toolkit/crashreporter/google-breakpad/src/common/dwarf/bytereader.h

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 // -*- mode: C++ -*-
michael@0 2
michael@0 3 // Copyright (c) 2010 Google Inc. All Rights Reserved.
michael@0 4 //
michael@0 5 // Redistribution and use in source and binary forms, with or without
michael@0 6 // modification, are permitted provided that the following conditions are
michael@0 7 // met:
michael@0 8 //
michael@0 9 // * Redistributions of source code must retain the above copyright
michael@0 10 // notice, this list of conditions and the following disclaimer.
michael@0 11 // * Redistributions in binary form must reproduce the above
michael@0 12 // copyright notice, this list of conditions and the following disclaimer
michael@0 13 // in the documentation and/or other materials provided with the
michael@0 14 // distribution.
michael@0 15 // * Neither the name of Google Inc. nor the names of its
michael@0 16 // contributors may be used to endorse or promote products derived from
michael@0 17 // this software without specific prior written permission.
michael@0 18 //
michael@0 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
michael@0 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
michael@0 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
michael@0 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
michael@0 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
michael@0 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
michael@0 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
michael@0 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
michael@0 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
michael@0 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
michael@0 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
michael@0 30
michael@0 31 #ifndef COMMON_DWARF_BYTEREADER_H__
michael@0 32 #define COMMON_DWARF_BYTEREADER_H__
michael@0 33
michael@0 34 #include <string>
michael@0 35 #include "common/dwarf/types.h"
michael@0 36 #include "common/dwarf/dwarf2enums.h"
michael@0 37
michael@0 38 namespace dwarf2reader {
michael@0 39
michael@0 40 // We can't use the obvious name of LITTLE_ENDIAN and BIG_ENDIAN
michael@0 41 // because it conflicts with a macro
michael@0 42 enum Endianness {
michael@0 43 ENDIANNESS_BIG,
michael@0 44 ENDIANNESS_LITTLE
michael@0 45 };
michael@0 46
michael@0 47 // A ByteReader knows how to read single- and multi-byte values of
michael@0 48 // various endiannesses, sizes, and encodings, as used in DWARF
michael@0 49 // debugging information and Linux C++ exception handling data.
michael@0 50 class ByteReader {
michael@0 51 public:
michael@0 52 // Construct a ByteReader capable of reading one-, two-, four-, and
michael@0 53 // eight-byte values according to ENDIANNESS, absolute machine-sized
michael@0 54 // addresses, DWARF-style "initial length" values, signed and
michael@0 55 // unsigned LEB128 numbers, and Linux C++ exception handling data's
michael@0 56 // encoded pointers.
michael@0 57 explicit ByteReader(enum Endianness endianness);
michael@0 58 virtual ~ByteReader();
michael@0 59
michael@0 60 // Read a single byte from BUFFER and return it as an unsigned 8 bit
michael@0 61 // number.
michael@0 62 uint8 ReadOneByte(const char* buffer) const;
michael@0 63
michael@0 64 // Read two bytes from BUFFER and return them as an unsigned 16 bit
michael@0 65 // number, using this ByteReader's endianness.
michael@0 66 uint16 ReadTwoBytes(const char* buffer) const;
michael@0 67
michael@0 68 // Read four bytes from BUFFER and return them as an unsigned 32 bit
michael@0 69 // number, using this ByteReader's endianness. This function returns
michael@0 70 // a uint64 so that it is compatible with ReadAddress and
michael@0 71 // ReadOffset. The number it returns will never be outside the range
michael@0 72 // of an unsigned 32 bit integer.
michael@0 73 uint64 ReadFourBytes(const char* buffer) const;
michael@0 74
michael@0 75 // Read eight bytes from BUFFER and return them as an unsigned 64
michael@0 76 // bit number, using this ByteReader's endianness.
michael@0 77 uint64 ReadEightBytes(const char* buffer) const;
michael@0 78
michael@0 79 // Read an unsigned LEB128 (Little Endian Base 128) number from
michael@0 80 // BUFFER and return it as an unsigned 64 bit integer. Set LEN to
michael@0 81 // the number of bytes read.
michael@0 82 //
michael@0 83 // The unsigned LEB128 representation of an integer N is a variable
michael@0 84 // number of bytes:
michael@0 85 //
michael@0 86 // - If N is between 0 and 0x7f, then its unsigned LEB128
michael@0 87 // representation is a single byte whose value is N.
michael@0 88 //
michael@0 89 // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
michael@0 90 // 0x80, followed by the unsigned LEB128 representation of N /
michael@0 91 // 128, rounded towards negative infinity.
michael@0 92 //
michael@0 93 // In other words, we break VALUE into groups of seven bits, put
michael@0 94 // them in little-endian order, and then write them as eight-bit
michael@0 95 // bytes with the high bit on all but the last.
michael@0 96 uint64 ReadUnsignedLEB128(const char* buffer, size_t* len) const;
michael@0 97
michael@0 98 // Read a signed LEB128 number from BUFFER and return it as an
michael@0 99 // signed 64 bit integer. Set LEN to the number of bytes read.
michael@0 100 //
michael@0 101 // The signed LEB128 representation of an integer N is a variable
michael@0 102 // number of bytes:
michael@0 103 //
michael@0 104 // - If N is between -0x40 and 0x3f, then its signed LEB128
michael@0 105 // representation is a single byte whose value is N in two's
michael@0 106 // complement.
michael@0 107 //
michael@0 108 // - Otherwise, its signed LEB128 representation is (N & 0x7f) |
michael@0 109 // 0x80, followed by the signed LEB128 representation of N / 128,
michael@0 110 // rounded towards negative infinity.
michael@0 111 //
michael@0 112 // In other words, we break VALUE into groups of seven bits, put
michael@0 113 // them in little-endian order, and then write them as eight-bit
michael@0 114 // bytes with the high bit on all but the last.
michael@0 115 int64 ReadSignedLEB128(const char* buffer, size_t* len) const;
michael@0 116
michael@0 117 // Indicate that addresses on this architecture are SIZE bytes long. SIZE
michael@0 118 // must be either 4 or 8. (DWARF allows addresses to be any number of
michael@0 119 // bytes in length from 1 to 255, but we only support 32- and 64-bit
michael@0 120 // addresses at the moment.) You must call this before using the
michael@0 121 // ReadAddress member function.
michael@0 122 //
michael@0 123 // For data in a .debug_info section, or something that .debug_info
michael@0 124 // refers to like line number or macro data, the compilation unit
michael@0 125 // header's address_size field indicates the address size to use. Call
michael@0 126 // frame information doesn't indicate its address size (a shortcoming of
michael@0 127 // the spec); you must supply the appropriate size based on the
michael@0 128 // architecture of the target machine.
michael@0 129 void SetAddressSize(uint8 size);
michael@0 130
michael@0 131 // Return the current address size, in bytes. This is either 4,
michael@0 132 // indicating 32-bit addresses, or 8, indicating 64-bit addresses.
michael@0 133 uint8 AddressSize() const { return address_size_; }
michael@0 134
michael@0 135 // Read an address from BUFFER and return it as an unsigned 64 bit
michael@0 136 // integer, respecting this ByteReader's endianness and address size. You
michael@0 137 // must call SetAddressSize before calling this function.
michael@0 138 uint64 ReadAddress(const char* buffer) const;
michael@0 139
michael@0 140 // DWARF actually defines two slightly different formats: 32-bit DWARF
michael@0 141 // and 64-bit DWARF. This is *not* related to the size of registers or
michael@0 142 // addresses on the target machine; it refers only to the size of section
michael@0 143 // offsets and data lengths appearing in the DWARF data. One only needs
michael@0 144 // 64-bit DWARF when the debugging data itself is larger than 4GiB.
michael@0 145 // 32-bit DWARF can handle x86_64 or PPC64 code just fine, unless the
michael@0 146 // debugging data itself is very large.
michael@0 147 //
michael@0 148 // DWARF information identifies itself as 32-bit or 64-bit DWARF: each
michael@0 149 // compilation unit and call frame information entry begins with an
michael@0 150 // "initial length" field, which, in addition to giving the length of the
michael@0 151 // data, also indicates the size of section offsets and lengths appearing
michael@0 152 // in that data. The ReadInitialLength member function, below, reads an
michael@0 153 // initial length and sets the ByteReader's offset size as a side effect.
michael@0 154 // Thus, in the normal process of reading DWARF data, the appropriate
michael@0 155 // offset size is set automatically. So, you should only need to call
michael@0 156 // SetOffsetSize if you are using the same ByteReader to jump from the
michael@0 157 // midst of one block of DWARF data into another.
michael@0 158
michael@0 159 // Read a DWARF "initial length" field from START, and return it as
michael@0 160 // an unsigned 64 bit integer, respecting this ByteReader's
michael@0 161 // endianness. Set *LEN to the length of the initial length in
michael@0 162 // bytes, either four or twelve. As a side effect, set this
michael@0 163 // ByteReader's offset size to either 4 (if we see a 32-bit DWARF
michael@0 164 // initial length) or 8 (if we see a 64-bit DWARF initial length).
michael@0 165 //
michael@0 166 // A DWARF initial length is either:
michael@0 167 //
michael@0 168 // - a byte count stored as an unsigned 32-bit value less than
michael@0 169 // 0xffffff00, indicating that the data whose length is being
michael@0 170 // measured uses the 32-bit DWARF format, or
michael@0 171 //
michael@0 172 // - The 32-bit value 0xffffffff, followed by a 64-bit byte count,
michael@0 173 // indicating that the data whose length is being measured uses
michael@0 174 // the 64-bit DWARF format.
michael@0 175 uint64 ReadInitialLength(const char* start, size_t* len);
michael@0 176
michael@0 177 // Read an offset from BUFFER and return it as an unsigned 64 bit
michael@0 178 // integer, respecting the ByteReader's endianness. In 32-bit DWARF, the
michael@0 179 // offset is 4 bytes long; in 64-bit DWARF, the offset is eight bytes
michael@0 180 // long. You must call ReadInitialLength or SetOffsetSize before calling
michael@0 181 // this function; see the comments above for details.
michael@0 182 uint64 ReadOffset(const char* buffer) const;
michael@0 183
michael@0 184 // Return the current offset size, in bytes.
michael@0 185 // A return value of 4 indicates that we are reading 32-bit DWARF.
michael@0 186 // A return value of 8 indicates that we are reading 64-bit DWARF.
michael@0 187 uint8 OffsetSize() const { return offset_size_; }
michael@0 188
michael@0 189 // Indicate that section offsets and lengths are SIZE bytes long. SIZE
michael@0 190 // must be either 4 (meaning 32-bit DWARF) or 8 (meaning 64-bit DWARF).
michael@0 191 // Usually, you should not call this function yourself; instead, let a
michael@0 192 // call to ReadInitialLength establish the data's offset size
michael@0 193 // automatically.
michael@0 194 void SetOffsetSize(uint8 size);
michael@0 195
michael@0 196 // The Linux C++ ABI uses a variant of DWARF call frame information
michael@0 197 // for exception handling. This data is included in the program's
michael@0 198 // address space as the ".eh_frame" section, and intepreted at
michael@0 199 // runtime to walk the stack, find exception handlers, and run
michael@0 200 // cleanup code. The format is mostly the same as DWARF CFI, with
michael@0 201 // some adjustments made to provide the additional
michael@0 202 // exception-handling data, and to make the data easier to work with
michael@0 203 // in memory --- for example, to allow it to be placed in read-only
michael@0 204 // memory even when describing position-independent code.
michael@0 205 //
michael@0 206 // In particular, exception handling data can select a number of
michael@0 207 // different encodings for pointers that appear in the data, as
michael@0 208 // described by the DwarfPointerEncoding enum. There are actually
michael@0 209 // four axes(!) to the encoding:
michael@0 210 //
michael@0 211 // - The pointer size: pointers can be 2, 4, or 8 bytes long, or use
michael@0 212 // the DWARF LEB128 encoding.
michael@0 213 //
michael@0 214 // - The pointer's signedness: pointers can be signed or unsigned.
michael@0 215 //
michael@0 216 // - The pointer's base address: the data stored in the exception
michael@0 217 // handling data can be the actual address (that is, an absolute
michael@0 218 // pointer), or relative to one of a number of different base
michael@0 219 // addreses --- including that of the encoded pointer itself, for
michael@0 220 // a form of "pc-relative" addressing.
michael@0 221 //
michael@0 222 // - The pointer may be indirect: it may be the address where the
michael@0 223 // true pointer is stored. (This is used to refer to things via
michael@0 224 // global offset table entries, program linkage table entries, or
michael@0 225 // other tricks used in position-independent code.)
michael@0 226 //
michael@0 227 // There are also two options that fall outside that matrix
michael@0 228 // altogether: the pointer may be omitted, or it may have padding to
michael@0 229 // align it on an appropriate address boundary. (That last option
michael@0 230 // may seem like it should be just another axis, but it is not.)
michael@0 231
michael@0 232 // Indicate that the exception handling data is loaded starting at
michael@0 233 // SECTION_BASE, and that the start of its buffer in our own memory
michael@0 234 // is BUFFER_BASE. This allows us to find the address that a given
michael@0 235 // byte in our buffer would have when loaded into the program the
michael@0 236 // data describes. We need this to resolve DW_EH_PE_pcrel pointers.
michael@0 237 void SetCFIDataBase(uint64 section_base, const char *buffer_base);
michael@0 238
michael@0 239 // Indicate that the base address of the program's ".text" section
michael@0 240 // is TEXT_BASE. We need this to resolve DW_EH_PE_textrel pointers.
michael@0 241 void SetTextBase(uint64 text_base);
michael@0 242
michael@0 243 // Indicate that the base address for DW_EH_PE_datarel pointers is
michael@0 244 // DATA_BASE. The proper value depends on the ABI; it is usually the
michael@0 245 // address of the global offset table, held in a designated register in
michael@0 246 // position-independent code. You will need to look at the startup code
michael@0 247 // for the target system to be sure. I tried; my eyes bled.
michael@0 248 void SetDataBase(uint64 data_base);
michael@0 249
michael@0 250 // Indicate that the base address for the FDE we are processing is
michael@0 251 // FUNCTION_BASE. This is the start address of DW_EH_PE_funcrel
michael@0 252 // pointers. (This encoding does not seem to be used by the GNU
michael@0 253 // toolchain.)
michael@0 254 void SetFunctionBase(uint64 function_base);
michael@0 255
michael@0 256 // Indicate that we are no longer processing any FDE, so any use of
michael@0 257 // a DW_EH_PE_funcrel encoding is an error.
michael@0 258 void ClearFunctionBase();
michael@0 259
michael@0 260 // Return true if ENCODING is a valid pointer encoding.
michael@0 261 bool ValidEncoding(DwarfPointerEncoding encoding) const;
michael@0 262
michael@0 263 // Return true if we have all the information we need to read a
michael@0 264 // pointer that uses ENCODING. This checks that the appropriate
michael@0 265 // SetFooBase function for ENCODING has been called.
michael@0 266 bool UsableEncoding(DwarfPointerEncoding encoding) const;
michael@0 267
michael@0 268 // Read an encoded pointer from BUFFER using ENCODING; return the
michael@0 269 // absolute address it represents, and set *LEN to the pointer's
michael@0 270 // length in bytes, including any padding for aligned pointers.
michael@0 271 //
michael@0 272 // This function calls 'abort' if ENCODING is invalid or refers to a
michael@0 273 // base address this reader hasn't been given, so you should check
michael@0 274 // with ValidEncoding and UsableEncoding first if you would rather
michael@0 275 // die in a more helpful way.
michael@0 276 uint64 ReadEncodedPointer(const char *buffer, DwarfPointerEncoding encoding,
michael@0 277 size_t *len) const;
michael@0 278
michael@0 279 private:
michael@0 280
michael@0 281 // Function pointer type for our address and offset readers.
michael@0 282 typedef uint64 (ByteReader::*AddressReader)(const char*) const;
michael@0 283
michael@0 284 // Read an offset from BUFFER and return it as an unsigned 64 bit
michael@0 285 // integer. DWARF2/3 define offsets as either 4 or 8 bytes,
michael@0 286 // generally depending on the amount of DWARF2/3 info present.
michael@0 287 // This function pointer gets set by SetOffsetSize.
michael@0 288 AddressReader offset_reader_;
michael@0 289
michael@0 290 // Read an address from BUFFER and return it as an unsigned 64 bit
michael@0 291 // integer. DWARF2/3 allow addresses to be any size from 0-255
michael@0 292 // bytes currently. Internally we support 4 and 8 byte addresses,
michael@0 293 // and will CHECK on anything else.
michael@0 294 // This function pointer gets set by SetAddressSize.
michael@0 295 AddressReader address_reader_;
michael@0 296
michael@0 297 Endianness endian_;
michael@0 298 uint8 address_size_;
michael@0 299 uint8 offset_size_;
michael@0 300
michael@0 301 // Base addresses for Linux C++ exception handling data's encoded pointers.
michael@0 302 bool have_section_base_, have_text_base_, have_data_base_;
michael@0 303 bool have_function_base_;
michael@0 304 uint64 section_base_, text_base_, data_base_, function_base_;
michael@0 305 const char *buffer_base_;
michael@0 306 };
michael@0 307
michael@0 308 } // namespace dwarf2reader
michael@0 309
michael@0 310 #endif // COMMON_DWARF_BYTEREADER_H__

mercurial