js/src/parjs-benchmarks/seedrandom.js

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 // seedrandom.js version 2.1.
michael@0 2 // Author: David Bau
michael@0 3 // Date: 2013 Mar 16
michael@0 4 //
michael@0 5 // Defines a method Math.seedrandom() that, when called, substitutes
michael@0 6 // an explicitly seeded RC4-based algorithm for Math.random(). Also
michael@0 7 // supports automatic seeding from local or network sources of entropy.
michael@0 8 //
michael@0 9 // http://davidbau.com/encode/seedrandom.js
michael@0 10 // http://davidbau.com/encode/seedrandom-min.js
michael@0 11 //
michael@0 12 // Usage:
michael@0 13 //
michael@0 14 // <script src=http://davidbau.com/encode/seedrandom-min.js></script>
michael@0 15 //
michael@0 16 // Math.seedrandom('yay.'); Sets Math.random to a function that is
michael@0 17 // initialized using the given explicit seed.
michael@0 18 //
michael@0 19 // Math.seedrandom(); Sets Math.random to a function that is
michael@0 20 // seeded using the current time, dom state,
michael@0 21 // and other accumulated local entropy.
michael@0 22 // The generated seed string is returned.
michael@0 23 //
michael@0 24 // Math.seedrandom('yowza.', true);
michael@0 25 // Seeds using the given explicit seed mixed
michael@0 26 // together with accumulated entropy.
michael@0 27 //
michael@0 28 // <script src="https://jsonlib.appspot.com/urandom?callback=Math.seedrandom">
michael@0 29 // </script> Seeds using urandom bits from a server.
michael@0 30 //
michael@0 31 // More advanced examples:
michael@0 32 //
michael@0 33 // Math.seedrandom("hello."); // Use "hello." as the seed.
michael@0 34 // document.write(Math.random()); // Always 0.9282578795792454
michael@0 35 // document.write(Math.random()); // Always 0.3752569768646784
michael@0 36 // var rng1 = Math.random; // Remember the current prng.
michael@0 37 //
michael@0 38 // var autoseed = Math.seedrandom(); // New prng with an automatic seed.
michael@0 39 // document.write(Math.random()); // Pretty much unpredictable x.
michael@0 40 //
michael@0 41 // Math.random = rng1; // Continue "hello." prng sequence.
michael@0 42 // document.write(Math.random()); // Always 0.7316977468919549
michael@0 43 //
michael@0 44 // Math.seedrandom(autoseed); // Restart at the previous seed.
michael@0 45 // document.write(Math.random()); // Repeat the 'unpredictable' x.
michael@0 46 //
michael@0 47 // function reseed(event, count) { // Define a custom entropy collector.
michael@0 48 // var t = [];
michael@0 49 // function w(e) {
michael@0 50 // t.push([e.pageX, e.pageY, +new Date]);
michael@0 51 // if (t.length < count) { return; }
michael@0 52 // document.removeEventListener(event, w);
michael@0 53 // Math.seedrandom(t, true); // Mix in any previous entropy.
michael@0 54 // }
michael@0 55 // document.addEventListener(event, w);
michael@0 56 // }
michael@0 57 // reseed('mousemove', 100); // Reseed after 100 mouse moves.
michael@0 58 //
michael@0 59 // Version notes:
michael@0 60 //
michael@0 61 // The random number sequence is the same as version 1.0 for string seeds.
michael@0 62 // Version 2.0 changed the sequence for non-string seeds.
michael@0 63 // Version 2.1 speeds seeding and uses window.crypto to autoseed if present.
michael@0 64 //
michael@0 65 // The standard ARC4 key scheduler cycles short keys, which means that
michael@0 66 // seedrandom('ab') is equivalent to seedrandom('abab') and 'ababab'.
michael@0 67 // Therefore it is a good idea to add a terminator to avoid trivial
michael@0 68 // equivalences on short string seeds, e.g., Math.seedrandom(str + '\0').
michael@0 69 // Starting with version 2.0, a terminator is added automatically for
michael@0 70 // non-string seeds, so seeding with the number 111 is the same as seeding
michael@0 71 // with '111\0'.
michael@0 72 //
michael@0 73 // When seedrandom() is called with zero args, it uses a seed
michael@0 74 // drawn from the browser crypto object if present. If there is no
michael@0 75 // crypto support, seedrandom() uses the current time, the native rng,
michael@0 76 // and a walk of several DOM objects to collect a few bits of entropy.
michael@0 77 //
michael@0 78 // Each time the one- or two-argument forms of seedrandom are called,
michael@0 79 // entropy from the passed seed is accumulated in a pool to help generate
michael@0 80 // future seeds for the zero- and two-argument forms of seedrandom.
michael@0 81 //
michael@0 82 // On speed - This javascript implementation of Math.random() is about
michael@0 83 // 3-10x slower than the built-in Math.random() because it is not native
michael@0 84 // code, but that is typically fast enough. Some details (timings on
michael@0 85 // Chrome 25 on a 2010 vintage macbook):
michael@0 86 //
michael@0 87 // seeded Math.random() - avg less than 0.0002 milliseconds per call
michael@0 88 // seedrandom('explicit.') - avg less than 0.2 milliseconds per call
michael@0 89 // seedrandom('explicit.', true) - avg less than 0.2 milliseconds per call
michael@0 90 // seedrandom() with crypto - avg less than 0.2 milliseconds per call
michael@0 91 // seedrandom() without crypto - avg about 12 milliseconds per call
michael@0 92 //
michael@0 93 // On a 2012 windows 7 1.5ghz i5 laptop, Chrome, Firefox 19, IE 10, and
michael@0 94 // Opera have similarly fast timings. Slowest numbers are on Opera, with
michael@0 95 // about 0.0005 milliseconds per seeded Math.random() and 15 milliseconds
michael@0 96 // for autoseeding.
michael@0 97 //
michael@0 98 // LICENSE (BSD):
michael@0 99 //
michael@0 100 // Copyright 2013 David Bau, all rights reserved.
michael@0 101 //
michael@0 102 // Redistribution and use in source and binary forms, with or without
michael@0 103 // modification, are permitted provided that the following conditions are met:
michael@0 104 //
michael@0 105 // 1. Redistributions of source code must retain the above copyright
michael@0 106 // notice, this list of conditions and the following disclaimer.
michael@0 107 //
michael@0 108 // 2. Redistributions in binary form must reproduce the above copyright
michael@0 109 // notice, this list of conditions and the following disclaimer in the
michael@0 110 // documentation and/or other materials provided with the distribution.
michael@0 111 //
michael@0 112 // 3. Neither the name of this module nor the names of its contributors may
michael@0 113 // be used to endorse or promote products derived from this software
michael@0 114 // without specific prior written permission.
michael@0 115 //
michael@0 116 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
michael@0 117 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
michael@0 118 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
michael@0 119 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
michael@0 120 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
michael@0 121 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
michael@0 122 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
michael@0 123 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
michael@0 124 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
michael@0 125 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
michael@0 126 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
michael@0 127 //
michael@0 128 /**
michael@0 129 * All code is in an anonymous closure to keep the global namespace clean.
michael@0 130 */
michael@0 131 (function (
michael@0 132 global, pool, math, width, chunks, digits) {
michael@0 133
michael@0 134 //
michael@0 135 // The following constants are related to IEEE 754 limits.
michael@0 136 //
michael@0 137 var startdenom = math.pow(width, chunks),
michael@0 138 significance = math.pow(2, digits),
michael@0 139 overflow = significance * 2,
michael@0 140 mask = width - 1;
michael@0 141
michael@0 142 //
michael@0 143 // seedrandom()
michael@0 144 // This is the seedrandom function described above.
michael@0 145 //
michael@0 146 math['seedrandom'] = function(seed, use_entropy) {
michael@0 147 var key = [];
michael@0 148
michael@0 149 // Flatten the seed string or build one from local entropy if needed.
michael@0 150 var shortseed = mixkey(flatten(
michael@0 151 use_entropy ? [seed, tostring(pool)] :
michael@0 152 0 in arguments ? seed : autoseed(), 3), key);
michael@0 153
michael@0 154 // Use the seed to initialize an ARC4 generator.
michael@0 155 var arc4 = new ARC4(key);
michael@0 156
michael@0 157 // Mix the randomness into accumulated entropy.
michael@0 158 mixkey(tostring(arc4.S), pool);
michael@0 159
michael@0 160 // Override Math.random
michael@0 161
michael@0 162 // This function returns a random double in [0, 1) that contains
michael@0 163 // randomness in every bit of the mantissa of the IEEE 754 value.
michael@0 164
michael@0 165 math['random'] = function() { // Closure to return a random double:
michael@0 166 var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48
michael@0 167 d = startdenom, // and denominator d = 2 ^ 48.
michael@0 168 x = 0; // and no 'extra last byte'.
michael@0 169 while (n < significance) { // Fill up all significant digits by
michael@0 170 n = (n + x) * width; // shifting numerator and
michael@0 171 d *= width; // denominator and generating a
michael@0 172 x = arc4.g(1); // new least-significant-byte.
michael@0 173 }
michael@0 174 while (n >= overflow) { // To avoid rounding up, before adding
michael@0 175 n /= 2; // last byte, shift everything
michael@0 176 d /= 2; // right using integer math until
michael@0 177 x >>>= 1; // we have exactly the desired bits.
michael@0 178 }
michael@0 179 return (n + x) / d; // Form the number within [0, 1).
michael@0 180 };
michael@0 181
michael@0 182 // Return the seed that was used
michael@0 183 return shortseed;
michael@0 184 };
michael@0 185
michael@0 186 //
michael@0 187 // ARC4
michael@0 188 //
michael@0 189 // An ARC4 implementation. The constructor takes a key in the form of
michael@0 190 // an array of at most (width) integers that should be 0 <= x < (width).
michael@0 191 //
michael@0 192 // The g(count) method returns a pseudorandom integer that concatenates
michael@0 193 // the next (count) outputs from ARC4. Its return value is a number x
michael@0 194 // that is in the range 0 <= x < (width ^ count).
michael@0 195 //
michael@0 196 /** @constructor */
michael@0 197 function ARC4(key) {
michael@0 198 var t, keylen = key.length,
michael@0 199 me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];
michael@0 200
michael@0 201 // The empty key [] is treated as [0].
michael@0 202 if (!keylen) { key = [keylen++]; }
michael@0 203
michael@0 204 // Set up S using the standard key scheduling algorithm.
michael@0 205 while (i < width) {
michael@0 206 s[i] = i++;
michael@0 207 }
michael@0 208 for (i = 0; i < width; i++) {
michael@0 209 s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];
michael@0 210 s[j] = t;
michael@0 211 }
michael@0 212
michael@0 213 // The "g" method returns the next (count) outputs as one number.
michael@0 214 (me.g = function(count) {
michael@0 215 // Using instance members instead of closure state nearly doubles speed.
michael@0 216 var t, r = 0,
michael@0 217 i = me.i, j = me.j, s = me.S;
michael@0 218 while (count--) {
michael@0 219 t = s[i = mask & (i + 1)];
michael@0 220 r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];
michael@0 221 }
michael@0 222 me.i = i; me.j = j;
michael@0 223 return r;
michael@0 224 // For robust unpredictability discard an initial batch of values.
michael@0 225 // See http://www.rsa.com/rsalabs/node.asp?id=2009
michael@0 226 })(width);
michael@0 227 }
michael@0 228
michael@0 229 //
michael@0 230 // flatten()
michael@0 231 // Converts an object tree to nested arrays of strings.
michael@0 232 //
michael@0 233 function flatten(obj, depth) {
michael@0 234 var result = [], typ = (typeof obj)[0], prop;
michael@0 235 if (depth && typ == 'o') {
michael@0 236 for (prop in obj) {
michael@0 237 if (obj.hasOwnProperty(prop)) {
michael@0 238 try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}
michael@0 239 }
michael@0 240 }
michael@0 241 }
michael@0 242 return (result.length ? result : typ == 's' ? obj : obj + '\0');
michael@0 243 }
michael@0 244
michael@0 245 //
michael@0 246 // mixkey()
michael@0 247 // Mixes a string seed into a key that is an array of integers, and
michael@0 248 // returns a shortened string seed that is equivalent to the result key.
michael@0 249 //
michael@0 250 function mixkey(seed, key) {
michael@0 251 var stringseed = seed + '', smear, j = 0;
michael@0 252 while (j < stringseed.length) {
michael@0 253 key[mask & j] =
michael@0 254 mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));
michael@0 255 }
michael@0 256 return tostring(key);
michael@0 257 }
michael@0 258
michael@0 259 //
michael@0 260 // autoseed()
michael@0 261 // Returns an object for autoseeding, using window.crypto if available.
michael@0 262 //
michael@0 263 /** @param {Uint8Array=} seed */
michael@0 264 function autoseed(seed) {
michael@0 265 try {
michael@0 266 global.crypto.getRandomValues(seed = new Uint8Array(width));
michael@0 267 return tostring(seed);
michael@0 268 } catch (e) {
michael@0 269 return [+new Date, global.document, global.history,
michael@0 270 global.navigator, global.screen, tostring(pool)];
michael@0 271 }
michael@0 272 }
michael@0 273
michael@0 274 //
michael@0 275 // tostring()
michael@0 276 // Converts an array of charcodes to a string
michael@0 277 //
michael@0 278 function tostring(a) {
michael@0 279 return String.fromCharCode.apply(0, a);
michael@0 280 }
michael@0 281
michael@0 282 //
michael@0 283 // When seedrandom.js is loaded, we immediately mix a few bits
michael@0 284 // from the built-in RNG into the entropy pool. Because we do
michael@0 285 // not want to intefere with determinstic PRNG state later,
michael@0 286 // seedrandom will not call math.random on its own again after
michael@0 287 // initialization.
michael@0 288 //
michael@0 289 mixkey(math.random(), pool);
michael@0 290
michael@0 291 // End anonymous scope, and pass initial values.
michael@0 292 })(
michael@0 293 this, // global window object
michael@0 294 [], // pool: entropy pool starts empty
michael@0 295 Math, // math: package containing random, pow, and seedrandom
michael@0 296 256, // width: each RC4 output is 0 <= x < 256
michael@0 297 6, // chunks: at least six RC4 outputs for each double
michael@0 298 52 // digits: there are 52 significant digits in a double
michael@0 299 );

mercurial