch as exactly one predecessor. |
michael@0 | 1286 | // * A switch. Each branch has exactly one predecessor. |
michael@0 | 1287 | // * Loop tail. A new block is always created for the exit, and if a |
michael@0 | 1288 | // break statement is present, the exit block will forward |
michael@0 | 1289 | // directly to the break block. |
michael@0 | 1290 | for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { |
michael@0 | 1291 | if (block->numPredecessors() < 2) { |
michael@0 | 1292 | JS_ASSERT(block->phisEmpty()); |
michael@0 | 1293 | continue; |
michael@0 | 1294 | } |
michael@0 | 1295 | |
michael@0 | 1296 | // Assert on the above. |
michael@0 | 1297 | for (size_t j = 0; j < block->numPredecessors(); j++) { |
michael@0 | 1298 | MBasicBlock *pred = block->getPredecessor(j); |
michael@0 | 1299 | |
michael@0 | 1300 | #ifdef DEBUG |
michael@0 | 1301 | size_t numSuccessorsWithPhis = 0; |
michael@0 | 1302 | for (size_t k = 0; k < pred->numSuccessors(); k++) { |
michael@0 | 1303 | MBasicBlock *successor = pred->getSuccessor(k); |
michael@0 | 1304 | if (!successor->phisEmpty()) |
michael@0 | 1305 | numSuccessorsWithPhis++; |
michael@0 | 1306 | } |
michael@0 | 1307 | JS_ASSERT(numSuccessorsWithPhis <= 1); |
michael@0 | 1308 | #endif |
michael@0 | 1309 | |
michael@0 | 1310 | pred->setSuccessorWithPhis(*block, j); |
michael@0 | 1311 | } |
michael@0 | 1312 | } |
michael@0 | 1313 | |
michael@0 | 1314 | return true; |
michael@0 | 1315 | } |
michael@0 | 1316 | |
michael@0 | 1317 | #ifdef DEBUG |
michael@0 | 1318 | static bool |
michael@0 | 1319 | CheckSuccessorImpliesPredecessor(MBasicBlock *A, MBasicBlock *B) |
michael@0 | 1320 | { |
michael@0 | 1321 | // Assuming B = succ(A), verify A = pred(B). |
michael@0 | 1322 | for (size_t i = 0; i < B->numPredecessors(); i++) { |
michael@0 | 1323 | if (A == B->getPredecessor(i)) |
michael@0 | 1324 | return true; |
michael@0 | 1325 | } |
michael@0 | 1326 | return false; |
michael@0 | 1327 | } |
michael@0 | 1328 | |
michael@0 | 1329 | static bool |
michael@0 | 1330 | CheckPredecessorImpliesSuccessor(MBasicBlock *A, MBasicBlock *B) |
michael@0 | 1331 | { |
michael@0 | 1332 | // Assuming B = pred(A), verify A = succ(B). |
michael@0 | 1333 | for (size_t i = 0; i < B->numSuccessors(); i++) { |
michael@0 | 1334 | if (A == B->getSuccessor(i)) |
michael@0 | 1335 | return true; |
michael@0 | 1336 | } |
michael@0 | 1337 | return false; |
michael@0 | 1338 | } |
michael@0 | 1339 | |
michael@0 | 1340 | static bool |
michael@0 | 1341 | CheckOperandImpliesUse(MNode *n, MDefinition *operand) |
michael@0 | 1342 | { |
michael@0 | 1343 | for (MUseIterator i = operand->usesBegin(); i != operand->usesEnd(); i++) { |
michael@0 | 1344 | if (i->consumer() == n) |
michael@0 | 1345 | return true; |
michael@0 | 1346 | } |
michael@0 | 1347 | return false; |
michael@0 | 1348 | } |
michael@0 | 1349 | |
michael@0 | 1350 | static bool |
michael@0 | 1351 | CheckUseImpliesOperand(MDefinition *def, MUse *use) |
michael@0 | 1352 | { |
michael@0 | 1353 | return use->consumer()->getOperand(use->index()) == def; |
michael@0 | 1354 | } |
michael@0 | 1355 | #endif // DEBUG |
michael@0 | 1356 | |
michael@0 | 1357 | void |
michael@0 | 1358 | jit::AssertBasicGraphCoherency(MIRGraph &graph) |
michael@0 | 1359 | { |
michael@0 | 1360 | #ifdef DEBUG |
michael@0 | 1361 | JS_ASSERT(graph.entryBlock()->numPredecessors() == 0); |
michael@0 | 1362 | JS_ASSERT(graph.entryBlock()->phisEmpty()); |
michael@0 | 1363 | JS_ASSERT(!graph.entryBlock()->unreachable()); |
michael@0 | 1364 | |
michael@0 | 1365 | if (MBasicBlock *osrBlock = graph.osrBlock()) { |
michael@0 | 1366 | JS_ASSERT(osrBlock->numPredecessors() == 0); |
michael@0 | 1367 | JS_ASSERT(osrBlock->phisEmpty()); |
michael@0 | 1368 | JS_ASSERT(osrBlock != graph.entryBlock()); |
michael@0 | 1369 | JS_ASSERT(!osrBlock->unreachable()); |
michael@0 | 1370 | } |
michael@0 | 1371 | |
michael@0 | 1372 | if (MResumePoint *resumePoint = graph.entryResumePoint()) |
michael@0 | 1373 | JS_ASSERT(resumePoint->block() == graph.entryBlock()); |
michael@0 | 1374 | |
michael@0 | 1375 | // Assert successor and predecessor list coherency. |
michael@0 | 1376 | uint32_t count = 0; |
michael@0 | 1377 | for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { |
michael@0 | 1378 | count++; |
michael@0 | 1379 | |
michael@0 | 1380 | JS_ASSERT(&block->graph() == &graph); |
michael@0 | 1381 | |
michael@0 | 1382 | for (size_t i = 0; i < block->numSuccessors(); i++) |
michael@0 | 1383 | JS_ASSERT(CheckSuccessorImpliesPredecessor(*block, block->getSuccessor(i))); |
michael@0 | 1384 | |
michael@0 | 1385 | for (size_t i = 0; i < block->numPredecessors(); i++) |
michael@0 | 1386 | JS_ASSERT(CheckPredecessorImpliesSuccessor(*block, block->getPredecessor(i))); |
michael@0 | 1387 | |
michael@0 | 1388 | // Assert that use chains are valid for this instruction. |
michael@0 | 1389 | for (MDefinitionIterator iter(*block); iter; iter++) { |
michael@0 | 1390 | for (uint32_t i = 0, e = iter->numOperands(); i < e; i++) |
michael@0 | 1391 | JS_ASSERT(CheckOperandImpliesUse(*iter, iter->getOperand(i))); |
michael@0 | 1392 | } |
michael@0 | 1393 | for (MResumePointIterator iter(block->resumePointsBegin()); iter != block->resumePointsEnd(); iter++) { |
michael@0 | 1394 | for (uint32_t i = 0, e = iter->numOperands(); i < e; i++) { |
michael@0 | 1395 | if (iter->getUseFor(i)->hasProducer()) |
michael@0 | 1396 | JS_ASSERT(CheckOperandImpliesUse(*iter, iter->getOperand(i))); |
michael@0 | 1397 | } |
michael@0 | 1398 | } |
michael@0 | 1399 | for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd(); phi++) { |
michael@0 | 1400 | JS_ASSERT(phi->numOperands() == block->numPredecessors()); |
michael@0 | 1401 | } |
michael@0 | 1402 | for (MDefinitionIterator iter(*block); iter; iter++) { |
michael@0 | 1403 | JS_ASSERT(iter->block() == *block); |
michael@0 | 1404 | for (MUseIterator i(iter->usesBegin()); i != iter->usesEnd(); i++) |
michael@0 | 1405 | JS_ASSERT(CheckUseImpliesOperand(*iter, *i)); |
michael@0 | 1406 | |
michael@0 | 1407 | if (iter->isInstruction()) { |
michael@0 | 1408 | if (MResumePoint *resume = iter->toInstruction()->resumePoint()) { |
michael@0 | 1409 | if (MInstruction *ins = resume->instruction()) |
michael@0 | 1410 | JS_ASSERT(ins->block() == iter->block()); |
michael@0 | 1411 | } |
michael@0 | 1412 | } |
michael@0 | 1413 | } |
michael@0 | 1414 | } |
michael@0 | 1415 | |
michael@0 | 1416 | JS_ASSERT(graph.numBlocks() == count); |
michael@0 | 1417 | #endif |
michael@0 | 1418 | } |
michael@0 | 1419 | |
michael@0 | 1420 | #ifdef DEBUG |
michael@0 | 1421 | static void |
michael@0 | 1422 | AssertReversePostOrder(MIRGraph &graph) |
michael@0 | 1423 | { |
michael@0 | 1424 | // Check that every block is visited after all its predecessors (except backedges). |
michael@0 | 1425 | for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) { |
michael@0 | 1426 | JS_ASSERT(!block->isMarked()); |
michael@0 | 1427 | |
michael@0 | 1428 | for (size_t i = 0; i < block->numPredecessors(); i++) { |
michael@0 | 1429 | MBasicBlock *pred = block->getPredecessor(i); |
michael@0 | 1430 | JS_ASSERT_IF(!pred->isLoopBackedge(), pred->isMarked()); |
michael@0 | 1431 | } |
michael@0 | 1432 | |
michael@0 | 1433 | block->mark(); |
michael@0 | 1434 | } |
michael@0 | 1435 | |
michael@0 | 1436 | graph.unmarkBlocks(); |
michael@0 | 1437 | } |
michael@0 | 1438 | #endif |
michael@0 | 1439 | |
michael@0 | 1440 | void |
michael@0 | 1441 | jit::AssertGraphCoherency(MIRGraph &graph) |
michael@0 | 1442 | { |
michael@0 | 1443 | #ifdef DEBUG |
michael@0 | 1444 | if (!js_JitOptions.checkGraphConsistency) |
michael@0 | 1445 | return; |
michael@0 | 1446 | AssertBasicGraphCoherency(graph); |
michael@0 | 1447 | AssertReversePostOrder(graph); |
michael@0 | 1448 | #endif |
michael@0 | 1449 | } |
michael@0 | 1450 | |
michael@0 | 1451 | void |
michael@0 | 1452 | jit::AssertExtendedGraphCoherency(MIRGraph &graph) |
michael@0 | 1453 | { |
michael@0 | 1454 | // Checks the basic GraphCoherency but also other conditions that |
michael@0 | 1455 | // do not hold immediately (such as the fact that critical edges |
michael@0 | 1456 | // are split) |
michael@0 | 1457 | |
michael@0 | 1458 | #ifdef DEBUG |
michael@0 | 1459 | if (!js_JitOptions.checkGraphConsistency) |
michael@0 | 1460 | return; |
michael@0 | 1461 | AssertGraphCoherency(graph); |
michael@0 | 1462 | |
michael@0 | 1463 | uint32_t idx = 0; |
michael@0 | 1464 | for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { |
michael@0 | 1465 | JS_ASSERT(block->id() == idx++); |
michael@0 | 1466 | |
michael@0 | 1467 | // No critical edges: |
michael@0 | 1468 | if (block->numSuccessors() > 1) |
michael@0 | 1469 | for (size_t i = 0; i < block->numSuccessors(); i++) |
michael@0 | 1470 | JS_ASSERT(block->getSuccessor(i)->numPredecessors() == 1); |
michael@0 | 1471 | |
michael@0 | 1472 | if (block->isLoopHeader()) { |
michael@0 | 1473 | JS_ASSERT(block->numPredecessors() == 2); |
michael@0 | 1474 | MBasicBlock *backedge = block->getPredecessor(1); |
michael@0 | 1475 | JS_ASSERT(backedge->id() >= block->id()); |
michael@0 | 1476 | JS_ASSERT(backedge->numSuccessors() == 1); |
michael@0 | 1477 | JS_ASSERT(backedge->getSuccessor(0) == *block); |
michael@0 | 1478 | } |
michael@0 | 1479 | |
michael@0 | 1480 | if (!block->phisEmpty()) { |
michael@0 | 1481 | for (size_t i = 0; i < block->numPredecessors(); i++) { |
michael@0 | 1482 | MBasicBlock *pred = block->getPredecessor(i); |
michael@0 | 1483 | JS_ASSERT(pred->successorWithPhis() == *block); |
michael@0 | 1484 | JS_ASSERT(pred->positionInPhiSuccessor() == i); |
michael@0 | 1485 | } |
michael@0 | 1486 | } |
michael@0 | 1487 | |
michael@0 | 1488 | uint32_t successorWithPhis = 0; |
michael@0 | 1489 | for (size_t i = 0; i < block->numSuccessors(); i++) |
michael@0 | 1490 | if (!block->getSuccessor(i)->phisEmpty()) |
michael@0 | 1491 | successorWithPhis++; |
michael@0 | 1492 | |
michael@0 | 1493 | JS_ASSERT(successorWithPhis <= 1); |
michael@0 | 1494 | JS_ASSERT_IF(successorWithPhis, block->successorWithPhis() != nullptr); |
michael@0 | 1495 | |
michael@0 | 1496 | // I'd like to assert this, but it's not necc. true. Sometimes we set this |
michael@0 | 1497 | // flag to non-nullptr just because a successor has multiple preds, even if it |
michael@0 | 1498 | // does not actually have any phis. |
michael@0 | 1499 | // |
michael@0 | 1500 | // JS_ASSERT_IF(!successorWithPhis, block->successorWithPhis() == nullptr); |
michael@0 | 1501 | } |
michael@0 | 1502 | #endif |
michael@0 | 1503 | } |
michael@0 | 1504 | |
michael@0 | 1505 | |
michael@0 | 1506 | struct BoundsCheckInfo |
michael@0 | 1507 | { |
michael@0 | 1508 | MBoundsCheck *check; |
michael@0 | 1509 | uint32_t validUntil; |
michael@0 | 1510 | }; |
michael@0 | 1511 | |
michael@0 | 1512 | typedef HashMap<uint32_t, |
michael@0 | 1513 | BoundsCheckInfo, |
michael@0 | 1514 | DefaultHasher<uint32_t>, |
michael@0 | 1515 | IonAllocPolicy> BoundsCheckMap; |
michael@0 | 1516 | |
michael@0 | 1517 | // Compute a hash for bounds checks which ignores constant offsets in the index. |
michael@0 | 1518 | static HashNumber |
michael@0 | 1519 | BoundsCheckHashIgnoreOffset(MBoundsCheck *check) |
michael@0 | 1520 | { |
michael@0 | 1521 | SimpleLinearSum indexSum = ExtractLinearSum(check->index()); |
michael@0 | 1522 | uintptr_t index = indexSum.term ? uintptr_t(indexSum.term) : 0; |
michael@0 | 1523 | uintptr_t length = uintptr_t(check->length()); |
michael@0 | 1524 | return index ^ length; |
michael@0 | 1525 | } |
michael@0 | 1526 | |
michael@0 | 1527 | static MBoundsCheck * |
michael@0 | 1528 | FindDominatingBoundsCheck(BoundsCheckMap &checks, MBoundsCheck *check, size_t index) |
michael@0 | 1529 | { |
michael@0 | 1530 | // See the comment in ValueNumberer::findDominatingDef. |
michael@0 | 1531 | HashNumber hash = BoundsCheckHashIgnoreOffset(check); |
michael@0 | 1532 | BoundsCheckMap::Ptr p = checks.lookup(hash); |
michael@0 | 1533 | if (!p || index > p->value().validUntil) { |
michael@0 | 1534 | // We didn't find a dominating bounds check. |
michael@0 | 1535 | BoundsCheckInfo info; |
michael@0 | 1536 | info.check = check; |
michael@0 | 1537 | info.validUntil = index + check->block()->numDominated(); |
michael@0 | 1538 | |
michael@0 | 1539 | if(!checks.put(hash, info)) |
michael@0 | 1540 | return nullptr; |
michael@0 | 1541 | |
michael@0 | 1542 | return check; |
michael@0 | 1543 | } |
michael@0 | 1544 | |
michael@0 | 1545 | return p->value().check; |
michael@0 | 1546 | } |
michael@0 | 1547 | |
michael@0 | 1548 | // Extract a linear sum from ins, if possible (otherwise giving the sum 'ins + 0'). |
michael@0 | 1549 | SimpleLinearSum |
michael@0 | 1550 | jit::ExtractLinearSum(MDefinition *ins) |
michael@0 | 1551 | { |
michael@0 | 1552 | if (ins->isBeta()) |
michael@0 | 1553 | ins = ins->getOperand(0); |
michael@0 | 1554 | |
michael@0 | 1555 | if (ins->type() != MIRType_Int32) |
michael@0 | 1556 | return SimpleLinearSum(ins, 0); |
michael@0 | 1557 | |
michael@0 | 1558 | if (ins->isConstant()) { |
michael@0 | 1559 | const Value &v = ins->toConstant()->value(); |
michael@0 | 1560 | JS_ASSERT(v.isInt32()); |
michael@0 | 1561 | return SimpleLinearSum(nullptr, v.toInt32()); |
michael@0 | 1562 | } else if (ins->isAdd() || ins->isSub()) { |
michael@0 | 1563 | MDefinition *lhs = ins->getOperand(0); |
michael@0 | 1564 | MDefinition *rhs = ins->getOperand(1); |
michael@0 | 1565 | if (lhs->type() == MIRType_Int32 && rhs->type() == MIRType_Int32) { |
michael@0 | 1566 | SimpleLinearSum lsum = ExtractLinearSum(lhs); |
michael@0 | 1567 | SimpleLinearSum rsum = ExtractLinearSum(rhs); |
michael@0 | 1568 | |
michael@0 | 1569 | if (lsum.term && rsum.term) |
michael@0 | 1570 | return SimpleLinearSum(ins, 0); |
michael@0 | 1571 | |
michael@0 | 1572 | // Check if this is of the form <SUM> + n, n + <SUM> or <SUM> - n. |
michael@0 | 1573 | if (ins->isAdd()) { |
michael@0 | 1574 | int32_t constant; |
michael@0 | 1575 | if (!SafeAdd(lsum.constant, rsum.constant, &constant)) |
michael@0 | 1576 | return SimpleLinearSum(ins, 0); |
michael@0 | 1577 | return SimpleLinearSum(lsum.term ? lsum.term : rsum.term, constant); |
michael@0 | 1578 | } else if (lsum.term) { |
michael@0 | 1579 | int32_t constant; |
michael@0 | 1580 | if (!SafeSub(lsum.constant, rsum.constant, &constant)) |
michael@0 | 1581 | return SimpleLinearSum(ins, 0); |
michael@0 | 1582 | return SimpleLinearSum(lsum.term, constant); |
michael@0 | 1583 | } |
michael@0 | 1584 | } |
michael@0 | 1585 | } |
michael@0 | 1586 | |
michael@0 | 1587 | return SimpleLinearSum(ins, 0); |
michael@0 | 1588 | } |
michael@0 | 1589 | |
michael@0 | 1590 | // Extract a linear inequality holding when a boolean test goes in the |
michael@0 | 1591 | // specified direction, of the form 'lhs + lhsN <= rhs' (or >=). |
michael@0 | 1592 | bool |
michael@0 | 1593 | jit::ExtractLinearInequality(MTest *test, BranchDirection direction, |
michael@0 | 1594 | SimpleLinearSum *plhs, MDefinition **prhs, bool *plessEqual) |
michael@0 | 1595 | { |
michael@0 | 1596 | if (!test->getOperand(0)->isCompare()) |
michael@0 | 1597 | return false; |
michael@0 | 1598 | |
michael@0 | 1599 | MCompare *compare = test->getOperand(0)->toCompare(); |
michael@0 | 1600 | |
michael@0 | 1601 | MDefinition *lhs = compare->getOperand(0); |
michael@0 | 1602 | MDefinition *rhs = compare->getOperand(1); |
michael@0 | 1603 | |
michael@0 | 1604 | // TODO: optimize Compare_UInt32 |
michael@0 | 1605 | if (!compare->isInt32Comparison()) |
michael@0 | 1606 | return false; |
michael@0 | 1607 | |
michael@0 | 1608 | JS_ASSERT(lhs->type() == MIRType_Int32); |
michael@0 | 1609 | JS_ASSERT(rhs->type() == MIRType_Int32); |
michael@0 | 1610 | |
michael@0 | 1611 | JSOp jsop = compare->jsop(); |
michael@0 | 1612 | if (direction == FALSE_BRANCH) |
michael@0 | 1613 | jsop = NegateCompareOp(jsop); |
michael@0 | 1614 | |
michael@0 | 1615 | SimpleLinearSum lsum = ExtractLinearSum(lhs); |
michael@0 | 1616 | SimpleLinearSum rsum = ExtractLinearSum(rhs); |
michael@0 | 1617 | |
michael@0 | 1618 | if (!SafeSub(lsum.constant, rsum.constant, &lsum.constant)) |
michael@0 | 1619 | return false; |
michael@0 | 1620 | |
michael@0 | 1621 | // Normalize operations to use <= or >=. |
michael@0 | 1622 | switch (jsop) { |
michael@0 | 1623 | case JSOP_LE: |
michael@0 | 1624 | *plessEqual = true; |
michael@0 | 1625 | break; |
michael@0 | 1626 | case JSOP_LT: |
michael@0 | 1627 | /* x < y ==> x + 1 <= y */ |
michael@0 | 1628 | if (!SafeAdd(lsum.constant, 1, &lsum.constant)) |
michael@0 | 1629 | return false; |
michael@0 | 1630 | *plessEqual = true; |
michael@0 | 1631 | break; |
michael@0 | 1632 | case JSOP_GE: |
michael@0 | 1633 | *plessEqual = false; |
michael@0 | 1634 | break; |
michael@0 | 1635 | case JSOP_GT: |
michael@0 | 1636 | /* x > y ==> x - 1 >= y */ |
michael@0 | 1637 | if (!SafeSub(lsum.constant, 1, &lsum.constant)) |
michael@0 | 1638 | return false; |
michael@0 | 1639 | *plessEqual = false; |
michael@0 | 1640 | break; |
michael@0 | 1641 | default: |
michael@0 | 1642 | return false; |
michael@0 | 1643 | } |
michael@0 | 1644 | |
michael@0 | 1645 | *plhs = lsum; |
michael@0 | 1646 | *prhs = rsum.term; |
michael@0 | 1647 | |
michael@0 | 1648 | return true; |
michael@0 | 1649 | } |
michael@0 | 1650 | |
michael@0 | 1651 | static bool |
michael@0 | 1652 | TryEliminateBoundsCheck(BoundsCheckMap &checks, size_t blockIndex, MBoundsCheck *dominated, bool *eliminated) |
michael@0 | 1653 | { |
michael@0 | 1654 | JS_ASSERT(!*eliminated); |
michael@0 | 1655 | |
michael@0 | 1656 | // Replace all uses of the bounds check with the actual index. |
michael@0 | 1657 | // This is (a) necessary, because we can coalesce two different |
michael@0 | 1658 | // bounds checks and would otherwise use the wrong index and |
michael@0 | 1659 | // (b) helps register allocation. Note that this is safe since |
michael@0 | 1660 | // no other pass after bounds check elimination moves instructions. |
michael@0 | 1661 | dominated->replaceAllUsesWith(dominated->index()); |
michael@0 | 1662 | |
michael@0 | 1663 | if (!dominated->isMovable()) |
michael@0 | 1664 | return true; |
michael@0 | 1665 | |
michael@0 | 1666 | MBoundsCheck *dominating = FindDominatingBoundsCheck(checks, dominated, blockIndex); |
michael@0 | 1667 | if (!dominating) |
michael@0 | 1668 | return false; |
michael@0 | 1669 | |
michael@0 | 1670 | if (dominating == dominated) { |
michael@0 | 1671 | // We didn't find a dominating bounds check. |
michael@0 | 1672 | return true; |
michael@0 | 1673 | } |
michael@0 | 1674 | |
michael@0 | 1675 | // We found two bounds checks with the same hash number, but we still have |
michael@0 | 1676 | // to make sure the lengths and index terms are equal. |
michael@0 | 1677 | if (dominating->length() != dominated->length()) |
michael@0 | 1678 | return true; |
michael@0 | 1679 | |
michael@0 | 1680 | SimpleLinearSum sumA = ExtractLinearSum(dominating->index()); |
michael@0 | 1681 | SimpleLinearSum sumB = ExtractLinearSum(dominated->index()); |
michael@0 | 1682 | |
michael@0 | 1683 | // Both terms should be nullptr or the same definition. |
michael@0 | 1684 | if (sumA.term != sumB.term) |
michael@0 | 1685 | return true; |
michael@0 | 1686 | |
michael@0 | 1687 | // This bounds check is redundant. |
michael@0 | 1688 | *eliminated = true; |
michael@0 | 1689 | |
michael@0 | 1690 | // Normalize the ranges according to the constant offsets in the two indexes. |
michael@0 | 1691 | int32_t minimumA, maximumA, minimumB, maximumB; |
michael@0 | 1692 | if (!SafeAdd(sumA.constant, dominating->minimum(), &minimumA) || |
michael@0 | 1693 | !SafeAdd(sumA.constant, dominating->maximum(), &maximumA) || |
michael@0 | 1694 | !SafeAdd(sumB.constant, dominated->minimum(), &minimumB) || |
michael@0 | 1695 | !SafeAdd(sumB.constant, dominated->maximum(), &maximumB)) |
michael@0 | 1696 | { |
michael@0 | 1697 | return false; |
michael@0 | 1698 | } |
michael@0 | 1699 | |
michael@0 | 1700 | // Update the dominating check to cover both ranges, denormalizing the |
michael@0 | 1701 | // result per the constant offset in the index. |
michael@0 | 1702 | int32_t newMinimum, newMaximum; |
michael@0 | 1703 | if (!SafeSub(Min(minimumA, minimumB), sumA.constant, &newMinimum) || |
michael@0 | 1704 | !SafeSub(Max(maximumA, maximumB), sumA.constant, &newMaximum)) |
michael@0 | 1705 | { |
michael@0 | 1706 | return false; |
michael@0 | 1707 | } |
michael@0 | 1708 | |
michael@0 | 1709 | dominating->setMinimum(newMinimum); |
michael@0 | 1710 | dominating->setMaximum(newMaximum); |
michael@0 | 1711 | return true; |
michael@0 | 1712 | } |
michael@0 | 1713 | |
michael@0 | 1714 | static void |
michael@0 | 1715 | TryEliminateTypeBarrierFromTest(MTypeBarrier *barrier, bool filtersNull, bool filtersUndefined, |
michael@0 | 1716 | MTest *test, BranchDirection direction, bool *eliminated) |
michael@0 | 1717 | { |
michael@0 | 1718 | JS_ASSERT(filtersNull || filtersUndefined); |
michael@0 | 1719 | |
michael@0 | 1720 | // Watch for code patterns similar to 'if (x.f) { ... = x.f }'. If x.f |
michael@0 | 1721 | // is either an object or null/undefined, there will be a type barrier on |
michael@0 | 1722 | // the latter read as the null/undefined value is never realized there. |
michael@0 | 1723 | // The type barrier can be eliminated, however, by looking at tests |
michael@0 | 1724 | // performed on the result of the first operation that filter out all |
michael@0 | 1725 | // types that have been seen in the first access but not the second. |
michael@0 | 1726 | |
michael@0 | 1727 | // A test 'if (x.f)' filters both null and undefined. |
michael@0 | 1728 | |
michael@0 | 1729 | // Disregard the possible unbox added before the Typebarrier for checking. |
michael@0 | 1730 | MDefinition *input = barrier->input(); |
michael@0 | 1731 | MUnbox *inputUnbox = nullptr; |
michael@0 | 1732 | if (input->isUnbox() && input->toUnbox()->mode() != MUnbox::Fallible) { |
michael@0 | 1733 | inputUnbox = input->toUnbox(); |
michael@0 | 1734 | input = inputUnbox->input(); |
michael@0 | 1735 | } |
michael@0 | 1736 | |
michael@0 | 1737 | MDefinition *subject = nullptr; |
michael@0 | 1738 | bool removeUndefined; |
michael@0 | 1739 | bool removeNull; |
michael@0 | 1740 | test->filtersUndefinedOrNull(direction == TRUE_BRANCH, &subject, &removeUndefined, &removeNull); |
michael@0 | 1741 | |
michael@0 | 1742 | // The Test doesn't filter undefined nor null. |
michael@0 | 1743 | if (!subject) |
michael@0 | 1744 | return; |
michael@0 | 1745 | |
michael@0 | 1746 | // Make sure the subject equals the input to the TypeBarrier. |
michael@0 | 1747 | if (subject != input) |
michael@0 | 1748 | return; |
michael@0 | 1749 | |
michael@0 | 1750 | // When the TypeBarrier filters undefined, the test must at least also do, |
michael@0 | 1751 | // this, before the TypeBarrier can get removed. |
michael@0 | 1752 | if (!removeUndefined && filtersUndefined) |
michael@0 | 1753 | return; |
michael@0 | 1754 | |
michael@0 | 1755 | // When the TypeBarrier filters null, the test must at least also do, |
michael@0 | 1756 | // this, before the TypeBarrier can get removed. |
michael@0 | 1757 | if (!removeNull && filtersNull) |
michael@0 | 1758 | return; |
michael@0 | 1759 | |
michael@0 | 1760 | // Eliminate the TypeBarrier. The possible TypeBarrier unboxing is kept, |
michael@0 | 1761 | // but made infallible. |
michael@0 | 1762 | *eliminated = true; |
michael@0 | 1763 | if (inputUnbox) |
michael@0 | 1764 | inputUnbox->makeInfallible(); |
michael@0 | 1765 | barrier->replaceAllUsesWith(barrier->input()); |
michael@0 | 1766 | } |
michael@0 | 1767 | |
michael@0 | 1768 | static bool |
michael@0 | 1769 | TryEliminateTypeBarrier(MTypeBarrier *barrier, bool *eliminated) |
michael@0 | 1770 | { |
michael@0 | 1771 | JS_ASSERT(!*eliminated); |
michael@0 | 1772 | |
michael@0 | 1773 | const types::TemporaryTypeSet *barrierTypes = barrier->resultTypeSet(); |
michael@0 | 1774 | const types::TemporaryTypeSet *inputTypes = barrier->input()->resultTypeSet(); |
michael@0 | 1775 | |
michael@0 | 1776 | // Disregard the possible unbox added before the Typebarrier. |
michael@0 | 1777 | if (barrier->input()->isUnbox() && barrier->input()->toUnbox()->mode() != MUnbox::Fallible) |
michael@0 | 1778 | inputTypes = barrier->input()->toUnbox()->input()->resultTypeSet(); |
michael@0 | 1779 | |
michael@0 | 1780 | if (!barrierTypes || !inputTypes) |
michael@0 | 1781 | return true; |
michael@0 | 1782 | |
michael@0 | 1783 | bool filtersNull = barrierTypes->filtersType(inputTypes, types::Type::NullType()); |
michael@0 | 1784 | bool filtersUndefined = barrierTypes->filtersType(inputTypes, types::Type::UndefinedType()); |
michael@0 | 1785 | |
michael@0 | 1786 | if (!filtersNull && !filtersUndefined) |
michael@0 | 1787 | return true; |
michael@0 | 1788 | |
michael@0 | 1789 | MBasicBlock *block = barrier->block(); |
michael@0 | 1790 | while (true) { |
michael@0 | 1791 | BranchDirection direction; |
michael@0 | 1792 | MTest *test = block->immediateDominatorBranch(&direction); |
michael@0 | 1793 | |
michael@0 | 1794 | if (test) { |
michael@0 | 1795 | TryEliminateTypeBarrierFromTest(barrier, filtersNull, filtersUndefined, |
michael@0 | 1796 | test, direction, eliminated); |
michael@0 | 1797 | } |
michael@0 | 1798 | |
michael@0 | 1799 | MBasicBlock *previous = block->immediateDominator(); |
michael@0 | 1800 | if (previous == block) |
michael@0 | 1801 | break; |
michael@0 | 1802 | block = previous; |
michael@0 | 1803 | } |
michael@0 | 1804 | |
michael@0 | 1805 | return true; |
michael@0 | 1806 | } |
michael@0 | 1807 | |
michael@0 | 1808 | // Eliminate checks which are redundant given each other or other instructions. |
michael@0 | 1809 | // |
michael@0 | 1810 | // A type barrier is considered redundant if all missing types have been tested |
michael@0 | 1811 | // for by earlier control instructions. |
michael@0 | 1812 | // |
michael@0 | 1813 | // A bounds check is considered redundant if it's dominated by another bounds |
michael@0 | 1814 | // check with the same length and the indexes differ by only a constant amount. |
michael@0 | 1815 | // In this case we eliminate the redundant bounds check and update the other one |
michael@0 | 1816 | // to cover the ranges of both checks. |
michael@0 | 1817 | // |
michael@0 | 1818 | // Bounds checks are added to a hash map and since the hash function ignores |
michael@0 | 1819 | // differences in constant offset, this offers a fast way to find redundant |
michael@0 | 1820 | // checks. |
michael@0 | 1821 | bool |
michael@0 | 1822 | jit::EliminateRedundantChecks(MIRGraph &graph) |
michael@0 | 1823 | { |
michael@0 | 1824 | BoundsCheckMap checks(graph.alloc()); |
michael@0 | 1825 | |
michael@0 | 1826 | if (!checks.init()) |
michael@0 | 1827 | return false; |
michael@0 | 1828 | |
michael@0 | 1829 | // Stack for pre-order CFG traversal. |
michael@0 | 1830 | Vector<MBasicBlock *, 1, IonAllocPolicy> worklist(graph.alloc()); |
michael@0 | 1831 | |
michael@0 | 1832 | // The index of the current block in the CFG traversal. |
michael@0 | 1833 | size_t index = 0; |
michael@0 | 1834 | |
michael@0 | 1835 | // Add all self-dominating blocks to the worklist. |
michael@0 | 1836 | // This includes all roots. Order does not matter. |
michael@0 | 1837 | for (MBasicBlockIterator i(graph.begin()); i != graph.end(); i++) { |
michael@0 | 1838 | MBasicBlock *block = *i; |
michael@0 | 1839 | if (block->immediateDominator() == block) { |
michael@0 | 1840 | if (!worklist.append(block)) |
michael@0 | 1841 | return false; |
michael@0 | 1842 | } |
michael@0 | 1843 | } |
michael@0 | 1844 | |
michael@0 | 1845 | // Starting from each self-dominating block, traverse the CFG in pre-order. |
michael@0 | 1846 | while (!worklist.empty()) { |
michael@0 | 1847 | MBasicBlock *block = worklist.popCopy(); |
michael@0 | 1848 | |
michael@0 | 1849 | // Add all immediate dominators to the front of the worklist. |
michael@0 | 1850 | if (!worklist.append(block->immediatelyDominatedBlocksBegin(), |
michael@0 | 1851 | block->immediatelyDominatedBlocksEnd())) { |
michael@0 | 1852 | return false; |
michael@0 | 1853 | } |
michael@0 | 1854 | |
michael@0 | 1855 | for (MDefinitionIterator iter(block); iter; ) { |
michael@0 | 1856 | bool eliminated = false; |
michael@0 | 1857 | |
michael@0 | 1858 | if (iter->isBoundsCheck()) { |
michael@0 | 1859 | if (!TryEliminateBoundsCheck(checks, index, iter->toBoundsCheck(), &eliminated)) |
michael@0 | 1860 | return false; |
michael@0 | 1861 | } else if (iter->isTypeBarrier()) { |
michael@0 | 1862 | if (!TryEliminateTypeBarrier(iter->toTypeBarrier(), &eliminated)) |
michael@0 | 1863 | return false; |
michael@0 | 1864 | } else if (iter->isConvertElementsToDoubles()) { |
michael@0 | 1865 | // Now that code motion passes have finished, replace any |
michael@0 | 1866 | // ConvertElementsToDoubles with the actual elements. |
michael@0 | 1867 | MConvertElementsToDoubles *ins = iter->toConvertElementsToDoubles(); |
michael@0 | 1868 | ins->replaceAllUsesWith(ins->elements()); |
michael@0 | 1869 | } |
michael@0 | 1870 | |
michael@0 | 1871 | if (eliminated) |
michael@0 | 1872 | iter = block->discardDefAt(iter); |
michael@0 | 1873 | else |
michael@0 | 1874 | iter++; |
michael@0 | 1875 | } |
michael@0 | 1876 | index++; |
michael@0 | 1877 | } |
michael@0 | 1878 | |
michael@0 | 1879 | JS_ASSERT(index == graph.numBlocks()); |
michael@0 | 1880 | return true; |
michael@0 | 1881 | } |
michael@0 | 1882 | |
michael@0 | 1883 | // If the given block contains a goto and nothing interesting before that, |
michael@0 | 1884 | // return the goto. Return nullptr otherwise. |
michael@0 | 1885 | static LGoto * |
michael@0 | 1886 | FindLeadingGoto(LBlock *bb) |
michael@0 | 1887 | { |
michael@0 | 1888 | for (LInstructionIterator ins(bb->begin()); ins != bb->end(); ins++) { |
michael@0 | 1889 | // Ignore labels. |
michael@0 | 1890 | if (ins->isLabel()) |
michael@0 | 1891 | continue; |
michael@0 | 1892 | // If we have a goto, we're good to go. |
michael@0 | 1893 | if (ins->isGoto()) |
michael@0 | 1894 | return ins->toGoto(); |
michael@0 | 1895 | break; |
michael@0 | 1896 | } |
michael@0 | 1897 | return nullptr; |
michael@0 | 1898 | } |
michael@0 | 1899 | |
michael@0 | 1900 | // Eliminate blocks containing nothing interesting besides gotos. These are |
michael@0 | 1901 | // often created by optimizer, which splits all critical edges. If these |
michael@0 | 1902 | // splits end up being unused after optimization and register allocation, |
michael@0 | 1903 | // fold them back away to avoid unnecessary branching. |
michael@0 | 1904 | bool |
michael@0 | 1905 | jit::UnsplitEdges(LIRGraph *lir) |
michael@0 | 1906 | { |
michael@0 | 1907 | for (size_t i = 0; i < lir->numBlocks(); i++) { |
michael@0 | 1908 | LBlock *bb = lir->getBlock(i); |
michael@0 | 1909 | MBasicBlock *mirBlock = bb->mir(); |
michael@0 | 1910 | |
michael@0 | 1911 | // Renumber the MIR blocks as we go, since we may remove some. |
michael@0 | 1912 | mirBlock->setId(i); |
michael@0 | 1913 | |
michael@0 | 1914 | // Register allocation is done by this point, so we don't need the phis |
michael@0 | 1915 | // anymore. Clear them to avoid needed to keep them current as we edit |
michael@0 | 1916 | // the CFG. |
michael@0 | 1917 | bb->clearPhis(); |
michael@0 | 1918 | mirBlock->discardAllPhis(); |
michael@0 | 1919 | |
michael@0 | 1920 | // First make sure the MIR block looks sane. Some of these checks may be |
michael@0 | 1921 | // over-conservative, but we're attempting to keep everything in MIR |
michael@0 | 1922 | // current as we modify the LIR, so only proceed if the MIR is simple. |
michael@0 | 1923 | if (mirBlock->numPredecessors() == 0 || mirBlock->numSuccessors() != 1 || |
michael@0 | 1924 | !mirBlock->begin()->isGoto()) |
michael@0 | 1925 | { |
michael@0 | 1926 | continue; |
michael@0 | 1927 | } |
michael@0 | 1928 | |
michael@0 | 1929 | // The MIR block is empty, but check the LIR block too (in case the |
michael@0 | 1930 | // register allocator inserted spill code there, or whatever). |
michael@0 | 1931 | LGoto *theGoto = FindLeadingGoto(bb); |
michael@0 | 1932 | if (!theGoto) |
michael@0 | 1933 | continue; |
michael@0 | 1934 | MBasicBlock *target = theGoto->target(); |
michael@0 | 1935 | if (target == mirBlock || target != mirBlock->getSuccessor(0)) |
michael@0 | 1936 | continue; |
michael@0 | 1937 | |
michael@0 | 1938 | // If we haven't yet cleared the phis for the successor, do so now so |
michael@0 | 1939 | // that the CFG manipulation routines don't trip over them. |
michael@0 | 1940 | if (!target->phisEmpty()) { |
michael@0 | 1941 | target->discardAllPhis(); |
michael@0 | 1942 | target->lir()->clearPhis(); |
michael@0 | 1943 | } |
michael@0 | 1944 | |
michael@0 | 1945 | // Edit the CFG to remove lir/mirBlock and reconnect all its edges. |
michael@0 | 1946 | for (size_t j = 0; j < mirBlock->numPredecessors(); j++) { |
michael@0 | 1947 | MBasicBlock *mirPred = mirBlock->getPredecessor(j); |
michael@0 | 1948 | |
michael@0 | 1949 | for (size_t k = 0; k < mirPred->numSuccessors(); k++) { |
michael@0 | 1950 | if (mirPred->getSuccessor(k) == mirBlock) { |
michael@0 | 1951 | mirPred->replaceSuccessor(k, target); |
michael@0 | 1952 | if (!target->addPredecessorWithoutPhis(mirPred)) |
michael@0 | 1953 | return false; |
michael@0 | 1954 | } |
michael@0 | 1955 | } |
michael@0 | 1956 | |
michael@0 | 1957 | LInstruction *predTerm = *mirPred->lir()->rbegin(); |
michael@0 | 1958 | for (size_t k = 0; k < predTerm->numSuccessors(); k++) { |
michael@0 | 1959 | if (predTerm->getSuccessor(k) == mirBlock) |
michael@0 | 1960 | predTerm->setSuccessor(k, target); |
michael@0 | 1961 | } |
michael@0 | 1962 | } |
michael@0 | 1963 | target->removePredecessor(mirBlock); |
michael@0 | 1964 | |
michael@0 | 1965 | // Zap the block. |
michael@0 | 1966 | lir->removeBlock(i); |
michael@0 | 1967 | lir->mir().removeBlock(mirBlock); |
michael@0 | 1968 | --i; |
michael@0 | 1969 | } |
michael@0 | 1970 | |
michael@0 | 1971 | return true; |
michael@0 | 1972 | } |
michael@0 | 1973 | |
michael@0 | 1974 | bool |
michael@0 | 1975 | LinearSum::multiply(int32_t scale) |
michael@0 | 1976 | { |
michael@0 | 1977 | for (size_t i = 0; i < terms_.length(); i++) { |
michael@0 | 1978 | if (!SafeMul(scale, terms_[i].scale, &terms_[i].scale)) |
michael@0 | 1979 | return false; |
michael@0 | 1980 | } |
michael@0 | 1981 | return SafeMul(scale, constant_, &constant_); |
michael@0 | 1982 | } |
michael@0 | 1983 | |
michael@0 | 1984 | bool |
michael@0 | 1985 | LinearSum::add(const LinearSum &other) |
michael@0 | 1986 | { |
michael@0 | 1987 | for (size_t i = 0; i < other.terms_.length(); i++) { |
michael@0 | 1988 | if (!add(other.terms_[i].term, other.terms_[i].scale)) |
michael@0 | 1989 | return false; |
michael@0 | 1990 | } |
michael@0 | 1991 | return add(other.constant_); |
michael@0 | 1992 | } |
michael@0 | 1993 | |
michael@0 | 1994 | bool |
michael@0 | 1995 | LinearSum::add(MDefinition *term, int32_t scale) |
michael@0 | 1996 | { |
michael@0 | 1997 | JS_ASSERT(term); |
michael@0 | 1998 | |
michael@0 | 1999 | if (scale == 0) |
michael@0 | 2000 | return true; |
michael@0 | 2001 | |
michael@0 | 2002 | if (term->isConstant()) { |
michael@0 | 2003 | int32_t constant = term->toConstant()->value().toInt32(); |
michael@0 | 2004 | if (!SafeMul(constant, scale, &constant)) |
michael@0 | 2005 | return false; |
michael@0 | 2006 | return add(constant); |
michael@0 | 2007 | } |
michael@0 | 2008 | |
michael@0 | 2009 | for (size_t i = 0; i < terms_.length(); i++) { |
michael@0 | 2010 | if (term == terms_[i].term) { |
michael@0 | 2011 | if (!SafeAdd(scale, terms_[i].scale, &terms_[i].scale)) |
michael@0 | 2012 | return false; |
michael@0 | 2013 | if (terms_[i].scale == 0) { |
michael@0 | 2014 | terms_[i] = terms_.back(); |
michael@0 | 2015 | terms_.popBack(); |
michael@0 | 2016 | } |
michael@0 | 2017 | return true; |
michael@0 | 2018 | } |
michael@0 | 2019 | } |
michael@0 | 2020 | |
michael@0 | 2021 | terms_.append(LinearTerm(term, scale)); |
michael@0 | 2022 | return true; |
michael@0 | 2023 | } |
michael@0 | 2024 | |
michael@0 | 2025 | bool |
michael@0 | 2026 | LinearSum::add(int32_t constant) |
michael@0 | 2027 | { |
michael@0 | 2028 | return SafeAdd(constant, constant_, &constant_); |
michael@0 | 2029 | } |
michael@0 | 2030 | |
michael@0 | 2031 | void |
michael@0 | 2032 | LinearSum::print(Sprinter &sp) const |
michael@0 | 2033 | { |
michael@0 | 2034 | for (size_t i = 0; i < terms_.length(); i++) { |
michael@0 | 2035 | int32_t scale = terms_[i].scale; |
michael@0 | 2036 | int32_t id = terms_[i].term->id(); |
michael@0 | 2037 | JS_ASSERT(scale); |
michael@0 | 2038 | if (scale > 0) { |
michael@0 | 2039 | if (i) |
michael@0 | 2040 | sp.printf("+"); |
michael@0 | 2041 | if (scale == 1) |
michael@0 | 2042 | sp.printf("#%d", id); |
michael@0 | 2043 | else |
michael@0 | 2044 | sp.printf("%d*#%d", scale, id); |
michael@0 | 2045 | } else if (scale == -1) { |
michael@0 | 2046 | sp.printf("-#%d", id); |
michael@0 | 2047 | } else { |
michael@0 | 2048 | sp.printf("%d*#%d", scale, id); |
michael@0 | 2049 | } |
michael@0 | 2050 | } |
michael@0 | 2051 | if (constant_ > 0) |
michael@0 | 2052 | sp.printf("+%d", constant_); |
michael@0 | 2053 | else if (constant_ < 0) |
michael@0 | 2054 | sp.printf("%d", constant_); |
michael@0 | 2055 | } |
michael@0 | 2056 | |
michael@0 | 2057 | void |
michael@0 | 2058 | LinearSum::dump(FILE *fp) const |
michael@0 | 2059 | { |
michael@0 | 2060 | Sprinter sp(GetIonContext()->cx); |
michael@0 | 2061 | sp.init(); |
michael@0 | 2062 | print(sp); |
michael@0 | 2063 | fprintf(fp, "%s\n", sp.string()); |
michael@0 | 2064 | } |
michael@0 | 2065 | |
michael@0 | 2066 | void |
michael@0 | 2067 | LinearSum::dump() const |
michael@0 | 2068 | { |
michael@0 | 2069 | dump(stderr); |
michael@0 | 2070 | } |
michael@0 | 2071 | |
michael@0 | 2072 | static bool |
michael@0 | 2073 | AnalyzePoppedThis(JSContext *cx, types::TypeObject *type, |
michael@0 | 2074 | MDefinition *thisValue, MInstruction *ins, bool definitelyExecuted, |
michael@0 | 2075 | HandleObject baseobj, |
michael@0 | 2076 | Vector<types::TypeNewScript::Initializer> *initializerList, |
michael@0 | 2077 | Vector<PropertyName *> *accessedProperties, |
michael@0 | 2078 | bool *phandled) |
michael@0 | 2079 | { |
michael@0 | 2080 | // Determine the effect that a use of the |this| value when calling |new| |
michael@0 | 2081 | // on a script has on the properties definitely held by the new object. |
michael@0 | 2082 | |
michael@0 | 2083 | if (ins->isCallSetProperty()) { |
michael@0 | 2084 | MCallSetProperty *setprop = ins->toCallSetProperty(); |
michael@0 | 2085 | |
michael@0 | 2086 | if (setprop->object() != thisValue) |
michael@0 | 2087 | return true; |
michael@0 | 2088 | |
michael@0 | 2089 | // Don't use GetAtomId here, we need to watch for SETPROP on |
michael@0 | 2090 | // integer properties and bail out. We can't mark the aggregate |
michael@0 | 2091 | // JSID_VOID type property as being in a definite slot. |
michael@0 | 2092 | if (setprop->name() == cx->names().prototype || |
michael@0 | 2093 | setprop->name() == cx->names().proto || |
michael@0 | 2094 | setprop->name() == cx->names().constructor) |
michael@0 | 2095 | { |
michael@0 | 2096 | return true; |
michael@0 | 2097 | } |
michael@0 | 2098 | |
michael@0 | 2099 | // Ignore assignments to properties that were already written to. |
michael@0 | 2100 | if (baseobj->nativeLookup(cx, NameToId(setprop->name()))) { |
michael@0 | 2101 | *phandled = true; |
michael@0 | 2102 | return true; |
michael@0 | 2103 | } |
michael@0 | 2104 | |
michael@0 | 2105 | // Don't add definite properties for properties that were already |
michael@0 | 2106 | // read in the constructor. |
michael@0 | 2107 | for (size_t i = 0; i < accessedProperties->length(); i++) { |
michael@0 | 2108 | if ((*accessedProperties)[i] == setprop->name()) |
michael@0 | 2109 | return true; |
michael@0 | 2110 | } |
michael@0 | 2111 | |
michael@0 | 2112 | // Don't add definite properties to an object which won't fit in its |
michael@0 | 2113 | // fixed slots. |
michael@0 | 2114 | if (GetGCKindSlots(gc::GetGCObjectKind(baseobj->slotSpan() + 1)) <= baseobj->slotSpan()) |
michael@0 | 2115 | return true; |
michael@0 | 2116 | |
michael@0 | 2117 | // Assignments to new properties must always execute. |
michael@0 | 2118 | if (!definitelyExecuted) |
michael@0 | 2119 | return true; |
michael@0 | 2120 | |
michael@0 | 2121 | RootedId id(cx, NameToId(setprop->name())); |
michael@0 | 2122 | if (!types::AddClearDefiniteGetterSetterForPrototypeChain(cx, type, id)) { |
michael@0 | 2123 | // The prototype chain already contains a getter/setter for this |
michael@0 | 2124 | // property, or type information is too imprecise. |
michael@0 | 2125 | return true; |
michael@0 | 2126 | } |
michael@0 | 2127 | |
michael@0 | 2128 | DebugOnly<unsigned> slotSpan = baseobj->slotSpan(); |
michael@0 | 2129 | if (!DefineNativeProperty(cx, baseobj, id, UndefinedHandleValue, nullptr, nullptr, |
michael@0 | 2130 | JSPROP_ENUMERATE)) |
michael@0 | 2131 | { |
michael@0 | 2132 | return false; |
michael@0 | 2133 | } |
michael@0 | 2134 | JS_ASSERT(baseobj->slotSpan() != slotSpan); |
michael@0 | 2135 | JS_ASSERT(!baseobj->inDictionaryMode()); |
michael@0 | 2136 | |
michael@0 | 2137 | Vector<MResumePoint *> callerResumePoints(cx); |
michael@0 | 2138 | MBasicBlock *block = ins->block(); |
michael@0 | 2139 | for (MResumePoint *rp = block->callerResumePoint(); |
michael@0 | 2140 | rp; |
michael@0 | 2141 | block = rp->block(), rp = block->callerResumePoint()) |
michael@0 | 2142 | { |
michael@0 | 2143 | JSScript *script = rp->block()->info().script(); |
michael@0 | 2144 | if (!types::AddClearDefiniteFunctionUsesInScript(cx, type, script, block->info().script())) |
michael@0 | 2145 | return true; |
michael@0 | 2146 | if (!callerResumePoints.append(rp)) |
michael@0 | 2147 | return false; |
michael@0 | 2148 | } |
michael@0 | 2149 | |
michael@0 | 2150 | for (int i = callerResumePoints.length() - 1; i >= 0; i--) { |
michael@0 | 2151 | MResumePoint *rp = callerResumePoints[i]; |
michael@0 | 2152 | JSScript *script = rp->block()->info().script(); |
michael@0 | 2153 | types::TypeNewScript::Initializer entry(types::TypeNewScript::Initializer::SETPROP_FRAME, |
michael@0 | 2154 | script->pcToOffset(rp->pc())); |
michael@0 | 2155 | if (!initializerList->append(entry)) |
michael@0 | 2156 | return false; |
michael@0 | 2157 | } |
michael@0 | 2158 | |
michael@0 | 2159 | JSScript *script = ins->block()->info().script(); |
michael@0 | 2160 | types::TypeNewScript::Initializer entry(types::TypeNewScript::Initializer::SETPROP, |
michael@0 | 2161 | script->pcToOffset(setprop->resumePoint()->pc())); |
michael@0 | 2162 | if (!initializerList->append(entry)) |
michael@0 | 2163 | return false; |
michael@0 | 2164 | |
michael@0 | 2165 | *phandled = true; |
michael@0 | 2166 | return true; |
michael@0 | 2167 | } |
michael@0 | 2168 | |
michael@0 | 2169 | if (ins->isCallGetProperty()) { |
michael@0 | 2170 | MCallGetProperty *get = ins->toCallGetProperty(); |
michael@0 | 2171 | |
michael@0 | 2172 | /* |
michael@0 | 2173 | * Properties can be read from the 'this' object if the following hold: |
michael@0 | 2174 | * |
michael@0 | 2175 | * - The read is not on a getter along the prototype chain, which |
michael@0 | 2176 | * could cause 'this' to escape. |
michael@0 | 2177 | * |
michael@0 | 2178 | * - The accessed property is either already a definite property or |
michael@0 | 2179 | * is not later added as one. Since the definite properties are |
michael@0 | 2180 | * added to the object at the point of its creation, reading a |
michael@0 | 2181 | * definite property before it is assigned could incorrectly hit. |
michael@0 | 2182 | */ |
michael@0 | 2183 | RootedId id(cx, NameToId(get->name())); |
michael@0 | 2184 | if (!baseobj->nativeLookup(cx, id) && !accessedProperties->append(get->name())) |
michael@0 | 2185 | return false; |
michael@0 | 2186 | |
michael@0 | 2187 | if (!types::AddClearDefiniteGetterSetterForPrototypeChain(cx, type, id)) { |
michael@0 | 2188 | // The |this| value can escape if any property reads it does go |
michael@0 | 2189 | // through a getter. |
michael@0 | 2190 | return true; |
michael@0 | 2191 | } |
michael@0 | 2192 | |
michael@0 | 2193 | *phandled = true; |
michael@0 | 2194 | return true; |
michael@0 | 2195 | } |
michael@0 | 2196 | |
michael@0 | 2197 | if (ins->isPostWriteBarrier()) { |
michael@0 | 2198 | *phandled = true; |
michael@0 | 2199 | return true; |
michael@0 | 2200 | } |
michael@0 | 2201 | |
michael@0 | 2202 | return true; |
michael@0 | 2203 | } |
michael@0 | 2204 | |
michael@0 | 2205 | static int |
michael@0 | 2206 | CmpInstructions(const void *a, const void *b) |
michael@0 | 2207 | { |
michael@0 | 2208 | return (*static_cast<MInstruction * const *>(a))->id() - |
michael@0 | 2209 | (*static_cast<MInstruction * const *>(b))->id(); |
michael@0 | 2210 | } |
michael@0 | 2211 | |
michael@0 | 2212 | bool |
michael@0 | 2213 | jit::AnalyzeNewScriptProperties(JSContext *cx, JSFunction *fun, |
michael@0 | 2214 | types::TypeObject *type, HandleObject baseobj, |
michael@0 | 2215 | Vector<types::TypeNewScript::Initializer> *initializerList) |
michael@0 | 2216 | { |
michael@0 | 2217 | JS_ASSERT(cx->compartment()->activeAnalysis); |
michael@0 | 2218 | |
michael@0 | 2219 | // When invoking 'new' on the specified script, try to find some properties |
michael@0 | 2220 | // which will definitely be added to the created object before it has a |
michael@0 | 2221 | // chance to escape and be accessed elsewhere. |
michael@0 | 2222 | |
michael@0 | 2223 | RootedScript script(cx, fun->getOrCreateScript(cx)); |
michael@0 | 2224 | if (!script) |
michael@0 | 2225 | return false; |
michael@0 | 2226 | |
michael@0 | 2227 | if (!jit::IsIonEnabled(cx) || !jit::IsBaselineEnabled(cx) || |
michael@0 | 2228 | !script->compileAndGo() || !script->canBaselineCompile()) |
michael@0 | 2229 | { |
michael@0 | 2230 | return true; |
michael@0 | 2231 | } |
michael@0 | 2232 | |
michael@0 | 2233 | static const uint32_t MAX_SCRIPT_SIZE = 2000; |
michael@0 | 2234 | if (script->length() > MAX_SCRIPT_SIZE) |
michael@0 | 2235 | return true; |
michael@0 | 2236 | |
michael@0 | 2237 | Vector<PropertyName *> accessedProperties(cx); |
michael@0 | 2238 | |
michael@0 | 2239 | LifoAlloc alloc(types::TypeZone::TYPE_LIFO_ALLOC_PRIMARY_CHUNK_SIZE); |
michael@0 | 2240 | |
michael@0 | 2241 | TempAllocator temp(&alloc); |
michael@0 | 2242 | IonContext ictx(cx, &temp); |
michael@0 | 2243 | |
michael@0 | 2244 | if (!cx->compartment()->ensureJitCompartmentExists(cx)) |
michael@0 | 2245 | return false; |
michael@0 | 2246 | |
michael@0 | 2247 | if (!script->hasBaselineScript()) { |
michael@0 | 2248 | MethodStatus status = BaselineCompile(cx, script); |
michael@0 | 2249 | if (status == Method_Error) |
michael@0 | 2250 | return false; |
michael@0 | 2251 | if (status != Method_Compiled) |
michael@0 | 2252 | return true; |
michael@0 | 2253 | } |
michael@0 | 2254 | |
michael@0 | 2255 | types::TypeScript::SetThis(cx, script, types::Type::ObjectType(type)); |
michael@0 | 2256 | |
michael@0 | 2257 | MIRGraph graph(&temp); |
michael@0 | 2258 | CompileInfo info(script, fun, |
michael@0 | 2259 | /* osrPc = */ nullptr, /* constructing = */ false, |
michael@0 | 2260 | DefinitePropertiesAnalysis, |
michael@0 | 2261 | script->needsArgsObj()); |
michael@0 | 2262 | |
michael@0 | 2263 | AutoTempAllocatorRooter root(cx, &temp); |
michael@0 | 2264 | |
michael@0 | 2265 | const OptimizationInfo *optimizationInfo = js_IonOptimizations.get(Optimization_Normal); |
michael@0 | 2266 | |
michael@0 | 2267 | types::CompilerConstraintList *constraints = types::NewCompilerConstraintList(temp); |
michael@0 | 2268 | if (!constraints) { |
michael@0 | 2269 | js_ReportOutOfMemory(cx); |
michael@0 | 2270 | return false; |
michael@0 | 2271 | } |
michael@0 | 2272 | |
michael@0 | 2273 | BaselineInspector inspector(script); |
michael@0 | 2274 | const JitCompileOptions options(cx); |
michael@0 | 2275 | |
michael@0 | 2276 | IonBuilder builder(cx, CompileCompartment::get(cx->compartment()), options, &temp, &graph, constraints, |
michael@0 | 2277 | &inspector, &info, optimizationInfo, /* baselineFrame = */ nullptr); |
michael@0 | 2278 | |
michael@0 | 2279 | if (!builder.build()) { |
michael@0 | 2280 | if (builder.abortReason() == AbortReason_Alloc) |
michael@0 | 2281 | return false; |
michael@0 | 2282 | return true; |
michael@0 | 2283 | } |
michael@0 | 2284 | |
michael@0 | 2285 | types::FinishDefinitePropertiesAnalysis(cx, constraints); |
michael@0 | 2286 | |
michael@0 | 2287 | if (!SplitCriticalEdges(graph)) |
michael@0 | 2288 | return false; |
michael@0 | 2289 | |
michael@0 | 2290 | if (!RenumberBlocks(graph)) |
michael@0 | 2291 | return false; |
michael@0 | 2292 | |
michael@0 | 2293 | if (!BuildDominatorTree(graph)) |
michael@0 | 2294 | return false; |
michael@0 | 2295 | |
michael@0 | 2296 | if (!EliminatePhis(&builder, graph, AggressiveObservability)) |
michael@0 | 2297 | return false; |
michael@0 | 2298 | |
michael@0 | 2299 | MDefinition *thisValue = graph.begin()->getSlot(info.thisSlot()); |
michael@0 | 2300 | |
michael@0 | 2301 | // Get a list of instructions using the |this| value in the order they |
michael@0 | 2302 | // appear in the graph. |
michael@0 | 2303 | Vector<MInstruction *> instructions(cx); |
michael@0 | 2304 | |
michael@0 | 2305 | for (MUseDefIterator uses(thisValue); uses; uses++) { |
michael@0 | 2306 | MDefinition *use = uses.def(); |
michael@0 | 2307 | |
michael@0 | 2308 | // Don't track |this| through assignments to phis. |
michael@0 | 2309 | if (!use->isInstruction()) |
michael@0 | 2310 | return true; |
michael@0 | 2311 | |
michael@0 | 2312 | if (!instructions.append(use->toInstruction())) |
michael@0 | 2313 | return false; |
michael@0 | 2314 | } |
michael@0 | 2315 | |
michael@0 | 2316 | // Sort the instructions to visit in increasing order. |
michael@0 | 2317 | qsort(instructions.begin(), instructions.length(), |
michael@0 | 2318 | sizeof(MInstruction *), CmpInstructions); |
michael@0 | 2319 | |
michael@0 | 2320 | // Find all exit blocks in the graph. |
michael@0 | 2321 | Vector<MBasicBlock *> exitBlocks(cx); |
michael@0 | 2322 | for (MBasicBlockIterator block(graph.begin()); block != graph.end(); block++) { |
michael@0 | 2323 | if (!block->numSuccessors() && !exitBlocks.append(*block)) |
michael@0 | 2324 | return false; |
michael@0 | 2325 | } |
michael@0 | 2326 | |
michael@0 | 2327 | for (size_t i = 0; i < instructions.length(); i++) { |
michael@0 | 2328 | MInstruction *ins = instructions[i]; |
michael@0 | 2329 | |
michael@0 | 2330 | // Track whether the use of |this| is in unconditional code, i.e. |
michael@0 | 2331 | // the block dominates all graph exits. |
michael@0 | 2332 | bool definitelyExecuted = true; |
michael@0 | 2333 | for (size_t i = 0; i < exitBlocks.length(); i++) { |
michael@0 | 2334 | for (MBasicBlock *exit = exitBlocks[i]; |
michael@0 | 2335 | exit != ins->block(); |
michael@0 | 2336 | exit = exit->immediateDominator()) |
michael@0 | 2337 | { |
michael@0 | 2338 | if (exit == exit->immediateDominator()) { |
michael@0 | 2339 | definitelyExecuted = false; |
michael@0 | 2340 | break; |
michael@0 | 2341 | } |
michael@0 | 2342 | } |
michael@0 | 2343 | } |
michael@0 | 2344 | |
michael@0 | 2345 | // Also check to see if the instruction is inside a loop body. Even if |
michael@0 | 2346 | // an access will always execute in the script, if it executes multiple |
michael@0 | 2347 | // times then we can get confused when rolling back objects while |
michael@0 | 2348 | // clearing the new script information. |
michael@0 | 2349 | if (ins->block()->loopDepth() != 0) |
michael@0 | 2350 | definitelyExecuted = false; |
michael@0 | 2351 | |
michael@0 | 2352 | bool handled = false; |
michael@0 | 2353 | if (!AnalyzePoppedThis(cx, type, thisValue, ins, definitelyExecuted, |
michael@0 | 2354 | baseobj, initializerList, &accessedProperties, &handled)) |
michael@0 | 2355 | { |
michael@0 | 2356 | return false; |
michael@0 | 2357 | } |
michael@0 | 2358 | if (!handled) |
michael@0 | 2359 | return true; |
michael@0 | 2360 | } |
michael@0 | 2361 | |
michael@0 | 2362 | return true; |
michael@0 | 2363 | } |
michael@0 | 2364 | |
michael@0 | 2365 | static bool |
michael@0 | 2366 | ArgumentsUseCanBeLazy(JSContext *cx, JSScript *script, MInstruction *ins, size_t index) |
michael@0 | 2367 | { |
michael@0 | 2368 | // We can read the frame's arguments directly for f.apply(x, arguments). |
michael@0 | 2369 | if (ins->isCall()) { |
michael@0 | 2370 | if (*ins->toCall()->resumePoint()->pc() == JSOP_FUNAPPLY && |
michael@0 | 2371 | ins->toCall()->numActualArgs() == 2 && |
michael@0 | 2372 | index == MCall::IndexOfArgument(1)) |
michael@0 | 2373 | { |
michael@0 | 2374 | return true; |
michael@0 | 2375 | } |
michael@0 | 2376 | } |
michael@0 | 2377 | |
michael@0 | 2378 | // arguments[i] can read fp->canonicalActualArg(i) directly. |
michael@0 | 2379 | if (ins->isCallGetElement() && index == 0) |
michael@0 | 2380 | return true; |
michael@0 | 2381 | |
michael@0 | 2382 | // arguments.length length can read fp->numActualArgs() directly. |
michael@0 | 2383 | if (ins->isCallGetProperty() && index == 0 && ins->toCallGetProperty()->name() == cx->names().length) |
michael@0 | 2384 | return true; |
michael@0 | 2385 | |
michael@0 | 2386 | return false; |
michael@0 | 2387 | } |
michael@0 | 2388 | |
michael@0 | 2389 | bool |
michael@0 | 2390 | jit::AnalyzeArgumentsUsage(JSContext *cx, JSScript *scriptArg) |
michael@0 | 2391 | { |
michael@0 | 2392 | RootedScript script(cx, scriptArg); |
michael@0 | 2393 | types::AutoEnterAnalysis enter(cx); |
michael@0 | 2394 | |
michael@0 | 2395 | JS_ASSERT(!script->analyzedArgsUsage()); |
michael@0 | 2396 | |
michael@0 | 2397 | // Treat the script as needing an arguments object until we determine it |
michael@0 | 2398 | // does not need one. This both allows us to easily see where the arguments |
michael@0 | 2399 | // object can escape through assignments to the function's named arguments, |
michael@0 | 2400 | // and also simplifies handling of early returns. |
michael@0 | 2401 | script->setNeedsArgsObj(true); |
michael@0 | 2402 | |
michael@0 | 2403 | if (!jit::IsIonEnabled(cx) || !script->compileAndGo()) |
michael@0 | 2404 | return true; |
michael@0 | 2405 | |
michael@0 | 2406 | static const uint32_t MAX_SCRIPT_SIZE = 10000; |
michael@0 | 2407 | if (script->length() > MAX_SCRIPT_SIZE) |
michael@0 | 2408 | return true; |
michael@0 | 2409 | |
michael@0 | 2410 | if (!script->ensureHasTypes(cx)) |
michael@0 | 2411 | return false; |
michael@0 | 2412 | |
michael@0 | 2413 | LifoAlloc alloc(types::TypeZone::TYPE_LIFO_ALLOC_PRIMARY_CHUNK_SIZE); |
michael@0 | 2414 | |
michael@0 | 2415 | TempAllocator temp(&alloc); |
michael@0 | 2416 | IonContext ictx(cx, &temp); |
michael@0 | 2417 | |
michael@0 | 2418 | if (!cx->compartment()->ensureJitCompartmentExists(cx)) |
michael@0 | 2419 | return false; |
michael@0 | 2420 | |
michael@0 | 2421 | MIRGraph graph(&temp); |
michael@0 | 2422 | CompileInfo info(script, script->functionNonDelazifying(), |
michael@0 | 2423 | /* osrPc = */ nullptr, /* constructing = */ false, |
michael@0 | 2424 | ArgumentsUsageAnalysis, |
michael@0 | 2425 | /* needsArgsObj = */ true); |
michael@0 | 2426 | |
michael@0 | 2427 | AutoTempAllocatorRooter root(cx, &temp); |
michael@0 | 2428 | |
michael@0 | 2429 | const OptimizationInfo *optimizationInfo = js_IonOptimizations.get(Optimization_Normal); |
michael@0 | 2430 | |
michael@0 | 2431 | types::CompilerConstraintList *constraints = types::NewCompilerConstraintList(temp); |
michael@0 | 2432 | if (!constraints) |
michael@0 | 2433 | return false; |
michael@0 | 2434 | |
michael@0 | 2435 | BaselineInspector inspector(script); |
michael@0 | 2436 | const JitCompileOptions options(cx); |
michael@0 | 2437 | |
michael@0 | 2438 | IonBuilder builder(nullptr, CompileCompartment::get(cx->compartment()), options, &temp, &graph, constraints, |
michael@0 | 2439 | &inspector, &info, optimizationInfo, /* baselineFrame = */ nullptr); |
michael@0 | 2440 | |
michael@0 | 2441 | if (!builder.build()) { |
michael@0 | 2442 | if (builder.abortReason() == AbortReason_Alloc) |
michael@0 | 2443 | return false; |
michael@0 | 2444 | return true; |
michael@0 | 2445 | } |
michael@0 | 2446 | |
michael@0 | 2447 | if (!SplitCriticalEdges(graph)) |
michael@0 | 2448 | return false; |
michael@0 | 2449 | |
michael@0 | 2450 | if (!RenumberBlocks(graph)) |
michael@0 | 2451 | return false; |
michael@0 | 2452 | |
michael@0 | 2453 | if (!BuildDominatorTree(graph)) |
michael@0 | 2454 | return false; |
michael@0 | 2455 | |
michael@0 | 2456 | if (!EliminatePhis(&builder, graph, AggressiveObservability)) |
michael@0 | 2457 | return false; |
michael@0 | 2458 | |
michael@0 | 2459 | MDefinition *argumentsValue = graph.begin()->getSlot(info.argsObjSlot()); |
michael@0 | 2460 | |
michael@0 | 2461 | for (MUseDefIterator uses(argumentsValue); uses; uses++) { |
michael@0 | 2462 | MDefinition *use = uses.def(); |
michael@0 | 2463 | |
michael@0 | 2464 | // Don't track |arguments| through assignments to phis. |
michael@0 | 2465 | if (!use->isInstruction()) |
michael@0 | 2466 | return true; |
michael@0 | 2467 | |
michael@0 | 2468 | if (!ArgumentsUseCanBeLazy(cx, script, use->toInstruction(), uses.index())) |
michael@0 | 2469 | return true; |
michael@0 | 2470 | } |
michael@0 | 2471 | |
michael@0 | 2472 | script->setNeedsArgsObj(false); |
michael@0 | 2473 | return true; |
michael@0 | 2474 | } |