toolkit/crashreporter/google-breakpad/src/common/test_assembler.h

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 // -*- mode: C++ -*-
michael@0 2
michael@0 3 // Copyright (c) 2010, Google Inc.
michael@0 4 // All rights reserved.
michael@0 5 //
michael@0 6 // Redistribution and use in source and binary forms, with or without
michael@0 7 // modification, are permitted provided that the following conditions are
michael@0 8 // met:
michael@0 9 //
michael@0 10 // * Redistributions of source code must retain the above copyright
michael@0 11 // notice, this list of conditions and the following disclaimer.
michael@0 12 // * Redistributions in binary form must reproduce the above
michael@0 13 // copyright notice, this list of conditions and the following disclaimer
michael@0 14 // in the documentation and/or other materials provided with the
michael@0 15 // distribution.
michael@0 16 // * Neither the name of Google Inc. nor the names of its
michael@0 17 // contributors may be used to endorse or promote products derived from
michael@0 18 // this software without specific prior written permission.
michael@0 19 //
michael@0 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
michael@0 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
michael@0 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
michael@0 23 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
michael@0 24 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
michael@0 25 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
michael@0 26 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
michael@0 27 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
michael@0 28 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
michael@0 29 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
michael@0 30 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
michael@0 31
michael@0 32 // Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
michael@0 33
michael@0 34 // test-assembler.h: interface to class for building complex binary streams.
michael@0 35
michael@0 36 // To test the Breakpad symbol dumper and processor thoroughly, for
michael@0 37 // all combinations of host system and minidump processor
michael@0 38 // architecture, we need to be able to easily generate complex test
michael@0 39 // data like debugging information and minidump files.
michael@0 40 //
michael@0 41 // For example, if we want our unit tests to provide full code
michael@0 42 // coverage for stack walking, it may be difficult to persuade the
michael@0 43 // compiler to generate every possible sort of stack walking
michael@0 44 // information that we want to support; there are probably DWARF CFI
michael@0 45 // opcodes that GCC never emits. Similarly, if we want to test our
michael@0 46 // error handling, we will need to generate damaged minidumps or
michael@0 47 // debugging information that (we hope) the client or compiler will
michael@0 48 // never produce on its own.
michael@0 49 //
michael@0 50 // google_breakpad::TestAssembler provides a predictable and
michael@0 51 // (relatively) simple way to generate complex formatted data streams
michael@0 52 // like minidumps and CFI. Furthermore, because TestAssembler is
michael@0 53 // portable, developers without access to (say) Visual Studio or a
michael@0 54 // SPARC assembler can still work on test data for those targets.
michael@0 55
michael@0 56 #ifndef PROCESSOR_TEST_ASSEMBLER_H_
michael@0 57 #define PROCESSOR_TEST_ASSEMBLER_H_
michael@0 58
michael@0 59 #include <list>
michael@0 60 #include <vector>
michael@0 61 #include <string>
michael@0 62
michael@0 63 #include "common/using_std_string.h"
michael@0 64 #include "google_breakpad/common/breakpad_types.h"
michael@0 65
michael@0 66 namespace google_breakpad {
michael@0 67
michael@0 68 using std::list;
michael@0 69 using std::vector;
michael@0 70
michael@0 71 namespace test_assembler {
michael@0 72
michael@0 73 // A Label represents a value not yet known that we need to store in a
michael@0 74 // section. As long as all the labels a section refers to are defined
michael@0 75 // by the time we retrieve its contents as bytes, we can use undefined
michael@0 76 // labels freely in that section's construction.
michael@0 77 //
michael@0 78 // A label can be in one of three states:
michael@0 79 // - undefined,
michael@0 80 // - defined as the sum of some other label and a constant, or
michael@0 81 // - a constant.
michael@0 82 //
michael@0 83 // A label's value never changes, but it can accumulate constraints.
michael@0 84 // Adding labels and integers is permitted, and yields a label.
michael@0 85 // Subtracting a constant from a label is permitted, and also yields a
michael@0 86 // label. Subtracting two labels that have some relationship to each
michael@0 87 // other is permitted, and yields a constant.
michael@0 88 //
michael@0 89 // For example:
michael@0 90 //
michael@0 91 // Label a; // a's value is undefined
michael@0 92 // Label b; // b's value is undefined
michael@0 93 // {
michael@0 94 // Label c = a + 4; // okay, even though a's value is unknown
michael@0 95 // b = c + 4; // also okay; b is now a+8
michael@0 96 // }
michael@0 97 // Label d = b - 2; // okay; d == a+6, even though c is gone
michael@0 98 // d.Value(); // error: d's value is not yet known
michael@0 99 // d - a; // is 6, even though their values are not known
michael@0 100 // a = 12; // now b == 20, and d == 18
michael@0 101 // d.Value(); // 18: no longer an error
michael@0 102 // b.Value(); // 20
michael@0 103 // d = 10; // error: d is already defined.
michael@0 104 //
michael@0 105 // Label objects' lifetimes are unconstrained: notice that, in the
michael@0 106 // above example, even though a and b are only related through c, and
michael@0 107 // c goes out of scope, the assignment to a sets b's value as well. In
michael@0 108 // particular, it's not necessary to ensure that a Label lives beyond
michael@0 109 // Sections that refer to it.
michael@0 110 class Label {
michael@0 111 public:
michael@0 112 Label(); // An undefined label.
michael@0 113 Label(uint64_t value); // A label with a fixed value
michael@0 114 Label(const Label &value); // A label equal to another.
michael@0 115 ~Label();
michael@0 116
michael@0 117 // Return this label's value; it must be known.
michael@0 118 //
michael@0 119 // Providing this as a cast operator is nifty, but the conversions
michael@0 120 // happen in unexpected places. In particular, ISO C++ says that
michael@0 121 // Label + size_t becomes ambigious, because it can't decide whether
michael@0 122 // to convert the Label to a uint64_t and then to a size_t, or use
michael@0 123 // the overloaded operator that returns a new label, even though the
michael@0 124 // former could fail if the label is not yet defined and the latter won't.
michael@0 125 uint64_t Value() const;
michael@0 126
michael@0 127 Label &operator=(uint64_t value);
michael@0 128 Label &operator=(const Label &value);
michael@0 129 Label operator+(uint64_t addend) const;
michael@0 130 Label operator-(uint64_t subtrahend) const;
michael@0 131 uint64_t operator-(const Label &subtrahend) const;
michael@0 132
michael@0 133 // We could also provide == and != that work on undefined, but
michael@0 134 // related, labels.
michael@0 135
michael@0 136 // Return true if this label's value is known. If VALUE_P is given,
michael@0 137 // set *VALUE_P to the known value if returning true.
michael@0 138 bool IsKnownConstant(uint64_t *value_p = NULL) const;
michael@0 139
michael@0 140 // Return true if the offset from LABEL to this label is known. If
michael@0 141 // OFFSET_P is given, set *OFFSET_P to the offset when returning true.
michael@0 142 //
michael@0 143 // You can think of l.KnownOffsetFrom(m, &d) as being like 'd = l-m',
michael@0 144 // except that it also returns a value indicating whether the
michael@0 145 // subtraction is possible given what we currently know of l and m.
michael@0 146 // It can be possible even if we don't know l and m's values. For
michael@0 147 // example:
michael@0 148 //
michael@0 149 // Label l, m;
michael@0 150 // m = l + 10;
michael@0 151 // l.IsKnownConstant(); // false
michael@0 152 // m.IsKnownConstant(); // false
michael@0 153 // uint64_t d;
michael@0 154 // l.IsKnownOffsetFrom(m, &d); // true, and sets d to -10.
michael@0 155 // l-m // -10
michael@0 156 // m-l // 10
michael@0 157 // m.Value() // error: m's value is not known
michael@0 158 bool IsKnownOffsetFrom(const Label &label, uint64_t *offset_p = NULL) const;
michael@0 159
michael@0 160 private:
michael@0 161 // A label's value, or if that is not yet known, how the value is
michael@0 162 // related to other labels' values. A binding may be:
michael@0 163 // - a known constant,
michael@0 164 // - constrained to be equal to some other binding plus a constant, or
michael@0 165 // - unconstrained, and free to take on any value.
michael@0 166 //
michael@0 167 // Many labels may point to a single binding, and each binding may
michael@0 168 // refer to another, so bindings and labels form trees whose leaves
michael@0 169 // are labels, whose interior nodes (and roots) are bindings, and
michael@0 170 // where links point from children to parents. Bindings are
michael@0 171 // reference counted, allowing labels to be lightweight, copyable,
michael@0 172 // assignable, placed in containers, and so on.
michael@0 173 class Binding {
michael@0 174 public:
michael@0 175 Binding();
michael@0 176 Binding(uint64_t addend);
michael@0 177 ~Binding();
michael@0 178
michael@0 179 // Increment our reference count.
michael@0 180 void Acquire() { reference_count_++; };
michael@0 181 // Decrement our reference count, and return true if it is zero.
michael@0 182 bool Release() { return --reference_count_ == 0; }
michael@0 183
michael@0 184 // Set this binding to be equal to BINDING + ADDEND. If BINDING is
michael@0 185 // NULL, then set this binding to the known constant ADDEND.
michael@0 186 // Update every binding on this binding's chain to point directly
michael@0 187 // to BINDING, or to be a constant, with addends adjusted
michael@0 188 // appropriately.
michael@0 189 void Set(Binding *binding, uint64_t value);
michael@0 190
michael@0 191 // Return what we know about the value of this binding.
michael@0 192 // - If this binding's value is a known constant, set BASE to
michael@0 193 // NULL, and set ADDEND to its value.
michael@0 194 // - If this binding is not a known constant but related to other
michael@0 195 // bindings, set BASE to the binding at the end of the relation
michael@0 196 // chain (which will always be unconstrained), and set ADDEND to the
michael@0 197 // value to add to that binding's value to get this binding's
michael@0 198 // value.
michael@0 199 // - If this binding is unconstrained, set BASE to this, and leave
michael@0 200 // ADDEND unchanged.
michael@0 201 void Get(Binding **base, uint64_t *addend);
michael@0 202
michael@0 203 private:
michael@0 204 // There are three cases:
michael@0 205 //
michael@0 206 // - A binding representing a known constant value has base_ NULL,
michael@0 207 // and addend_ equal to the value.
michael@0 208 //
michael@0 209 // - A binding representing a completely unconstrained value has
michael@0 210 // base_ pointing to this; addend_ is unused.
michael@0 211 //
michael@0 212 // - A binding whose value is related to some other binding's
michael@0 213 // value has base_ pointing to that other binding, and addend_
michael@0 214 // set to the amount to add to that binding's value to get this
michael@0 215 // binding's value. We only represent relationships of the form
michael@0 216 // x = y+c.
michael@0 217 //
michael@0 218 // Thus, the bind_ links form a chain terminating in either a
michael@0 219 // known constant value or a completely unconstrained value. Most
michael@0 220 // operations on bindings do path compression: they change every
michael@0 221 // binding on the chain to point directly to the final value,
michael@0 222 // adjusting addends as appropriate.
michael@0 223 Binding *base_;
michael@0 224 uint64_t addend_;
michael@0 225
michael@0 226 // The number of Labels and Bindings pointing to this binding.
michael@0 227 // (When a binding points to itself, indicating a completely
michael@0 228 // unconstrained binding, that doesn't count as a reference.)
michael@0 229 int reference_count_;
michael@0 230 };
michael@0 231
michael@0 232 // This label's value.
michael@0 233 Binding *value_;
michael@0 234 };
michael@0 235
michael@0 236 inline Label operator+(uint64_t a, const Label &l) { return l + a; }
michael@0 237 // Note that int-Label isn't defined, as negating a Label is not an
michael@0 238 // operation we support.
michael@0 239
michael@0 240 // Conventions for representing larger numbers as sequences of bytes.
michael@0 241 enum Endianness {
michael@0 242 kBigEndian, // Big-endian: the most significant byte comes first.
michael@0 243 kLittleEndian, // Little-endian: the least significant byte comes first.
michael@0 244 kUnsetEndian, // used internally
michael@0 245 };
michael@0 246
michael@0 247 // A section is a sequence of bytes, constructed by appending bytes
michael@0 248 // to the end. Sections have a convenient and flexible set of member
michael@0 249 // functions for appending data in various formats: big-endian and
michael@0 250 // little-endian signed and unsigned values of different sizes;
michael@0 251 // LEB128 and ULEB128 values (see below), and raw blocks of bytes.
michael@0 252 //
michael@0 253 // If you need to append a value to a section that is not convenient
michael@0 254 // to compute immediately, you can create a label, append the
michael@0 255 // label's value to the section, and then set the label's value
michael@0 256 // later, when it's convenient to do so. Once a label's value is
michael@0 257 // known, the section class takes care of updating all previously
michael@0 258 // appended references to it.
michael@0 259 //
michael@0 260 // Once all the labels to which a section refers have had their
michael@0 261 // values determined, you can get a copy of the section's contents
michael@0 262 // as a string.
michael@0 263 //
michael@0 264 // Note that there is no specified "start of section" label. This is
michael@0 265 // because there are typically several different meanings for "the
michael@0 266 // start of a section": the offset of the section within an object
michael@0 267 // file, the address in memory at which the section's content appear,
michael@0 268 // and so on. It's up to the code that uses the Section class to
michael@0 269 // keep track of these explicitly, as they depend on the application.
michael@0 270 class Section {
michael@0 271 public:
michael@0 272 Section(Endianness endianness = kUnsetEndian)
michael@0 273 : endianness_(endianness) { };
michael@0 274
michael@0 275 // A base class destructor should be either public and virtual,
michael@0 276 // or protected and nonvirtual.
michael@0 277 virtual ~Section() { };
michael@0 278
michael@0 279 // Set the default endianness of this section to ENDIANNESS. This
michael@0 280 // sets the behavior of the D<N> appending functions. If the
michael@0 281 // assembler's default endianness was set, this is the
michael@0 282 void set_endianness(Endianness endianness) {
michael@0 283 endianness_ = endianness;
michael@0 284 }
michael@0 285
michael@0 286 // Return the default endianness of this section.
michael@0 287 Endianness endianness() const { return endianness_; }
michael@0 288
michael@0 289 // Append the SIZE bytes at DATA or the contents of STRING to the
michael@0 290 // end of this section. Return a reference to this section.
michael@0 291 Section &Append(const uint8_t *data, size_t size) {
michael@0 292 contents_.append(reinterpret_cast<const char *>(data), size);
michael@0 293 return *this;
michael@0 294 };
michael@0 295 Section &Append(const string &data) {
michael@0 296 contents_.append(data);
michael@0 297 return *this;
michael@0 298 };
michael@0 299
michael@0 300 // Append SIZE copies of BYTE to the end of this section. Return a
michael@0 301 // reference to this section.
michael@0 302 Section &Append(size_t size, uint8_t byte) {
michael@0 303 contents_.append(size, (char) byte);
michael@0 304 return *this;
michael@0 305 }
michael@0 306
michael@0 307 // Append NUMBER to this section. ENDIANNESS is the endianness to
michael@0 308 // use to write the number. SIZE is the length of the number in
michael@0 309 // bytes. Return a reference to this section.
michael@0 310 Section &Append(Endianness endianness, size_t size, uint64_t number);
michael@0 311 Section &Append(Endianness endianness, size_t size, const Label &label);
michael@0 312
michael@0 313 // Append SECTION to the end of this section. The labels SECTION
michael@0 314 // refers to need not be defined yet.
michael@0 315 //
michael@0 316 // Note that this has no effect on any Labels' values, or on
michael@0 317 // SECTION. If placing SECTION within 'this' provides new
michael@0 318 // constraints on existing labels' values, then it's up to the
michael@0 319 // caller to fiddle with those labels as needed.
michael@0 320 Section &Append(const Section &section);
michael@0 321
michael@0 322 // Append the contents of DATA as a series of bytes terminated by
michael@0 323 // a NULL character.
michael@0 324 Section &AppendCString(const string &data) {
michael@0 325 Append(data);
michael@0 326 contents_ += '\0';
michael@0 327 return *this;
michael@0 328 }
michael@0 329
michael@0 330 // Append at most SIZE bytes from DATA; if DATA is less than SIZE bytes
michael@0 331 // long, pad with '\0' characters.
michael@0 332 Section &AppendCString(const string &data, size_t size) {
michael@0 333 contents_.append(data, 0, size);
michael@0 334 if (data.size() < size)
michael@0 335 Append(size - data.size(), 0);
michael@0 336 return *this;
michael@0 337 }
michael@0 338
michael@0 339 // Append VALUE or LABEL to this section, with the given bit width and
michael@0 340 // endianness. Return a reference to this section.
michael@0 341 //
michael@0 342 // The names of these functions have the form <ENDIANNESS><BITWIDTH>:
michael@0 343 // <ENDIANNESS> is either 'L' (little-endian, least significant byte first),
michael@0 344 // 'B' (big-endian, most significant byte first), or
michael@0 345 // 'D' (default, the section's default endianness)
michael@0 346 // <BITWIDTH> is 8, 16, 32, or 64.
michael@0 347 //
michael@0 348 // Since endianness doesn't matter for a single byte, all the
michael@0 349 // <BITWIDTH>=8 functions are equivalent.
michael@0 350 //
michael@0 351 // These can be used to write both signed and unsigned values, as
michael@0 352 // the compiler will properly sign-extend a signed value before
michael@0 353 // passing it to the function, at which point the function's
michael@0 354 // behavior is the same either way.
michael@0 355 Section &L8(uint8_t value) { contents_ += value; return *this; }
michael@0 356 Section &B8(uint8_t value) { contents_ += value; return *this; }
michael@0 357 Section &D8(uint8_t value) { contents_ += value; return *this; }
michael@0 358 Section &L16(uint16_t), &L32(uint32_t), &L64(uint64_t),
michael@0 359 &B16(uint16_t), &B32(uint32_t), &B64(uint64_t),
michael@0 360 &D16(uint16_t), &D32(uint32_t), &D64(uint64_t);
michael@0 361 Section &L8(const Label &label), &L16(const Label &label),
michael@0 362 &L32(const Label &label), &L64(const Label &label),
michael@0 363 &B8(const Label &label), &B16(const Label &label),
michael@0 364 &B32(const Label &label), &B64(const Label &label),
michael@0 365 &D8(const Label &label), &D16(const Label &label),
michael@0 366 &D32(const Label &label), &D64(const Label &label);
michael@0 367
michael@0 368 // Append VALUE in a signed LEB128 (Little-Endian Base 128) form.
michael@0 369 //
michael@0 370 // The signed LEB128 representation of an integer N is a variable
michael@0 371 // number of bytes:
michael@0 372 //
michael@0 373 // - If N is between -0x40 and 0x3f, then its signed LEB128
michael@0 374 // representation is a single byte whose value is N.
michael@0 375 //
michael@0 376 // - Otherwise, its signed LEB128 representation is (N & 0x7f) |
michael@0 377 // 0x80, followed by the signed LEB128 representation of N / 128,
michael@0 378 // rounded towards negative infinity.
michael@0 379 //
michael@0 380 // In other words, we break VALUE into groups of seven bits, put
michael@0 381 // them in little-endian order, and then write them as eight-bit
michael@0 382 // bytes with the high bit on all but the last.
michael@0 383 //
michael@0 384 // Note that VALUE cannot be a Label (we would have to implement
michael@0 385 // relaxation).
michael@0 386 Section &LEB128(long long value);
michael@0 387
michael@0 388 // Append VALUE in unsigned LEB128 (Little-Endian Base 128) form.
michael@0 389 //
michael@0 390 // The unsigned LEB128 representation of an integer N is a variable
michael@0 391 // number of bytes:
michael@0 392 //
michael@0 393 // - If N is between 0 and 0x7f, then its unsigned LEB128
michael@0 394 // representation is a single byte whose value is N.
michael@0 395 //
michael@0 396 // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
michael@0 397 // 0x80, followed by the unsigned LEB128 representation of N /
michael@0 398 // 128, rounded towards negative infinity.
michael@0 399 //
michael@0 400 // Note that VALUE cannot be a Label (we would have to implement
michael@0 401 // relaxation).
michael@0 402 Section &ULEB128(uint64_t value);
michael@0 403
michael@0 404 // Jump to the next location aligned on an ALIGNMENT-byte boundary,
michael@0 405 // relative to the start of the section. Fill the gap with PAD_BYTE.
michael@0 406 // ALIGNMENT must be a power of two. Return a reference to this
michael@0 407 // section.
michael@0 408 Section &Align(size_t alignment, uint8_t pad_byte = 0);
michael@0 409
michael@0 410 // Clear the contents of this section.
michael@0 411 void Clear();
michael@0 412
michael@0 413 // Return the current size of the section.
michael@0 414 size_t Size() const { return contents_.size(); }
michael@0 415
michael@0 416 // Return a label representing the start of the section.
michael@0 417 //
michael@0 418 // It is up to the user whether this label represents the section's
michael@0 419 // position in an object file, the section's address in memory, or
michael@0 420 // what have you; some applications may need both, in which case
michael@0 421 // this simple-minded interface won't be enough. This class only
michael@0 422 // provides a single start label, for use with the Here and Mark
michael@0 423 // member functions.
michael@0 424 //
michael@0 425 // Ideally, we'd provide this in a subclass that actually knows more
michael@0 426 // about the application at hand and can provide an appropriate
michael@0 427 // collection of start labels. But then the appending member
michael@0 428 // functions like Append and D32 would return a reference to the
michael@0 429 // base class, not the derived class, and the chaining won't work.
michael@0 430 // Since the only value here is in pretty notation, that's a fatal
michael@0 431 // flaw.
michael@0 432 Label start() const { return start_; }
michael@0 433
michael@0 434 // Return a label representing the point at which the next Appended
michael@0 435 // item will appear in the section, relative to start().
michael@0 436 Label Here() const { return start_ + Size(); }
michael@0 437
michael@0 438 // Set *LABEL to Here, and return a reference to this section.
michael@0 439 Section &Mark(Label *label) { *label = Here(); return *this; }
michael@0 440
michael@0 441 // If there are no undefined label references left in this
michael@0 442 // section, set CONTENTS to the contents of this section, as a
michael@0 443 // string, and clear this section. Return true on success, or false
michael@0 444 // if there were still undefined labels.
michael@0 445 bool GetContents(string *contents);
michael@0 446
michael@0 447 private:
michael@0 448 // Used internally. A reference to a label's value.
michael@0 449 struct Reference {
michael@0 450 Reference(size_t set_offset, Endianness set_endianness, size_t set_size,
michael@0 451 const Label &set_label)
michael@0 452 : offset(set_offset), endianness(set_endianness), size(set_size),
michael@0 453 label(set_label) { }
michael@0 454
michael@0 455 // The offset of the reference within the section.
michael@0 456 size_t offset;
michael@0 457
michael@0 458 // The endianness of the reference.
michael@0 459 Endianness endianness;
michael@0 460
michael@0 461 // The size of the reference.
michael@0 462 size_t size;
michael@0 463
michael@0 464 // The label to which this is a reference.
michael@0 465 Label label;
michael@0 466 };
michael@0 467
michael@0 468 // The default endianness of this section.
michael@0 469 Endianness endianness_;
michael@0 470
michael@0 471 // The contents of the section.
michael@0 472 string contents_;
michael@0 473
michael@0 474 // References to labels within those contents.
michael@0 475 vector<Reference> references_;
michael@0 476
michael@0 477 // A label referring to the beginning of the section.
michael@0 478 Label start_;
michael@0 479 };
michael@0 480
michael@0 481 } // namespace test_assembler
michael@0 482 } // namespace google_breakpad
michael@0 483
michael@0 484 #endif // PROCESSOR_TEST_ASSEMBLER_H_

mercurial