modules/zlib/src/trees.c

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 /* trees.c -- output deflated data using Huffman coding
michael@0 2 * Copyright (C) 1995-2012 Jean-loup Gailly
michael@0 3 * detect_data_type() function provided freely by Cosmin Truta, 2006
michael@0 4 * For conditions of distribution and use, see copyright notice in zlib.h
michael@0 5 */
michael@0 6
michael@0 7 /*
michael@0 8 * ALGORITHM
michael@0 9 *
michael@0 10 * The "deflation" process uses several Huffman trees. The more
michael@0 11 * common source values are represented by shorter bit sequences.
michael@0 12 *
michael@0 13 * Each code tree is stored in a compressed form which is itself
michael@0 14 * a Huffman encoding of the lengths of all the code strings (in
michael@0 15 * ascending order by source values). The actual code strings are
michael@0 16 * reconstructed from the lengths in the inflate process, as described
michael@0 17 * in the deflate specification.
michael@0 18 *
michael@0 19 * REFERENCES
michael@0 20 *
michael@0 21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
michael@0 22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
michael@0 23 *
michael@0 24 * Storer, James A.
michael@0 25 * Data Compression: Methods and Theory, pp. 49-50.
michael@0 26 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
michael@0 27 *
michael@0 28 * Sedgewick, R.
michael@0 29 * Algorithms, p290.
michael@0 30 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
michael@0 31 */
michael@0 32
michael@0 33 /* @(#) $Id$ */
michael@0 34
michael@0 35 /* #define GEN_TREES_H */
michael@0 36
michael@0 37 #include "deflate.h"
michael@0 38
michael@0 39 #ifdef DEBUG
michael@0 40 # include <ctype.h>
michael@0 41 #endif
michael@0 42
michael@0 43 /* ===========================================================================
michael@0 44 * Constants
michael@0 45 */
michael@0 46
michael@0 47 #define MAX_BL_BITS 7
michael@0 48 /* Bit length codes must not exceed MAX_BL_BITS bits */
michael@0 49
michael@0 50 #define END_BLOCK 256
michael@0 51 /* end of block literal code */
michael@0 52
michael@0 53 #define REP_3_6 16
michael@0 54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
michael@0 55
michael@0 56 #define REPZ_3_10 17
michael@0 57 /* repeat a zero length 3-10 times (3 bits of repeat count) */
michael@0 58
michael@0 59 #define REPZ_11_138 18
michael@0 60 /* repeat a zero length 11-138 times (7 bits of repeat count) */
michael@0 61
michael@0 62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
michael@0 63 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
michael@0 64
michael@0 65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
michael@0 66 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
michael@0 67
michael@0 68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
michael@0 69 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
michael@0 70
michael@0 71 local const uch bl_order[BL_CODES]
michael@0 72 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
michael@0 73 /* The lengths of the bit length codes are sent in order of decreasing
michael@0 74 * probability, to avoid transmitting the lengths for unused bit length codes.
michael@0 75 */
michael@0 76
michael@0 77 /* ===========================================================================
michael@0 78 * Local data. These are initialized only once.
michael@0 79 */
michael@0 80
michael@0 81 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
michael@0 82
michael@0 83 #if defined(GEN_TREES_H) || !defined(STDC)
michael@0 84 /* non ANSI compilers may not accept trees.h */
michael@0 85
michael@0 86 local ct_data static_ltree[L_CODES+2];
michael@0 87 /* The static literal tree. Since the bit lengths are imposed, there is no
michael@0 88 * need for the L_CODES extra codes used during heap construction. However
michael@0 89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
michael@0 90 * below).
michael@0 91 */
michael@0 92
michael@0 93 local ct_data static_dtree[D_CODES];
michael@0 94 /* The static distance tree. (Actually a trivial tree since all codes use
michael@0 95 * 5 bits.)
michael@0 96 */
michael@0 97
michael@0 98 uch _dist_code[DIST_CODE_LEN];
michael@0 99 /* Distance codes. The first 256 values correspond to the distances
michael@0 100 * 3 .. 258, the last 256 values correspond to the top 8 bits of
michael@0 101 * the 15 bit distances.
michael@0 102 */
michael@0 103
michael@0 104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
michael@0 105 /* length code for each normalized match length (0 == MIN_MATCH) */
michael@0 106
michael@0 107 local int base_length[LENGTH_CODES];
michael@0 108 /* First normalized length for each code (0 = MIN_MATCH) */
michael@0 109
michael@0 110 local int base_dist[D_CODES];
michael@0 111 /* First normalized distance for each code (0 = distance of 1) */
michael@0 112
michael@0 113 #else
michael@0 114 # include "trees.h"
michael@0 115 #endif /* GEN_TREES_H */
michael@0 116
michael@0 117 struct static_tree_desc_s {
michael@0 118 const ct_data *static_tree; /* static tree or NULL */
michael@0 119 const intf *extra_bits; /* extra bits for each code or NULL */
michael@0 120 int extra_base; /* base index for extra_bits */
michael@0 121 int elems; /* max number of elements in the tree */
michael@0 122 int max_length; /* max bit length for the codes */
michael@0 123 };
michael@0 124
michael@0 125 local static_tree_desc static_l_desc =
michael@0 126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
michael@0 127
michael@0 128 local static_tree_desc static_d_desc =
michael@0 129 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
michael@0 130
michael@0 131 local static_tree_desc static_bl_desc =
michael@0 132 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
michael@0 133
michael@0 134 /* ===========================================================================
michael@0 135 * Local (static) routines in this file.
michael@0 136 */
michael@0 137
michael@0 138 local void tr_static_init OF((void));
michael@0 139 local void init_block OF((deflate_state *s));
michael@0 140 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
michael@0 141 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
michael@0 142 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
michael@0 143 local void build_tree OF((deflate_state *s, tree_desc *desc));
michael@0 144 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
michael@0 145 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
michael@0 146 local int build_bl_tree OF((deflate_state *s));
michael@0 147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
michael@0 148 int blcodes));
michael@0 149 local void compress_block OF((deflate_state *s, const ct_data *ltree,
michael@0 150 const ct_data *dtree));
michael@0 151 local int detect_data_type OF((deflate_state *s));
michael@0 152 local unsigned bi_reverse OF((unsigned value, int length));
michael@0 153 local void bi_windup OF((deflate_state *s));
michael@0 154 local void bi_flush OF((deflate_state *s));
michael@0 155 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
michael@0 156 int header));
michael@0 157
michael@0 158 #ifdef GEN_TREES_H
michael@0 159 local void gen_trees_header OF((void));
michael@0 160 #endif
michael@0 161
michael@0 162 #ifndef DEBUG
michael@0 163 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
michael@0 164 /* Send a code of the given tree. c and tree must not have side effects */
michael@0 165
michael@0 166 #else /* DEBUG */
michael@0 167 # define send_code(s, c, tree) \
michael@0 168 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
michael@0 169 send_bits(s, tree[c].Code, tree[c].Len); }
michael@0 170 #endif
michael@0 171
michael@0 172 /* ===========================================================================
michael@0 173 * Output a short LSB first on the stream.
michael@0 174 * IN assertion: there is enough room in pendingBuf.
michael@0 175 */
michael@0 176 #define put_short(s, w) { \
michael@0 177 put_byte(s, (uch)((w) & 0xff)); \
michael@0 178 put_byte(s, (uch)((ush)(w) >> 8)); \
michael@0 179 }
michael@0 180
michael@0 181 /* ===========================================================================
michael@0 182 * Send a value on a given number of bits.
michael@0 183 * IN assertion: length <= 16 and value fits in length bits.
michael@0 184 */
michael@0 185 #ifdef DEBUG
michael@0 186 local void send_bits OF((deflate_state *s, int value, int length));
michael@0 187
michael@0 188 local void send_bits(s, value, length)
michael@0 189 deflate_state *s;
michael@0 190 int value; /* value to send */
michael@0 191 int length; /* number of bits */
michael@0 192 {
michael@0 193 Tracevv((stderr," l %2d v %4x ", length, value));
michael@0 194 Assert(length > 0 && length <= 15, "invalid length");
michael@0 195 s->bits_sent += (ulg)length;
michael@0 196
michael@0 197 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
michael@0 198 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
michael@0 199 * unused bits in value.
michael@0 200 */
michael@0 201 if (s->bi_valid > (int)Buf_size - length) {
michael@0 202 s->bi_buf |= (ush)value << s->bi_valid;
michael@0 203 put_short(s, s->bi_buf);
michael@0 204 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
michael@0 205 s->bi_valid += length - Buf_size;
michael@0 206 } else {
michael@0 207 s->bi_buf |= (ush)value << s->bi_valid;
michael@0 208 s->bi_valid += length;
michael@0 209 }
michael@0 210 }
michael@0 211 #else /* !DEBUG */
michael@0 212
michael@0 213 #define send_bits(s, value, length) \
michael@0 214 { int len = length;\
michael@0 215 if (s->bi_valid > (int)Buf_size - len) {\
michael@0 216 int val = value;\
michael@0 217 s->bi_buf |= (ush)val << s->bi_valid;\
michael@0 218 put_short(s, s->bi_buf);\
michael@0 219 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
michael@0 220 s->bi_valid += len - Buf_size;\
michael@0 221 } else {\
michael@0 222 s->bi_buf |= (ush)(value) << s->bi_valid;\
michael@0 223 s->bi_valid += len;\
michael@0 224 }\
michael@0 225 }
michael@0 226 #endif /* DEBUG */
michael@0 227
michael@0 228
michael@0 229 /* the arguments must not have side effects */
michael@0 230
michael@0 231 /* ===========================================================================
michael@0 232 * Initialize the various 'constant' tables.
michael@0 233 */
michael@0 234 local void tr_static_init()
michael@0 235 {
michael@0 236 #if defined(GEN_TREES_H) || !defined(STDC)
michael@0 237 static int static_init_done = 0;
michael@0 238 int n; /* iterates over tree elements */
michael@0 239 int bits; /* bit counter */
michael@0 240 int length; /* length value */
michael@0 241 int code; /* code value */
michael@0 242 int dist; /* distance index */
michael@0 243 ush bl_count[MAX_BITS+1];
michael@0 244 /* number of codes at each bit length for an optimal tree */
michael@0 245
michael@0 246 if (static_init_done) return;
michael@0 247
michael@0 248 /* For some embedded targets, global variables are not initialized: */
michael@0 249 #ifdef NO_INIT_GLOBAL_POINTERS
michael@0 250 static_l_desc.static_tree = static_ltree;
michael@0 251 static_l_desc.extra_bits = extra_lbits;
michael@0 252 static_d_desc.static_tree = static_dtree;
michael@0 253 static_d_desc.extra_bits = extra_dbits;
michael@0 254 static_bl_desc.extra_bits = extra_blbits;
michael@0 255 #endif
michael@0 256
michael@0 257 /* Initialize the mapping length (0..255) -> length code (0..28) */
michael@0 258 length = 0;
michael@0 259 for (code = 0; code < LENGTH_CODES-1; code++) {
michael@0 260 base_length[code] = length;
michael@0 261 for (n = 0; n < (1<<extra_lbits[code]); n++) {
michael@0 262 _length_code[length++] = (uch)code;
michael@0 263 }
michael@0 264 }
michael@0 265 Assert (length == 256, "tr_static_init: length != 256");
michael@0 266 /* Note that the length 255 (match length 258) can be represented
michael@0 267 * in two different ways: code 284 + 5 bits or code 285, so we
michael@0 268 * overwrite length_code[255] to use the best encoding:
michael@0 269 */
michael@0 270 _length_code[length-1] = (uch)code;
michael@0 271
michael@0 272 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
michael@0 273 dist = 0;
michael@0 274 for (code = 0 ; code < 16; code++) {
michael@0 275 base_dist[code] = dist;
michael@0 276 for (n = 0; n < (1<<extra_dbits[code]); n++) {
michael@0 277 _dist_code[dist++] = (uch)code;
michael@0 278 }
michael@0 279 }
michael@0 280 Assert (dist == 256, "tr_static_init: dist != 256");
michael@0 281 dist >>= 7; /* from now on, all distances are divided by 128 */
michael@0 282 for ( ; code < D_CODES; code++) {
michael@0 283 base_dist[code] = dist << 7;
michael@0 284 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
michael@0 285 _dist_code[256 + dist++] = (uch)code;
michael@0 286 }
michael@0 287 }
michael@0 288 Assert (dist == 256, "tr_static_init: 256+dist != 512");
michael@0 289
michael@0 290 /* Construct the codes of the static literal tree */
michael@0 291 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
michael@0 292 n = 0;
michael@0 293 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
michael@0 294 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
michael@0 295 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
michael@0 296 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
michael@0 297 /* Codes 286 and 287 do not exist, but we must include them in the
michael@0 298 * tree construction to get a canonical Huffman tree (longest code
michael@0 299 * all ones)
michael@0 300 */
michael@0 301 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
michael@0 302
michael@0 303 /* The static distance tree is trivial: */
michael@0 304 for (n = 0; n < D_CODES; n++) {
michael@0 305 static_dtree[n].Len = 5;
michael@0 306 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
michael@0 307 }
michael@0 308 static_init_done = 1;
michael@0 309
michael@0 310 # ifdef GEN_TREES_H
michael@0 311 gen_trees_header();
michael@0 312 # endif
michael@0 313 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
michael@0 314 }
michael@0 315
michael@0 316 /* ===========================================================================
michael@0 317 * Genererate the file trees.h describing the static trees.
michael@0 318 */
michael@0 319 #ifdef GEN_TREES_H
michael@0 320 # ifndef DEBUG
michael@0 321 # include <stdio.h>
michael@0 322 # endif
michael@0 323
michael@0 324 # define SEPARATOR(i, last, width) \
michael@0 325 ((i) == (last)? "\n};\n\n" : \
michael@0 326 ((i) % (width) == (width)-1 ? ",\n" : ", "))
michael@0 327
michael@0 328 void gen_trees_header()
michael@0 329 {
michael@0 330 FILE *header = fopen("trees.h", "w");
michael@0 331 int i;
michael@0 332
michael@0 333 Assert (header != NULL, "Can't open trees.h");
michael@0 334 fprintf(header,
michael@0 335 "/* header created automatically with -DGEN_TREES_H */\n\n");
michael@0 336
michael@0 337 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
michael@0 338 for (i = 0; i < L_CODES+2; i++) {
michael@0 339 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
michael@0 340 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
michael@0 341 }
michael@0 342
michael@0 343 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
michael@0 344 for (i = 0; i < D_CODES; i++) {
michael@0 345 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
michael@0 346 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
michael@0 347 }
michael@0 348
michael@0 349 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
michael@0 350 for (i = 0; i < DIST_CODE_LEN; i++) {
michael@0 351 fprintf(header, "%2u%s", _dist_code[i],
michael@0 352 SEPARATOR(i, DIST_CODE_LEN-1, 20));
michael@0 353 }
michael@0 354
michael@0 355 fprintf(header,
michael@0 356 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
michael@0 357 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
michael@0 358 fprintf(header, "%2u%s", _length_code[i],
michael@0 359 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
michael@0 360 }
michael@0 361
michael@0 362 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
michael@0 363 for (i = 0; i < LENGTH_CODES; i++) {
michael@0 364 fprintf(header, "%1u%s", base_length[i],
michael@0 365 SEPARATOR(i, LENGTH_CODES-1, 20));
michael@0 366 }
michael@0 367
michael@0 368 fprintf(header, "local const int base_dist[D_CODES] = {\n");
michael@0 369 for (i = 0; i < D_CODES; i++) {
michael@0 370 fprintf(header, "%5u%s", base_dist[i],
michael@0 371 SEPARATOR(i, D_CODES-1, 10));
michael@0 372 }
michael@0 373
michael@0 374 fclose(header);
michael@0 375 }
michael@0 376 #endif /* GEN_TREES_H */
michael@0 377
michael@0 378 /* ===========================================================================
michael@0 379 * Initialize the tree data structures for a new zlib stream.
michael@0 380 */
michael@0 381 void ZLIB_INTERNAL _tr_init(s)
michael@0 382 deflate_state *s;
michael@0 383 {
michael@0 384 tr_static_init();
michael@0 385
michael@0 386 s->l_desc.dyn_tree = s->dyn_ltree;
michael@0 387 s->l_desc.stat_desc = &static_l_desc;
michael@0 388
michael@0 389 s->d_desc.dyn_tree = s->dyn_dtree;
michael@0 390 s->d_desc.stat_desc = &static_d_desc;
michael@0 391
michael@0 392 s->bl_desc.dyn_tree = s->bl_tree;
michael@0 393 s->bl_desc.stat_desc = &static_bl_desc;
michael@0 394
michael@0 395 s->bi_buf = 0;
michael@0 396 s->bi_valid = 0;
michael@0 397 #ifdef DEBUG
michael@0 398 s->compressed_len = 0L;
michael@0 399 s->bits_sent = 0L;
michael@0 400 #endif
michael@0 401
michael@0 402 /* Initialize the first block of the first file: */
michael@0 403 init_block(s);
michael@0 404 }
michael@0 405
michael@0 406 /* ===========================================================================
michael@0 407 * Initialize a new block.
michael@0 408 */
michael@0 409 local void init_block(s)
michael@0 410 deflate_state *s;
michael@0 411 {
michael@0 412 int n; /* iterates over tree elements */
michael@0 413
michael@0 414 /* Initialize the trees. */
michael@0 415 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
michael@0 416 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
michael@0 417 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
michael@0 418
michael@0 419 s->dyn_ltree[END_BLOCK].Freq = 1;
michael@0 420 s->opt_len = s->static_len = 0L;
michael@0 421 s->last_lit = s->matches = 0;
michael@0 422 }
michael@0 423
michael@0 424 #define SMALLEST 1
michael@0 425 /* Index within the heap array of least frequent node in the Huffman tree */
michael@0 426
michael@0 427
michael@0 428 /* ===========================================================================
michael@0 429 * Remove the smallest element from the heap and recreate the heap with
michael@0 430 * one less element. Updates heap and heap_len.
michael@0 431 */
michael@0 432 #define pqremove(s, tree, top) \
michael@0 433 {\
michael@0 434 top = s->heap[SMALLEST]; \
michael@0 435 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
michael@0 436 pqdownheap(s, tree, SMALLEST); \
michael@0 437 }
michael@0 438
michael@0 439 /* ===========================================================================
michael@0 440 * Compares to subtrees, using the tree depth as tie breaker when
michael@0 441 * the subtrees have equal frequency. This minimizes the worst case length.
michael@0 442 */
michael@0 443 #define smaller(tree, n, m, depth) \
michael@0 444 (tree[n].Freq < tree[m].Freq || \
michael@0 445 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
michael@0 446
michael@0 447 /* ===========================================================================
michael@0 448 * Restore the heap property by moving down the tree starting at node k,
michael@0 449 * exchanging a node with the smallest of its two sons if necessary, stopping
michael@0 450 * when the heap property is re-established (each father smaller than its
michael@0 451 * two sons).
michael@0 452 */
michael@0 453 local void pqdownheap(s, tree, k)
michael@0 454 deflate_state *s;
michael@0 455 ct_data *tree; /* the tree to restore */
michael@0 456 int k; /* node to move down */
michael@0 457 {
michael@0 458 int v = s->heap[k];
michael@0 459 int j = k << 1; /* left son of k */
michael@0 460 while (j <= s->heap_len) {
michael@0 461 /* Set j to the smallest of the two sons: */
michael@0 462 if (j < s->heap_len &&
michael@0 463 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
michael@0 464 j++;
michael@0 465 }
michael@0 466 /* Exit if v is smaller than both sons */
michael@0 467 if (smaller(tree, v, s->heap[j], s->depth)) break;
michael@0 468
michael@0 469 /* Exchange v with the smallest son */
michael@0 470 s->heap[k] = s->heap[j]; k = j;
michael@0 471
michael@0 472 /* And continue down the tree, setting j to the left son of k */
michael@0 473 j <<= 1;
michael@0 474 }
michael@0 475 s->heap[k] = v;
michael@0 476 }
michael@0 477
michael@0 478 /* ===========================================================================
michael@0 479 * Compute the optimal bit lengths for a tree and update the total bit length
michael@0 480 * for the current block.
michael@0 481 * IN assertion: the fields freq and dad are set, heap[heap_max] and
michael@0 482 * above are the tree nodes sorted by increasing frequency.
michael@0 483 * OUT assertions: the field len is set to the optimal bit length, the
michael@0 484 * array bl_count contains the frequencies for each bit length.
michael@0 485 * The length opt_len is updated; static_len is also updated if stree is
michael@0 486 * not null.
michael@0 487 */
michael@0 488 local void gen_bitlen(s, desc)
michael@0 489 deflate_state *s;
michael@0 490 tree_desc *desc; /* the tree descriptor */
michael@0 491 {
michael@0 492 ct_data *tree = desc->dyn_tree;
michael@0 493 int max_code = desc->max_code;
michael@0 494 const ct_data *stree = desc->stat_desc->static_tree;
michael@0 495 const intf *extra = desc->stat_desc->extra_bits;
michael@0 496 int base = desc->stat_desc->extra_base;
michael@0 497 int max_length = desc->stat_desc->max_length;
michael@0 498 int h; /* heap index */
michael@0 499 int n, m; /* iterate over the tree elements */
michael@0 500 int bits; /* bit length */
michael@0 501 int xbits; /* extra bits */
michael@0 502 ush f; /* frequency */
michael@0 503 int overflow = 0; /* number of elements with bit length too large */
michael@0 504
michael@0 505 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
michael@0 506
michael@0 507 /* In a first pass, compute the optimal bit lengths (which may
michael@0 508 * overflow in the case of the bit length tree).
michael@0 509 */
michael@0 510 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
michael@0 511
michael@0 512 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
michael@0 513 n = s->heap[h];
michael@0 514 bits = tree[tree[n].Dad].Len + 1;
michael@0 515 if (bits > max_length) bits = max_length, overflow++;
michael@0 516 tree[n].Len = (ush)bits;
michael@0 517 /* We overwrite tree[n].Dad which is no longer needed */
michael@0 518
michael@0 519 if (n > max_code) continue; /* not a leaf node */
michael@0 520
michael@0 521 s->bl_count[bits]++;
michael@0 522 xbits = 0;
michael@0 523 if (n >= base) xbits = extra[n-base];
michael@0 524 f = tree[n].Freq;
michael@0 525 s->opt_len += (ulg)f * (bits + xbits);
michael@0 526 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
michael@0 527 }
michael@0 528 if (overflow == 0) return;
michael@0 529
michael@0 530 Trace((stderr,"\nbit length overflow\n"));
michael@0 531 /* This happens for example on obj2 and pic of the Calgary corpus */
michael@0 532
michael@0 533 /* Find the first bit length which could increase: */
michael@0 534 do {
michael@0 535 bits = max_length-1;
michael@0 536 while (s->bl_count[bits] == 0) bits--;
michael@0 537 s->bl_count[bits]--; /* move one leaf down the tree */
michael@0 538 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
michael@0 539 s->bl_count[max_length]--;
michael@0 540 /* The brother of the overflow item also moves one step up,
michael@0 541 * but this does not affect bl_count[max_length]
michael@0 542 */
michael@0 543 overflow -= 2;
michael@0 544 } while (overflow > 0);
michael@0 545
michael@0 546 /* Now recompute all bit lengths, scanning in increasing frequency.
michael@0 547 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
michael@0 548 * lengths instead of fixing only the wrong ones. This idea is taken
michael@0 549 * from 'ar' written by Haruhiko Okumura.)
michael@0 550 */
michael@0 551 for (bits = max_length; bits != 0; bits--) {
michael@0 552 n = s->bl_count[bits];
michael@0 553 while (n != 0) {
michael@0 554 m = s->heap[--h];
michael@0 555 if (m > max_code) continue;
michael@0 556 if ((unsigned) tree[m].Len != (unsigned) bits) {
michael@0 557 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
michael@0 558 s->opt_len += ((long)bits - (long)tree[m].Len)
michael@0 559 *(long)tree[m].Freq;
michael@0 560 tree[m].Len = (ush)bits;
michael@0 561 }
michael@0 562 n--;
michael@0 563 }
michael@0 564 }
michael@0 565 }
michael@0 566
michael@0 567 /* ===========================================================================
michael@0 568 * Generate the codes for a given tree and bit counts (which need not be
michael@0 569 * optimal).
michael@0 570 * IN assertion: the array bl_count contains the bit length statistics for
michael@0 571 * the given tree and the field len is set for all tree elements.
michael@0 572 * OUT assertion: the field code is set for all tree elements of non
michael@0 573 * zero code length.
michael@0 574 */
michael@0 575 local void gen_codes (tree, max_code, bl_count)
michael@0 576 ct_data *tree; /* the tree to decorate */
michael@0 577 int max_code; /* largest code with non zero frequency */
michael@0 578 ushf *bl_count; /* number of codes at each bit length */
michael@0 579 {
michael@0 580 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
michael@0 581 ush code = 0; /* running code value */
michael@0 582 int bits; /* bit index */
michael@0 583 int n; /* code index */
michael@0 584
michael@0 585 /* The distribution counts are first used to generate the code values
michael@0 586 * without bit reversal.
michael@0 587 */
michael@0 588 for (bits = 1; bits <= MAX_BITS; bits++) {
michael@0 589 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
michael@0 590 }
michael@0 591 /* Check that the bit counts in bl_count are consistent. The last code
michael@0 592 * must be all ones.
michael@0 593 */
michael@0 594 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
michael@0 595 "inconsistent bit counts");
michael@0 596 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
michael@0 597
michael@0 598 for (n = 0; n <= max_code; n++) {
michael@0 599 int len = tree[n].Len;
michael@0 600 if (len == 0) continue;
michael@0 601 /* Now reverse the bits */
michael@0 602 tree[n].Code = bi_reverse(next_code[len]++, len);
michael@0 603
michael@0 604 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
michael@0 605 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
michael@0 606 }
michael@0 607 }
michael@0 608
michael@0 609 /* ===========================================================================
michael@0 610 * Construct one Huffman tree and assigns the code bit strings and lengths.
michael@0 611 * Update the total bit length for the current block.
michael@0 612 * IN assertion: the field freq is set for all tree elements.
michael@0 613 * OUT assertions: the fields len and code are set to the optimal bit length
michael@0 614 * and corresponding code. The length opt_len is updated; static_len is
michael@0 615 * also updated if stree is not null. The field max_code is set.
michael@0 616 */
michael@0 617 local void build_tree(s, desc)
michael@0 618 deflate_state *s;
michael@0 619 tree_desc *desc; /* the tree descriptor */
michael@0 620 {
michael@0 621 ct_data *tree = desc->dyn_tree;
michael@0 622 const ct_data *stree = desc->stat_desc->static_tree;
michael@0 623 int elems = desc->stat_desc->elems;
michael@0 624 int n, m; /* iterate over heap elements */
michael@0 625 int max_code = -1; /* largest code with non zero frequency */
michael@0 626 int node; /* new node being created */
michael@0 627
michael@0 628 /* Construct the initial heap, with least frequent element in
michael@0 629 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
michael@0 630 * heap[0] is not used.
michael@0 631 */
michael@0 632 s->heap_len = 0, s->heap_max = HEAP_SIZE;
michael@0 633
michael@0 634 for (n = 0; n < elems; n++) {
michael@0 635 if (tree[n].Freq != 0) {
michael@0 636 s->heap[++(s->heap_len)] = max_code = n;
michael@0 637 s->depth[n] = 0;
michael@0 638 } else {
michael@0 639 tree[n].Len = 0;
michael@0 640 }
michael@0 641 }
michael@0 642
michael@0 643 /* The pkzip format requires that at least one distance code exists,
michael@0 644 * and that at least one bit should be sent even if there is only one
michael@0 645 * possible code. So to avoid special checks later on we force at least
michael@0 646 * two codes of non zero frequency.
michael@0 647 */
michael@0 648 while (s->heap_len < 2) {
michael@0 649 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
michael@0 650 tree[node].Freq = 1;
michael@0 651 s->depth[node] = 0;
michael@0 652 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
michael@0 653 /* node is 0 or 1 so it does not have extra bits */
michael@0 654 }
michael@0 655 desc->max_code = max_code;
michael@0 656
michael@0 657 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
michael@0 658 * establish sub-heaps of increasing lengths:
michael@0 659 */
michael@0 660 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
michael@0 661
michael@0 662 /* Construct the Huffman tree by repeatedly combining the least two
michael@0 663 * frequent nodes.
michael@0 664 */
michael@0 665 node = elems; /* next internal node of the tree */
michael@0 666 do {
michael@0 667 pqremove(s, tree, n); /* n = node of least frequency */
michael@0 668 m = s->heap[SMALLEST]; /* m = node of next least frequency */
michael@0 669
michael@0 670 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
michael@0 671 s->heap[--(s->heap_max)] = m;
michael@0 672
michael@0 673 /* Create a new node father of n and m */
michael@0 674 tree[node].Freq = tree[n].Freq + tree[m].Freq;
michael@0 675 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
michael@0 676 s->depth[n] : s->depth[m]) + 1);
michael@0 677 tree[n].Dad = tree[m].Dad = (ush)node;
michael@0 678 #ifdef DUMP_BL_TREE
michael@0 679 if (tree == s->bl_tree) {
michael@0 680 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
michael@0 681 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
michael@0 682 }
michael@0 683 #endif
michael@0 684 /* and insert the new node in the heap */
michael@0 685 s->heap[SMALLEST] = node++;
michael@0 686 pqdownheap(s, tree, SMALLEST);
michael@0 687
michael@0 688 } while (s->heap_len >= 2);
michael@0 689
michael@0 690 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
michael@0 691
michael@0 692 /* At this point, the fields freq and dad are set. We can now
michael@0 693 * generate the bit lengths.
michael@0 694 */
michael@0 695 gen_bitlen(s, (tree_desc *)desc);
michael@0 696
michael@0 697 /* The field len is now set, we can generate the bit codes */
michael@0 698 gen_codes ((ct_data *)tree, max_code, s->bl_count);
michael@0 699 }
michael@0 700
michael@0 701 /* ===========================================================================
michael@0 702 * Scan a literal or distance tree to determine the frequencies of the codes
michael@0 703 * in the bit length tree.
michael@0 704 */
michael@0 705 local void scan_tree (s, tree, max_code)
michael@0 706 deflate_state *s;
michael@0 707 ct_data *tree; /* the tree to be scanned */
michael@0 708 int max_code; /* and its largest code of non zero frequency */
michael@0 709 {
michael@0 710 int n; /* iterates over all tree elements */
michael@0 711 int prevlen = -1; /* last emitted length */
michael@0 712 int curlen; /* length of current code */
michael@0 713 int nextlen = tree[0].Len; /* length of next code */
michael@0 714 int count = 0; /* repeat count of the current code */
michael@0 715 int max_count = 7; /* max repeat count */
michael@0 716 int min_count = 4; /* min repeat count */
michael@0 717
michael@0 718 if (nextlen == 0) max_count = 138, min_count = 3;
michael@0 719 tree[max_code+1].Len = (ush)0xffff; /* guard */
michael@0 720
michael@0 721 for (n = 0; n <= max_code; n++) {
michael@0 722 curlen = nextlen; nextlen = tree[n+1].Len;
michael@0 723 if (++count < max_count && curlen == nextlen) {
michael@0 724 continue;
michael@0 725 } else if (count < min_count) {
michael@0 726 s->bl_tree[curlen].Freq += count;
michael@0 727 } else if (curlen != 0) {
michael@0 728 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
michael@0 729 s->bl_tree[REP_3_6].Freq++;
michael@0 730 } else if (count <= 10) {
michael@0 731 s->bl_tree[REPZ_3_10].Freq++;
michael@0 732 } else {
michael@0 733 s->bl_tree[REPZ_11_138].Freq++;
michael@0 734 }
michael@0 735 count = 0; prevlen = curlen;
michael@0 736 if (nextlen == 0) {
michael@0 737 max_count = 138, min_count = 3;
michael@0 738 } else if (curlen == nextlen) {
michael@0 739 max_count = 6, min_count = 3;
michael@0 740 } else {
michael@0 741 max_count = 7, min_count = 4;
michael@0 742 }
michael@0 743 }
michael@0 744 }
michael@0 745
michael@0 746 /* ===========================================================================
michael@0 747 * Send a literal or distance tree in compressed form, using the codes in
michael@0 748 * bl_tree.
michael@0 749 */
michael@0 750 local void send_tree (s, tree, max_code)
michael@0 751 deflate_state *s;
michael@0 752 ct_data *tree; /* the tree to be scanned */
michael@0 753 int max_code; /* and its largest code of non zero frequency */
michael@0 754 {
michael@0 755 int n; /* iterates over all tree elements */
michael@0 756 int prevlen = -1; /* last emitted length */
michael@0 757 int curlen; /* length of current code */
michael@0 758 int nextlen = tree[0].Len; /* length of next code */
michael@0 759 int count = 0; /* repeat count of the current code */
michael@0 760 int max_count = 7; /* max repeat count */
michael@0 761 int min_count = 4; /* min repeat count */
michael@0 762
michael@0 763 /* tree[max_code+1].Len = -1; */ /* guard already set */
michael@0 764 if (nextlen == 0) max_count = 138, min_count = 3;
michael@0 765
michael@0 766 for (n = 0; n <= max_code; n++) {
michael@0 767 curlen = nextlen; nextlen = tree[n+1].Len;
michael@0 768 if (++count < max_count && curlen == nextlen) {
michael@0 769 continue;
michael@0 770 } else if (count < min_count) {
michael@0 771 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
michael@0 772
michael@0 773 } else if (curlen != 0) {
michael@0 774 if (curlen != prevlen) {
michael@0 775 send_code(s, curlen, s->bl_tree); count--;
michael@0 776 }
michael@0 777 Assert(count >= 3 && count <= 6, " 3_6?");
michael@0 778 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
michael@0 779
michael@0 780 } else if (count <= 10) {
michael@0 781 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
michael@0 782
michael@0 783 } else {
michael@0 784 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
michael@0 785 }
michael@0 786 count = 0; prevlen = curlen;
michael@0 787 if (nextlen == 0) {
michael@0 788 max_count = 138, min_count = 3;
michael@0 789 } else if (curlen == nextlen) {
michael@0 790 max_count = 6, min_count = 3;
michael@0 791 } else {
michael@0 792 max_count = 7, min_count = 4;
michael@0 793 }
michael@0 794 }
michael@0 795 }
michael@0 796
michael@0 797 /* ===========================================================================
michael@0 798 * Construct the Huffman tree for the bit lengths and return the index in
michael@0 799 * bl_order of the last bit length code to send.
michael@0 800 */
michael@0 801 local int build_bl_tree(s)
michael@0 802 deflate_state *s;
michael@0 803 {
michael@0 804 int max_blindex; /* index of last bit length code of non zero freq */
michael@0 805
michael@0 806 /* Determine the bit length frequencies for literal and distance trees */
michael@0 807 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
michael@0 808 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
michael@0 809
michael@0 810 /* Build the bit length tree: */
michael@0 811 build_tree(s, (tree_desc *)(&(s->bl_desc)));
michael@0 812 /* opt_len now includes the length of the tree representations, except
michael@0 813 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
michael@0 814 */
michael@0 815
michael@0 816 /* Determine the number of bit length codes to send. The pkzip format
michael@0 817 * requires that at least 4 bit length codes be sent. (appnote.txt says
michael@0 818 * 3 but the actual value used is 4.)
michael@0 819 */
michael@0 820 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
michael@0 821 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
michael@0 822 }
michael@0 823 /* Update opt_len to include the bit length tree and counts */
michael@0 824 s->opt_len += 3*(max_blindex+1) + 5+5+4;
michael@0 825 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
michael@0 826 s->opt_len, s->static_len));
michael@0 827
michael@0 828 return max_blindex;
michael@0 829 }
michael@0 830
michael@0 831 /* ===========================================================================
michael@0 832 * Send the header for a block using dynamic Huffman trees: the counts, the
michael@0 833 * lengths of the bit length codes, the literal tree and the distance tree.
michael@0 834 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
michael@0 835 */
michael@0 836 local void send_all_trees(s, lcodes, dcodes, blcodes)
michael@0 837 deflate_state *s;
michael@0 838 int lcodes, dcodes, blcodes; /* number of codes for each tree */
michael@0 839 {
michael@0 840 int rank; /* index in bl_order */
michael@0 841
michael@0 842 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
michael@0 843 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
michael@0 844 "too many codes");
michael@0 845 Tracev((stderr, "\nbl counts: "));
michael@0 846 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
michael@0 847 send_bits(s, dcodes-1, 5);
michael@0 848 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
michael@0 849 for (rank = 0; rank < blcodes; rank++) {
michael@0 850 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
michael@0 851 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
michael@0 852 }
michael@0 853 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
michael@0 854
michael@0 855 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
michael@0 856 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
michael@0 857
michael@0 858 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
michael@0 859 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
michael@0 860 }
michael@0 861
michael@0 862 /* ===========================================================================
michael@0 863 * Send a stored block
michael@0 864 */
michael@0 865 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
michael@0 866 deflate_state *s;
michael@0 867 charf *buf; /* input block */
michael@0 868 ulg stored_len; /* length of input block */
michael@0 869 int last; /* one if this is the last block for a file */
michael@0 870 {
michael@0 871 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
michael@0 872 #ifdef DEBUG
michael@0 873 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
michael@0 874 s->compressed_len += (stored_len + 4) << 3;
michael@0 875 #endif
michael@0 876 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
michael@0 877 }
michael@0 878
michael@0 879 /* ===========================================================================
michael@0 880 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
michael@0 881 */
michael@0 882 void ZLIB_INTERNAL _tr_flush_bits(s)
michael@0 883 deflate_state *s;
michael@0 884 {
michael@0 885 bi_flush(s);
michael@0 886 }
michael@0 887
michael@0 888 /* ===========================================================================
michael@0 889 * Send one empty static block to give enough lookahead for inflate.
michael@0 890 * This takes 10 bits, of which 7 may remain in the bit buffer.
michael@0 891 */
michael@0 892 void ZLIB_INTERNAL _tr_align(s)
michael@0 893 deflate_state *s;
michael@0 894 {
michael@0 895 send_bits(s, STATIC_TREES<<1, 3);
michael@0 896 send_code(s, END_BLOCK, static_ltree);
michael@0 897 #ifdef DEBUG
michael@0 898 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
michael@0 899 #endif
michael@0 900 bi_flush(s);
michael@0 901 }
michael@0 902
michael@0 903 /* ===========================================================================
michael@0 904 * Determine the best encoding for the current block: dynamic trees, static
michael@0 905 * trees or store, and output the encoded block to the zip file.
michael@0 906 */
michael@0 907 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
michael@0 908 deflate_state *s;
michael@0 909 charf *buf; /* input block, or NULL if too old */
michael@0 910 ulg stored_len; /* length of input block */
michael@0 911 int last; /* one if this is the last block for a file */
michael@0 912 {
michael@0 913 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
michael@0 914 int max_blindex = 0; /* index of last bit length code of non zero freq */
michael@0 915
michael@0 916 /* Build the Huffman trees unless a stored block is forced */
michael@0 917 if (s->level > 0) {
michael@0 918
michael@0 919 /* Check if the file is binary or text */
michael@0 920 if (s->strm->data_type == Z_UNKNOWN)
michael@0 921 s->strm->data_type = detect_data_type(s);
michael@0 922
michael@0 923 /* Construct the literal and distance trees */
michael@0 924 build_tree(s, (tree_desc *)(&(s->l_desc)));
michael@0 925 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
michael@0 926 s->static_len));
michael@0 927
michael@0 928 build_tree(s, (tree_desc *)(&(s->d_desc)));
michael@0 929 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
michael@0 930 s->static_len));
michael@0 931 /* At this point, opt_len and static_len are the total bit lengths of
michael@0 932 * the compressed block data, excluding the tree representations.
michael@0 933 */
michael@0 934
michael@0 935 /* Build the bit length tree for the above two trees, and get the index
michael@0 936 * in bl_order of the last bit length code to send.
michael@0 937 */
michael@0 938 max_blindex = build_bl_tree(s);
michael@0 939
michael@0 940 /* Determine the best encoding. Compute the block lengths in bytes. */
michael@0 941 opt_lenb = (s->opt_len+3+7)>>3;
michael@0 942 static_lenb = (s->static_len+3+7)>>3;
michael@0 943
michael@0 944 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
michael@0 945 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
michael@0 946 s->last_lit));
michael@0 947
michael@0 948 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
michael@0 949
michael@0 950 } else {
michael@0 951 Assert(buf != (char*)0, "lost buf");
michael@0 952 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
michael@0 953 }
michael@0 954
michael@0 955 #ifdef FORCE_STORED
michael@0 956 if (buf != (char*)0) { /* force stored block */
michael@0 957 #else
michael@0 958 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
michael@0 959 /* 4: two words for the lengths */
michael@0 960 #endif
michael@0 961 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
michael@0 962 * Otherwise we can't have processed more than WSIZE input bytes since
michael@0 963 * the last block flush, because compression would have been
michael@0 964 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
michael@0 965 * transform a block into a stored block.
michael@0 966 */
michael@0 967 _tr_stored_block(s, buf, stored_len, last);
michael@0 968
michael@0 969 #ifdef FORCE_STATIC
michael@0 970 } else if (static_lenb >= 0) { /* force static trees */
michael@0 971 #else
michael@0 972 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
michael@0 973 #endif
michael@0 974 send_bits(s, (STATIC_TREES<<1)+last, 3);
michael@0 975 compress_block(s, (const ct_data *)static_ltree,
michael@0 976 (const ct_data *)static_dtree);
michael@0 977 #ifdef DEBUG
michael@0 978 s->compressed_len += 3 + s->static_len;
michael@0 979 #endif
michael@0 980 } else {
michael@0 981 send_bits(s, (DYN_TREES<<1)+last, 3);
michael@0 982 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
michael@0 983 max_blindex+1);
michael@0 984 compress_block(s, (const ct_data *)s->dyn_ltree,
michael@0 985 (const ct_data *)s->dyn_dtree);
michael@0 986 #ifdef DEBUG
michael@0 987 s->compressed_len += 3 + s->opt_len;
michael@0 988 #endif
michael@0 989 }
michael@0 990 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
michael@0 991 /* The above check is made mod 2^32, for files larger than 512 MB
michael@0 992 * and uLong implemented on 32 bits.
michael@0 993 */
michael@0 994 init_block(s);
michael@0 995
michael@0 996 if (last) {
michael@0 997 bi_windup(s);
michael@0 998 #ifdef DEBUG
michael@0 999 s->compressed_len += 7; /* align on byte boundary */
michael@0 1000 #endif
michael@0 1001 }
michael@0 1002 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
michael@0 1003 s->compressed_len-7*last));
michael@0 1004 }
michael@0 1005
michael@0 1006 /* ===========================================================================
michael@0 1007 * Save the match info and tally the frequency counts. Return true if
michael@0 1008 * the current block must be flushed.
michael@0 1009 */
michael@0 1010 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
michael@0 1011 deflate_state *s;
michael@0 1012 unsigned dist; /* distance of matched string */
michael@0 1013 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
michael@0 1014 {
michael@0 1015 s->d_buf[s->last_lit] = (ush)dist;
michael@0 1016 s->l_buf[s->last_lit++] = (uch)lc;
michael@0 1017 if (dist == 0) {
michael@0 1018 /* lc is the unmatched char */
michael@0 1019 s->dyn_ltree[lc].Freq++;
michael@0 1020 } else {
michael@0 1021 s->matches++;
michael@0 1022 /* Here, lc is the match length - MIN_MATCH */
michael@0 1023 dist--; /* dist = match distance - 1 */
michael@0 1024 Assert((ush)dist < (ush)MAX_DIST(s) &&
michael@0 1025 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
michael@0 1026 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
michael@0 1027
michael@0 1028 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
michael@0 1029 s->dyn_dtree[d_code(dist)].Freq++;
michael@0 1030 }
michael@0 1031
michael@0 1032 #ifdef TRUNCATE_BLOCK
michael@0 1033 /* Try to guess if it is profitable to stop the current block here */
michael@0 1034 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
michael@0 1035 /* Compute an upper bound for the compressed length */
michael@0 1036 ulg out_length = (ulg)s->last_lit*8L;
michael@0 1037 ulg in_length = (ulg)((long)s->strstart - s->block_start);
michael@0 1038 int dcode;
michael@0 1039 for (dcode = 0; dcode < D_CODES; dcode++) {
michael@0 1040 out_length += (ulg)s->dyn_dtree[dcode].Freq *
michael@0 1041 (5L+extra_dbits[dcode]);
michael@0 1042 }
michael@0 1043 out_length >>= 3;
michael@0 1044 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
michael@0 1045 s->last_lit, in_length, out_length,
michael@0 1046 100L - out_length*100L/in_length));
michael@0 1047 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
michael@0 1048 }
michael@0 1049 #endif
michael@0 1050 return (s->last_lit == s->lit_bufsize-1);
michael@0 1051 /* We avoid equality with lit_bufsize because of wraparound at 64K
michael@0 1052 * on 16 bit machines and because stored blocks are restricted to
michael@0 1053 * 64K-1 bytes.
michael@0 1054 */
michael@0 1055 }
michael@0 1056
michael@0 1057 /* ===========================================================================
michael@0 1058 * Send the block data compressed using the given Huffman trees
michael@0 1059 */
michael@0 1060 local void compress_block(s, ltree, dtree)
michael@0 1061 deflate_state *s;
michael@0 1062 const ct_data *ltree; /* literal tree */
michael@0 1063 const ct_data *dtree; /* distance tree */
michael@0 1064 {
michael@0 1065 unsigned dist; /* distance of matched string */
michael@0 1066 int lc; /* match length or unmatched char (if dist == 0) */
michael@0 1067 unsigned lx = 0; /* running index in l_buf */
michael@0 1068 unsigned code; /* the code to send */
michael@0 1069 int extra; /* number of extra bits to send */
michael@0 1070
michael@0 1071 if (s->last_lit != 0) do {
michael@0 1072 dist = s->d_buf[lx];
michael@0 1073 lc = s->l_buf[lx++];
michael@0 1074 if (dist == 0) {
michael@0 1075 send_code(s, lc, ltree); /* send a literal byte */
michael@0 1076 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
michael@0 1077 } else {
michael@0 1078 /* Here, lc is the match length - MIN_MATCH */
michael@0 1079 code = _length_code[lc];
michael@0 1080 send_code(s, code+LITERALS+1, ltree); /* send the length code */
michael@0 1081 extra = extra_lbits[code];
michael@0 1082 if (extra != 0) {
michael@0 1083 lc -= base_length[code];
michael@0 1084 send_bits(s, lc, extra); /* send the extra length bits */
michael@0 1085 }
michael@0 1086 dist--; /* dist is now the match distance - 1 */
michael@0 1087 code = d_code(dist);
michael@0 1088 Assert (code < D_CODES, "bad d_code");
michael@0 1089
michael@0 1090 send_code(s, code, dtree); /* send the distance code */
michael@0 1091 extra = extra_dbits[code];
michael@0 1092 if (extra != 0) {
michael@0 1093 dist -= base_dist[code];
michael@0 1094 send_bits(s, dist, extra); /* send the extra distance bits */
michael@0 1095 }
michael@0 1096 } /* literal or match pair ? */
michael@0 1097
michael@0 1098 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
michael@0 1099 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
michael@0 1100 "pendingBuf overflow");
michael@0 1101
michael@0 1102 } while (lx < s->last_lit);
michael@0 1103
michael@0 1104 send_code(s, END_BLOCK, ltree);
michael@0 1105 }
michael@0 1106
michael@0 1107 /* ===========================================================================
michael@0 1108 * Check if the data type is TEXT or BINARY, using the following algorithm:
michael@0 1109 * - TEXT if the two conditions below are satisfied:
michael@0 1110 * a) There are no non-portable control characters belonging to the
michael@0 1111 * "black list" (0..6, 14..25, 28..31).
michael@0 1112 * b) There is at least one printable character belonging to the
michael@0 1113 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
michael@0 1114 * - BINARY otherwise.
michael@0 1115 * - The following partially-portable control characters form a
michael@0 1116 * "gray list" that is ignored in this detection algorithm:
michael@0 1117 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
michael@0 1118 * IN assertion: the fields Freq of dyn_ltree are set.
michael@0 1119 */
michael@0 1120 local int detect_data_type(s)
michael@0 1121 deflate_state *s;
michael@0 1122 {
michael@0 1123 /* black_mask is the bit mask of black-listed bytes
michael@0 1124 * set bits 0..6, 14..25, and 28..31
michael@0 1125 * 0xf3ffc07f = binary 11110011111111111100000001111111
michael@0 1126 */
michael@0 1127 unsigned long black_mask = 0xf3ffc07fUL;
michael@0 1128 int n;
michael@0 1129
michael@0 1130 /* Check for non-textual ("black-listed") bytes. */
michael@0 1131 for (n = 0; n <= 31; n++, black_mask >>= 1)
michael@0 1132 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
michael@0 1133 return Z_BINARY;
michael@0 1134
michael@0 1135 /* Check for textual ("white-listed") bytes. */
michael@0 1136 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
michael@0 1137 || s->dyn_ltree[13].Freq != 0)
michael@0 1138 return Z_TEXT;
michael@0 1139 for (n = 32; n < LITERALS; n++)
michael@0 1140 if (s->dyn_ltree[n].Freq != 0)
michael@0 1141 return Z_TEXT;
michael@0 1142
michael@0 1143 /* There are no "black-listed" or "white-listed" bytes:
michael@0 1144 * this stream either is empty or has tolerated ("gray-listed") bytes only.
michael@0 1145 */
michael@0 1146 return Z_BINARY;
michael@0 1147 }
michael@0 1148
michael@0 1149 /* ===========================================================================
michael@0 1150 * Reverse the first len bits of a code, using straightforward code (a faster
michael@0 1151 * method would use a table)
michael@0 1152 * IN assertion: 1 <= len <= 15
michael@0 1153 */
michael@0 1154 local unsigned bi_reverse(code, len)
michael@0 1155 unsigned code; /* the value to invert */
michael@0 1156 int len; /* its bit length */
michael@0 1157 {
michael@0 1158 register unsigned res = 0;
michael@0 1159 do {
michael@0 1160 res |= code & 1;
michael@0 1161 code >>= 1, res <<= 1;
michael@0 1162 } while (--len > 0);
michael@0 1163 return res >> 1;
michael@0 1164 }
michael@0 1165
michael@0 1166 /* ===========================================================================
michael@0 1167 * Flush the bit buffer, keeping at most 7 bits in it.
michael@0 1168 */
michael@0 1169 local void bi_flush(s)
michael@0 1170 deflate_state *s;
michael@0 1171 {
michael@0 1172 if (s->bi_valid == 16) {
michael@0 1173 put_short(s, s->bi_buf);
michael@0 1174 s->bi_buf = 0;
michael@0 1175 s->bi_valid = 0;
michael@0 1176 } else if (s->bi_valid >= 8) {
michael@0 1177 put_byte(s, (Byte)s->bi_buf);
michael@0 1178 s->bi_buf >>= 8;
michael@0 1179 s->bi_valid -= 8;
michael@0 1180 }
michael@0 1181 }
michael@0 1182
michael@0 1183 /* ===========================================================================
michael@0 1184 * Flush the bit buffer and align the output on a byte boundary
michael@0 1185 */
michael@0 1186 local void bi_windup(s)
michael@0 1187 deflate_state *s;
michael@0 1188 {
michael@0 1189 if (s->bi_valid > 8) {
michael@0 1190 put_short(s, s->bi_buf);
michael@0 1191 } else if (s->bi_valid > 0) {
michael@0 1192 put_byte(s, (Byte)s->bi_buf);
michael@0 1193 }
michael@0 1194 s->bi_buf = 0;
michael@0 1195 s->bi_valid = 0;
michael@0 1196 #ifdef DEBUG
michael@0 1197 s->bits_sent = (s->bits_sent+7) & ~7;
michael@0 1198 #endif
michael@0 1199 }
michael@0 1200
michael@0 1201 /* ===========================================================================
michael@0 1202 * Copy a stored block, storing first the length and its
michael@0 1203 * one's complement if requested.
michael@0 1204 */
michael@0 1205 local void copy_block(s, buf, len, header)
michael@0 1206 deflate_state *s;
michael@0 1207 charf *buf; /* the input data */
michael@0 1208 unsigned len; /* its length */
michael@0 1209 int header; /* true if block header must be written */
michael@0 1210 {
michael@0 1211 bi_windup(s); /* align on byte boundary */
michael@0 1212
michael@0 1213 if (header) {
michael@0 1214 put_short(s, (ush)len);
michael@0 1215 put_short(s, (ush)~len);
michael@0 1216 #ifdef DEBUG
michael@0 1217 s->bits_sent += 2*16;
michael@0 1218 #endif
michael@0 1219 }
michael@0 1220 #ifdef DEBUG
michael@0 1221 s->bits_sent += (ulg)len<<3;
michael@0 1222 #endif
michael@0 1223 while (len--) {
michael@0 1224 put_byte(s, *buf++);
michael@0 1225 }
michael@0 1226 }

mercurial