Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
michael@0 | 1 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
michael@0 | 2 | * vim: set ts=8 sts=4 et sw=4 tw=99: |
michael@0 | 3 | * This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 4 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 5 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 6 | |
michael@0 | 7 | #ifndef jit_RegisterAllocator_h |
michael@0 | 8 | #define jit_RegisterAllocator_h |
michael@0 | 9 | |
michael@0 | 10 | #include "mozilla/Attributes.h" |
michael@0 | 11 | #include "mozilla/MathAlgorithms.h" |
michael@0 | 12 | |
michael@0 | 13 | #include "jit/LIR.h" |
michael@0 | 14 | #include "jit/MIRGenerator.h" |
michael@0 | 15 | #include "jit/MIRGraph.h" |
michael@0 | 16 | |
michael@0 | 17 | // Generic structures and functions for use by register allocators. |
michael@0 | 18 | |
michael@0 | 19 | namespace js { |
michael@0 | 20 | namespace jit { |
michael@0 | 21 | |
michael@0 | 22 | class LIRGenerator; |
michael@0 | 23 | |
michael@0 | 24 | // Structure for running a liveness analysis on a finished register allocation. |
michael@0 | 25 | // This analysis can be used for two purposes: |
michael@0 | 26 | // |
michael@0 | 27 | // - Check the integrity of the allocation, i.e. that the reads and writes of |
michael@0 | 28 | // physical values preserve the semantics of the original virtual registers. |
michael@0 | 29 | // |
michael@0 | 30 | // - Populate safepoints with live registers, GC thing and value data, to |
michael@0 | 31 | // streamline the process of prototyping new allocators. |
michael@0 | 32 | struct AllocationIntegrityState |
michael@0 | 33 | { |
michael@0 | 34 | explicit AllocationIntegrityState(const LIRGraph &graph) |
michael@0 | 35 | : graph(graph) |
michael@0 | 36 | {} |
michael@0 | 37 | |
michael@0 | 38 | // Record all virtual registers in the graph. This must be called before |
michael@0 | 39 | // register allocation, to pick up the original LUses. |
michael@0 | 40 | bool record(); |
michael@0 | 41 | |
michael@0 | 42 | // Perform the liveness analysis on the graph, and assert on an invalid |
michael@0 | 43 | // allocation. This must be called after register allocation, to pick up |
michael@0 | 44 | // all assigned physical values. If populateSafepoints is specified, |
michael@0 | 45 | // safepoints will be filled in with liveness information. |
michael@0 | 46 | bool check(bool populateSafepoints); |
michael@0 | 47 | |
michael@0 | 48 | private: |
michael@0 | 49 | |
michael@0 | 50 | const LIRGraph &graph; |
michael@0 | 51 | |
michael@0 | 52 | // For all instructions and phis in the graph, keep track of the virtual |
michael@0 | 53 | // registers for all inputs and outputs of the nodes. These are overwritten |
michael@0 | 54 | // in place during register allocation. This information is kept on the |
michael@0 | 55 | // side rather than in the instructions and phis themselves to avoid |
michael@0 | 56 | // debug-builds-only bloat in the size of the involved structures. |
michael@0 | 57 | |
michael@0 | 58 | struct InstructionInfo { |
michael@0 | 59 | Vector<LAllocation, 2, SystemAllocPolicy> inputs; |
michael@0 | 60 | Vector<LDefinition, 0, SystemAllocPolicy> temps; |
michael@0 | 61 | Vector<LDefinition, 1, SystemAllocPolicy> outputs; |
michael@0 | 62 | |
michael@0 | 63 | InstructionInfo() |
michael@0 | 64 | { } |
michael@0 | 65 | |
michael@0 | 66 | InstructionInfo(const InstructionInfo &o) |
michael@0 | 67 | { |
michael@0 | 68 | inputs.appendAll(o.inputs); |
michael@0 | 69 | temps.appendAll(o.temps); |
michael@0 | 70 | outputs.appendAll(o.outputs); |
michael@0 | 71 | } |
michael@0 | 72 | }; |
michael@0 | 73 | Vector<InstructionInfo, 0, SystemAllocPolicy> instructions; |
michael@0 | 74 | |
michael@0 | 75 | struct BlockInfo { |
michael@0 | 76 | Vector<InstructionInfo, 5, SystemAllocPolicy> phis; |
michael@0 | 77 | BlockInfo() {} |
michael@0 | 78 | BlockInfo(const BlockInfo &o) { |
michael@0 | 79 | phis.appendAll(o.phis); |
michael@0 | 80 | } |
michael@0 | 81 | }; |
michael@0 | 82 | Vector<BlockInfo, 0, SystemAllocPolicy> blocks; |
michael@0 | 83 | |
michael@0 | 84 | Vector<LDefinition*, 20, SystemAllocPolicy> virtualRegisters; |
michael@0 | 85 | |
michael@0 | 86 | // Describes a correspondence that should hold at the end of a block. |
michael@0 | 87 | // The value which was written to vreg in the original LIR should be |
michael@0 | 88 | // physically stored in alloc after the register allocation. |
michael@0 | 89 | struct IntegrityItem |
michael@0 | 90 | { |
michael@0 | 91 | LBlock *block; |
michael@0 | 92 | uint32_t vreg; |
michael@0 | 93 | LAllocation alloc; |
michael@0 | 94 | |
michael@0 | 95 | // Order of insertion into seen, for sorting. |
michael@0 | 96 | uint32_t index; |
michael@0 | 97 | |
michael@0 | 98 | typedef IntegrityItem Lookup; |
michael@0 | 99 | static HashNumber hash(const IntegrityItem &item) { |
michael@0 | 100 | HashNumber hash = item.alloc.hash(); |
michael@0 | 101 | hash = mozilla::RotateLeft(hash, 4) ^ item.vreg; |
michael@0 | 102 | hash = mozilla::RotateLeft(hash, 4) ^ HashNumber(item.block->mir()->id()); |
michael@0 | 103 | return hash; |
michael@0 | 104 | } |
michael@0 | 105 | static bool match(const IntegrityItem &one, const IntegrityItem &two) { |
michael@0 | 106 | return one.block == two.block |
michael@0 | 107 | && one.vreg == two.vreg |
michael@0 | 108 | && one.alloc == two.alloc; |
michael@0 | 109 | } |
michael@0 | 110 | }; |
michael@0 | 111 | |
michael@0 | 112 | // Items still to be processed. |
michael@0 | 113 | Vector<IntegrityItem, 10, SystemAllocPolicy> worklist; |
michael@0 | 114 | |
michael@0 | 115 | // Set of all items that have already been processed. |
michael@0 | 116 | typedef HashSet<IntegrityItem, IntegrityItem, SystemAllocPolicy> IntegrityItemSet; |
michael@0 | 117 | IntegrityItemSet seen; |
michael@0 | 118 | |
michael@0 | 119 | bool checkIntegrity(LBlock *block, LInstruction *ins, uint32_t vreg, LAllocation alloc, |
michael@0 | 120 | bool populateSafepoints); |
michael@0 | 121 | bool checkSafepointAllocation(LInstruction *ins, uint32_t vreg, LAllocation alloc, |
michael@0 | 122 | bool populateSafepoints); |
michael@0 | 123 | bool addPredecessor(LBlock *block, uint32_t vreg, LAllocation alloc); |
michael@0 | 124 | |
michael@0 | 125 | void dump(); |
michael@0 | 126 | }; |
michael@0 | 127 | |
michael@0 | 128 | // Represents with better-than-instruction precision a position in the |
michael@0 | 129 | // instruction stream. |
michael@0 | 130 | // |
michael@0 | 131 | // An issue comes up when performing register allocation as to how to represent |
michael@0 | 132 | // information such as "this register is only needed for the input of |
michael@0 | 133 | // this instruction, it can be clobbered in the output". Just having ranges |
michael@0 | 134 | // of instruction IDs is insufficiently expressive to denote all possibilities. |
michael@0 | 135 | // This class solves this issue by associating an extra bit with the instruction |
michael@0 | 136 | // ID which indicates whether the position is the input half or output half of |
michael@0 | 137 | // an instruction. |
michael@0 | 138 | class CodePosition |
michael@0 | 139 | { |
michael@0 | 140 | private: |
michael@0 | 141 | MOZ_CONSTEXPR CodePosition(const uint32_t &bits) |
michael@0 | 142 | : bits_(bits) |
michael@0 | 143 | { } |
michael@0 | 144 | |
michael@0 | 145 | static const unsigned int INSTRUCTION_SHIFT = 1; |
michael@0 | 146 | static const unsigned int SUBPOSITION_MASK = 1; |
michael@0 | 147 | uint32_t bits_; |
michael@0 | 148 | |
michael@0 | 149 | public: |
michael@0 | 150 | static const CodePosition MAX; |
michael@0 | 151 | static const CodePosition MIN; |
michael@0 | 152 | |
michael@0 | 153 | // This is the half of the instruction this code position represents, as |
michael@0 | 154 | // described in the huge comment above. |
michael@0 | 155 | enum SubPosition { |
michael@0 | 156 | INPUT, |
michael@0 | 157 | OUTPUT |
michael@0 | 158 | }; |
michael@0 | 159 | |
michael@0 | 160 | MOZ_CONSTEXPR CodePosition() : bits_(0) |
michael@0 | 161 | { } |
michael@0 | 162 | |
michael@0 | 163 | CodePosition(uint32_t instruction, SubPosition where) { |
michael@0 | 164 | JS_ASSERT(instruction < 0x80000000u); |
michael@0 | 165 | JS_ASSERT(((uint32_t)where & SUBPOSITION_MASK) == (uint32_t)where); |
michael@0 | 166 | bits_ = (instruction << INSTRUCTION_SHIFT) | (uint32_t)where; |
michael@0 | 167 | } |
michael@0 | 168 | |
michael@0 | 169 | uint32_t ins() const { |
michael@0 | 170 | return bits_ >> INSTRUCTION_SHIFT; |
michael@0 | 171 | } |
michael@0 | 172 | |
michael@0 | 173 | uint32_t pos() const { |
michael@0 | 174 | return bits_; |
michael@0 | 175 | } |
michael@0 | 176 | |
michael@0 | 177 | SubPosition subpos() const { |
michael@0 | 178 | return (SubPosition)(bits_ & SUBPOSITION_MASK); |
michael@0 | 179 | } |
michael@0 | 180 | |
michael@0 | 181 | bool operator <(const CodePosition &other) const { |
michael@0 | 182 | return bits_ < other.bits_; |
michael@0 | 183 | } |
michael@0 | 184 | |
michael@0 | 185 | bool operator <=(const CodePosition &other) const { |
michael@0 | 186 | return bits_ <= other.bits_; |
michael@0 | 187 | } |
michael@0 | 188 | |
michael@0 | 189 | bool operator !=(const CodePosition &other) const { |
michael@0 | 190 | return bits_ != other.bits_; |
michael@0 | 191 | } |
michael@0 | 192 | |
michael@0 | 193 | bool operator ==(const CodePosition &other) const { |
michael@0 | 194 | return bits_ == other.bits_; |
michael@0 | 195 | } |
michael@0 | 196 | |
michael@0 | 197 | bool operator >(const CodePosition &other) const { |
michael@0 | 198 | return bits_ > other.bits_; |
michael@0 | 199 | } |
michael@0 | 200 | |
michael@0 | 201 | bool operator >=(const CodePosition &other) const { |
michael@0 | 202 | return bits_ >= other.bits_; |
michael@0 | 203 | } |
michael@0 | 204 | |
michael@0 | 205 | CodePosition previous() const { |
michael@0 | 206 | JS_ASSERT(*this != MIN); |
michael@0 | 207 | return CodePosition(bits_ - 1); |
michael@0 | 208 | } |
michael@0 | 209 | CodePosition next() const { |
michael@0 | 210 | JS_ASSERT(*this != MAX); |
michael@0 | 211 | return CodePosition(bits_ + 1); |
michael@0 | 212 | } |
michael@0 | 213 | }; |
michael@0 | 214 | |
michael@0 | 215 | // Structure to track moves inserted before or after an instruction. |
michael@0 | 216 | class InstructionData |
michael@0 | 217 | { |
michael@0 | 218 | LInstruction *ins_; |
michael@0 | 219 | LBlock *block_; |
michael@0 | 220 | LMoveGroup *inputMoves_; |
michael@0 | 221 | LMoveGroup *movesAfter_; |
michael@0 | 222 | |
michael@0 | 223 | public: |
michael@0 | 224 | void init(LInstruction *ins, LBlock *block) { |
michael@0 | 225 | JS_ASSERT(!ins_); |
michael@0 | 226 | JS_ASSERT(!block_); |
michael@0 | 227 | ins_ = ins; |
michael@0 | 228 | block_ = block; |
michael@0 | 229 | } |
michael@0 | 230 | LInstruction *ins() const { |
michael@0 | 231 | return ins_; |
michael@0 | 232 | } |
michael@0 | 233 | LBlock *block() const { |
michael@0 | 234 | return block_; |
michael@0 | 235 | } |
michael@0 | 236 | void setInputMoves(LMoveGroup *moves) { |
michael@0 | 237 | inputMoves_ = moves; |
michael@0 | 238 | } |
michael@0 | 239 | LMoveGroup *inputMoves() const { |
michael@0 | 240 | return inputMoves_; |
michael@0 | 241 | } |
michael@0 | 242 | void setMovesAfter(LMoveGroup *moves) { |
michael@0 | 243 | movesAfter_ = moves; |
michael@0 | 244 | } |
michael@0 | 245 | LMoveGroup *movesAfter() const { |
michael@0 | 246 | return movesAfter_; |
michael@0 | 247 | } |
michael@0 | 248 | }; |
michael@0 | 249 | |
michael@0 | 250 | // Structure to track all moves inserted next to instructions in a graph. |
michael@0 | 251 | class InstructionDataMap |
michael@0 | 252 | { |
michael@0 | 253 | InstructionData *insData_; |
michael@0 | 254 | uint32_t numIns_; |
michael@0 | 255 | |
michael@0 | 256 | public: |
michael@0 | 257 | InstructionDataMap() |
michael@0 | 258 | : insData_(nullptr), |
michael@0 | 259 | numIns_(0) |
michael@0 | 260 | { } |
michael@0 | 261 | |
michael@0 | 262 | bool init(MIRGenerator *gen, uint32_t numInstructions) { |
michael@0 | 263 | insData_ = gen->allocate<InstructionData>(numInstructions); |
michael@0 | 264 | numIns_ = numInstructions; |
michael@0 | 265 | if (!insData_) |
michael@0 | 266 | return false; |
michael@0 | 267 | memset(insData_, 0, sizeof(InstructionData) * numInstructions); |
michael@0 | 268 | return true; |
michael@0 | 269 | } |
michael@0 | 270 | |
michael@0 | 271 | InstructionData &operator[](const CodePosition &pos) { |
michael@0 | 272 | JS_ASSERT(pos.ins() < numIns_); |
michael@0 | 273 | return insData_[pos.ins()]; |
michael@0 | 274 | } |
michael@0 | 275 | InstructionData &operator[](LInstruction *ins) { |
michael@0 | 276 | JS_ASSERT(ins->id() < numIns_); |
michael@0 | 277 | return insData_[ins->id()]; |
michael@0 | 278 | } |
michael@0 | 279 | InstructionData &operator[](uint32_t ins) { |
michael@0 | 280 | JS_ASSERT(ins < numIns_); |
michael@0 | 281 | return insData_[ins]; |
michael@0 | 282 | } |
michael@0 | 283 | }; |
michael@0 | 284 | |
michael@0 | 285 | // Common superclass for register allocators. |
michael@0 | 286 | class RegisterAllocator |
michael@0 | 287 | { |
michael@0 | 288 | void operator=(const RegisterAllocator &) MOZ_DELETE; |
michael@0 | 289 | RegisterAllocator(const RegisterAllocator &) MOZ_DELETE; |
michael@0 | 290 | |
michael@0 | 291 | protected: |
michael@0 | 292 | // Context |
michael@0 | 293 | MIRGenerator *mir; |
michael@0 | 294 | LIRGenerator *lir; |
michael@0 | 295 | LIRGraph &graph; |
michael@0 | 296 | |
michael@0 | 297 | // Pool of all registers that should be considered allocateable |
michael@0 | 298 | RegisterSet allRegisters_; |
michael@0 | 299 | |
michael@0 | 300 | // Computed data |
michael@0 | 301 | InstructionDataMap insData; |
michael@0 | 302 | |
michael@0 | 303 | RegisterAllocator(MIRGenerator *mir, LIRGenerator *lir, LIRGraph &graph) |
michael@0 | 304 | : mir(mir), |
michael@0 | 305 | lir(lir), |
michael@0 | 306 | graph(graph), |
michael@0 | 307 | allRegisters_(RegisterSet::All()) |
michael@0 | 308 | { |
michael@0 | 309 | if (FramePointer != InvalidReg && mir->instrumentedProfiling()) |
michael@0 | 310 | allRegisters_.take(AnyRegister(FramePointer)); |
michael@0 | 311 | #if defined(JS_CODEGEN_X64) |
michael@0 | 312 | if (mir->compilingAsmJS()) |
michael@0 | 313 | allRegisters_.take(AnyRegister(HeapReg)); |
michael@0 | 314 | #elif defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_MIPS) |
michael@0 | 315 | if (mir->compilingAsmJS()) { |
michael@0 | 316 | allRegisters_.take(AnyRegister(HeapReg)); |
michael@0 | 317 | allRegisters_.take(AnyRegister(GlobalReg)); |
michael@0 | 318 | allRegisters_.take(AnyRegister(NANReg)); |
michael@0 | 319 | } |
michael@0 | 320 | #endif |
michael@0 | 321 | } |
michael@0 | 322 | |
michael@0 | 323 | bool init(); |
michael@0 | 324 | |
michael@0 | 325 | TempAllocator &alloc() const { |
michael@0 | 326 | return mir->alloc(); |
michael@0 | 327 | } |
michael@0 | 328 | |
michael@0 | 329 | static CodePosition outputOf(uint32_t pos) { |
michael@0 | 330 | return CodePosition(pos, CodePosition::OUTPUT); |
michael@0 | 331 | } |
michael@0 | 332 | static CodePosition outputOf(const LInstruction *ins) { |
michael@0 | 333 | return CodePosition(ins->id(), CodePosition::OUTPUT); |
michael@0 | 334 | } |
michael@0 | 335 | static CodePosition inputOf(uint32_t pos) { |
michael@0 | 336 | return CodePosition(pos, CodePosition::INPUT); |
michael@0 | 337 | } |
michael@0 | 338 | static CodePosition inputOf(const LInstruction *ins) { |
michael@0 | 339 | // Phi nodes "use" their inputs before the beginning of the block. |
michael@0 | 340 | JS_ASSERT(!ins->isPhi()); |
michael@0 | 341 | return CodePosition(ins->id(), CodePosition::INPUT); |
michael@0 | 342 | } |
michael@0 | 343 | |
michael@0 | 344 | LMoveGroup *getInputMoveGroup(uint32_t ins); |
michael@0 | 345 | LMoveGroup *getMoveGroupAfter(uint32_t ins); |
michael@0 | 346 | |
michael@0 | 347 | LMoveGroup *getInputMoveGroup(CodePosition pos) { |
michael@0 | 348 | return getInputMoveGroup(pos.ins()); |
michael@0 | 349 | } |
michael@0 | 350 | LMoveGroup *getMoveGroupAfter(CodePosition pos) { |
michael@0 | 351 | return getMoveGroupAfter(pos.ins()); |
michael@0 | 352 | } |
michael@0 | 353 | |
michael@0 | 354 | CodePosition minimalDefEnd(LInstruction *ins) { |
michael@0 | 355 | // Compute the shortest interval that captures vregs defined by ins. |
michael@0 | 356 | // Watch for instructions that are followed by an OSI point and/or Nop. |
michael@0 | 357 | // If moves are introduced between the instruction and the OSI point then |
michael@0 | 358 | // safepoint information for the instruction may be incorrect. |
michael@0 | 359 | while (true) { |
michael@0 | 360 | LInstruction *next = insData[outputOf(ins).next()].ins(); |
michael@0 | 361 | if (!next->isNop() && !next->isOsiPoint()) |
michael@0 | 362 | break; |
michael@0 | 363 | ins = next; |
michael@0 | 364 | } |
michael@0 | 365 | |
michael@0 | 366 | return outputOf(ins); |
michael@0 | 367 | } |
michael@0 | 368 | }; |
michael@0 | 369 | |
michael@0 | 370 | static inline AnyRegister |
michael@0 | 371 | GetFixedRegister(const LDefinition *def, const LUse *use) |
michael@0 | 372 | { |
michael@0 | 373 | return def->isFloatReg() |
michael@0 | 374 | ? AnyRegister(FloatRegister::FromCode(use->registerCode())) |
michael@0 | 375 | : AnyRegister(Register::FromCode(use->registerCode())); |
michael@0 | 376 | } |
michael@0 | 377 | |
michael@0 | 378 | } // namespace jit |
michael@0 | 379 | } // namespace js |
michael@0 | 380 | |
michael@0 | 381 | #endif /* jit_RegisterAllocator_h */ |