xpcom/base/nsIMemoryReporter.idl

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

michael@0 1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
michael@0 2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
michael@0 3 /* This Source Code Form is subject to the terms of the Mozilla Public
michael@0 4 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 6
michael@0 7 #include "nsISupports.idl"
michael@0 8
michael@0 9 interface nsIDOMWindow;
michael@0 10 interface nsIRunnable;
michael@0 11 interface nsISimpleEnumerator;
michael@0 12
michael@0 13 /*
michael@0 14 * Memory reporters measure Firefox's memory usage. They are primarily used to
michael@0 15 * generate the about:memory page. You should read
michael@0 16 * https://wiki.mozilla.org/Memory_Reporting before writing a memory
michael@0 17 * reporter.
michael@0 18 */
michael@0 19
michael@0 20 [scriptable, function, uuid(3a61be3b-b93b-461a-a4f8-388214f558b1)]
michael@0 21 interface nsIMemoryReporterCallback : nsISupports
michael@0 22 {
michael@0 23 /*
michael@0 24 * The arguments to the callback are as follows.
michael@0 25 *
michael@0 26 *
michael@0 27 * |process| The name of the process containing this reporter. Each
michael@0 28 * reporter initially has "" in this field, indicating that it applies to the
michael@0 29 * current process. (This is true even for reporters in a child process.)
michael@0 30 * When a reporter from a child process is copied into the main process, the
michael@0 31 * copy has its 'process' field set appropriately.
michael@0 32 *
michael@0 33 *
michael@0 34 * |path| The path that this memory usage should be reported under. Paths
michael@0 35 * are '/'-delimited, eg. "a/b/c".
michael@0 36 *
michael@0 37 * Each reporter can be viewed as representing a leaf node in a tree.
michael@0 38 * Internal nodes of the tree don't have reporters. So, for example, the
michael@0 39 * reporters "explicit/a/b", "explicit/a/c", "explicit/d/e", and
michael@0 40 * "explicit/d/f" define this tree:
michael@0 41 *
michael@0 42 * explicit
michael@0 43 * |--a
michael@0 44 * | |--b [*]
michael@0 45 * | \--c [*]
michael@0 46 * \--d
michael@0 47 * |--e [*]
michael@0 48 * \--f [*]
michael@0 49 *
michael@0 50 * Nodes marked with a [*] have a reporter. Notice that the internal
michael@0 51 * nodes are implicitly defined by the paths.
michael@0 52 *
michael@0 53 * Nodes within a tree should not overlap measurements, otherwise the
michael@0 54 * parent node measurements will be double-counted. So in the example
michael@0 55 * above, |b| should not count any allocations counted by |c|, and vice
michael@0 56 * versa.
michael@0 57 *
michael@0 58 * All nodes within each tree must have the same units.
michael@0 59 *
michael@0 60 * If you want to include a '/' not as a path separator, e.g. because the
michael@0 61 * path contains a URL, you need to convert each '/' in the URL to a '\'.
michael@0 62 * Consumers of the path will undo this change. Any other '\' character
michael@0 63 * in a path will also be changed. This is clumsy but hasn't caused any
michael@0 64 * problems so far.
michael@0 65 *
michael@0 66 * The paths of all reporters form a set of trees. Trees can be
michael@0 67 * "degenerate", i.e. contain a single entry with no '/'.
michael@0 68 *
michael@0 69 *
michael@0 70 * |kind| There are three kinds of memory reporters.
michael@0 71 *
michael@0 72 * - HEAP: reporters measuring memory allocated by the heap allocator,
michael@0 73 * e.g. by calling malloc, calloc, realloc, memalign, operator new, or
michael@0 74 * operator new[]. Reporters in this category must have units
michael@0 75 * UNITS_BYTES.
michael@0 76 *
michael@0 77 * - NONHEAP: reporters measuring memory which the program explicitly
michael@0 78 * allocated, but does not live on the heap. Such memory is commonly
michael@0 79 * allocated by calling one of the OS's memory-mapping functions (e.g.
michael@0 80 * mmap, VirtualAlloc, or vm_allocate). Reporters in this category
michael@0 81 * must have units UNITS_BYTES.
michael@0 82 *
michael@0 83 * - OTHER: reporters which don't fit into either of these categories.
michael@0 84 * They can have any units.
michael@0 85 *
michael@0 86 * The kind only matters for reporters in the "explicit" tree;
michael@0 87 * aboutMemory.js uses it to calculate "heap-unclassified".
michael@0 88 *
michael@0 89 *
michael@0 90 * |units| The units on the reporter's amount. One of the following.
michael@0 91 *
michael@0 92 * - BYTES: The amount contains a number of bytes.
michael@0 93 *
michael@0 94 * - COUNT: The amount is an instantaneous count of things currently in
michael@0 95 * existence. For instance, the number of tabs currently open would have
michael@0 96 * units COUNT.
michael@0 97 *
michael@0 98 * - COUNT_CUMULATIVE: The amount contains the number of times some event
michael@0 99 * has occurred since the application started up. For instance, the
michael@0 100 * number of times the user has opened a new tab would have units
michael@0 101 * COUNT_CUMULATIVE.
michael@0 102 *
michael@0 103 * The amount returned by a reporter with units COUNT_CUMULATIVE must
michael@0 104 * never decrease over the lifetime of the application.
michael@0 105 *
michael@0 106 * - PERCENTAGE: The amount contains a fraction that should be expressed as
michael@0 107 * a percentage. NOTE! The |amount| field should be given a value 100x
michael@0 108 * the actual percentage; this number will be divided by 100 when shown.
michael@0 109 * This allows a fractional percentage to be shown even though |amount| is
michael@0 110 * an integer. E.g. if the actual percentage is 12.34%, |amount| should
michael@0 111 * be 1234.
michael@0 112 *
michael@0 113 * Values greater than 100% are allowed.
michael@0 114 *
michael@0 115 *
michael@0 116 * |amount| The numeric value reported by this memory reporter. Accesses
michael@0 117 * can fail if something goes wrong when getting the amount.
michael@0 118 *
michael@0 119 *
michael@0 120 * |description| A human-readable description of this memory usage report.
michael@0 121 */
michael@0 122 void callback(in ACString process, in AUTF8String path, in int32_t kind,
michael@0 123 in int32_t units, in int64_t amount,
michael@0 124 in AUTF8String description, in nsISupports data);
michael@0 125 };
michael@0 126
michael@0 127 /*
michael@0 128 * An nsIMemoryReporter reports one or more memory measurements via a
michael@0 129 * callback function which is called once for each measurement.
michael@0 130 *
michael@0 131 * An nsIMemoryReporter that reports a single measurement is sometimes called a
michael@0 132 * "uni-reporter". One that reports multiple measurements is sometimes called
michael@0 133 * a "multi-reporter".
michael@0 134 *
michael@0 135 * aboutMemory.js is the most important consumer of memory reports. It
michael@0 136 * places the following constraints on reports.
michael@0 137 *
michael@0 138 * - All reports within a single sub-tree must have the same units.
michael@0 139 *
michael@0 140 * - There may be an "explicit" tree. If present, it represents
michael@0 141 * non-overlapping regions of memory that have been explicitly allocated with
michael@0 142 * an OS-level allocation (e.g. mmap/VirtualAlloc/vm_allocate) or a
michael@0 143 * heap-level allocation (e.g. malloc/calloc/operator new). Reporters in
michael@0 144 * this tree must have kind HEAP or NONHEAP, units BYTES.
michael@0 145 *
michael@0 146 * It is preferred, but not required, that report descriptions use complete
michael@0 147 * sentences (i.e. start with a capital letter and end with a period, or
michael@0 148 * similar).
michael@0 149 */
michael@0 150 [scriptable, uuid(0884cd0f-5829-4381-979b-0f53904030ed)]
michael@0 151 interface nsIMemoryReporter : nsISupports
michael@0 152 {
michael@0 153 /*
michael@0 154 * Run the reporter.
michael@0 155 */
michael@0 156 void collectReports(in nsIMemoryReporterCallback callback,
michael@0 157 in nsISupports data);
michael@0 158
michael@0 159 /*
michael@0 160 * Kinds. See the |kind| comment in nsIMemoryReporterCallback.
michael@0 161 */
michael@0 162 const int32_t KIND_NONHEAP = 0;
michael@0 163 const int32_t KIND_HEAP = 1;
michael@0 164 const int32_t KIND_OTHER = 2;
michael@0 165
michael@0 166 /*
michael@0 167 * Units. See the |units| comment in nsIMemoryReporterCallback.
michael@0 168 */
michael@0 169 const int32_t UNITS_BYTES = 0;
michael@0 170 const int32_t UNITS_COUNT = 1;
michael@0 171 const int32_t UNITS_COUNT_CUMULATIVE = 2;
michael@0 172 const int32_t UNITS_PERCENTAGE = 3;
michael@0 173 };
michael@0 174
michael@0 175 [scriptable, function, uuid(548b3909-c04d-4ca6-8466-b8bee3837457)]
michael@0 176 interface nsIFinishReportingCallback : nsISupports
michael@0 177 {
michael@0 178 void callback(in nsISupports data);
michael@0 179 };
michael@0 180
michael@0 181 [scriptable, builtinclass, uuid(b6e5ec8a-71d9-48db-8ae9-68b4c5bbf2c3)]
michael@0 182 interface nsIMemoryReporterManager : nsISupports
michael@0 183 {
michael@0 184 /*
michael@0 185 * Initialize.
michael@0 186 */
michael@0 187 void init();
michael@0 188
michael@0 189 /*
michael@0 190 * Register the given nsIMemoryReporter. The Manager service will hold a
michael@0 191 * strong reference to the given reporter, and will be responsible for freeing
michael@0 192 * the reporter at shutdown. You may manually unregister the reporter with
michael@0 193 * unregisterStrongReporter() at any point.
michael@0 194 */
michael@0 195 void registerStrongReporter(in nsIMemoryReporter reporter);
michael@0 196
michael@0 197 /*
michael@0 198 * Like registerReporter, but the Manager service will hold a weak reference
michael@0 199 * via a raw pointer to the given reporter. The reporter should be
michael@0 200 * unregistered before shutdown.
michael@0 201 * You cannot register JavaScript components with this function! Always
michael@0 202 * register your JavaScript components with registerStrongReporter().
michael@0 203 */
michael@0 204 void registerWeakReporter(in nsIMemoryReporter reporter);
michael@0 205
michael@0 206 /*
michael@0 207 * Unregister the given memory reporter, which must have been registered with
michael@0 208 * registerStrongReporter(). You normally don't need to unregister your
michael@0 209 * strong reporters, as nsIMemoryReporterManager will take care of that at
michael@0 210 * shutdown.
michael@0 211 */
michael@0 212 void unregisterStrongReporter(in nsIMemoryReporter reporter);
michael@0 213
michael@0 214 /*
michael@0 215 * Unregister the given memory reporter, which must have been registered with
michael@0 216 * registerWeakReporter().
michael@0 217 */
michael@0 218 void unregisterWeakReporter(in nsIMemoryReporter reporter);
michael@0 219
michael@0 220 /*
michael@0 221 * These functions should only be used for testing purposes.
michael@0 222 */
michael@0 223 void blockRegistrationAndHideExistingReporters();
michael@0 224 void unblockRegistrationAndRestoreOriginalReporters();
michael@0 225 void registerStrongReporterEvenIfBlocked(in nsIMemoryReporter aReporter);
michael@0 226
michael@0 227 /*
michael@0 228 * Get memory reports for the current process and all child processes.
michael@0 229 * |handleReport| is called for each report, and |finishReporting| is called
michael@0 230 * once all reports have been handled.
michael@0 231 *
michael@0 232 * |finishReporting| is called even if, for example, some child processes
michael@0 233 * fail to report back. However, calls to this method will silently and
michael@0 234 * immediately abort -- and |finishReporting| will not be called -- if a
michael@0 235 * previous getReports() call is still in flight, i.e. if it has not yet
michael@0 236 * finished invoking |finishReporting|. The silent abort is because the
michael@0 237 * in-flight request will finish soon, and the caller would very likely just
michael@0 238 * catch and ignore any error anyway.
michael@0 239 */
michael@0 240 void getReports(in nsIMemoryReporterCallback handleReport,
michael@0 241 in nsISupports handleReportData,
michael@0 242 in nsIFinishReportingCallback finishReporting,
michael@0 243 in nsISupports finishReportingData);
michael@0 244
michael@0 245 /*
michael@0 246 * As above, but: If |minimizeMemoryUsage| is true, then each process will
michael@0 247 * minimize its memory usage (see the |minimizeMemoryUsage| method) before
michael@0 248 * gathering its report. If DMD is enabled and |DMDDumpIdent| is non-empty
michael@0 249 * then write a DMD report to a file in the usual temporary directory (see
michael@0 250 * |dumpMemoryInfoToTempDir| in |nsIMemoryInfoDumper|.)
michael@0 251 */
michael@0 252 [noscript] void
michael@0 253 getReportsExtended(in nsIMemoryReporterCallback handleReport,
michael@0 254 in nsISupports handleReportData,
michael@0 255 in nsIFinishReportingCallback finishReporting,
michael@0 256 in nsISupports finishReportingData,
michael@0 257 in boolean minimizeMemoryUsage,
michael@0 258 in AString DMDDumpIdent);
michael@0 259
michael@0 260 /*
michael@0 261 * Get memory reports in the current process only. |handleReport| is called
michael@0 262 * for each report.
michael@0 263 */
michael@0 264 void getReportsForThisProcess(in nsIMemoryReporterCallback handleReport,
michael@0 265 in nsISupports handleReportData);
michael@0 266
michael@0 267 /*
michael@0 268 * As above, but if DMD is enabled and |DMDDumpIdent| is non-empty
michael@0 269 * then write a DMD report to a file in the usual temporary directory (see
michael@0 270 * |dumpMemoryInfoToTempDir| in |nsIMemoryInfoDumper|.)
michael@0 271 */
michael@0 272 [noscript] void
michael@0 273 getReportsForThisProcessExtended(in nsIMemoryReporterCallback handleReport,
michael@0 274 in nsISupports handleReportData,
michael@0 275 in AString DMDDumpIdent);
michael@0 276
michael@0 277 /*
michael@0 278 * The memory reporter manager, for the most part, treats reporters
michael@0 279 * registered with it as a black box. However, there are some
michael@0 280 * "distinguished" amounts (as could be reported by a memory reporter) that
michael@0 281 * the manager provides as attributes, because they are sufficiently
michael@0 282 * interesting that we want external code (e.g. telemetry) to be able to rely
michael@0 283 * on them.
michael@0 284 *
michael@0 285 * Note that these are not reporters and so getReports() and
michael@0 286 * getReportsForThisProcess() do not look at them. However, distinguished
michael@0 287 * amounts can be embedded in a reporter.
michael@0 288 *
michael@0 289 * Access to these attributes can fail. In particular, some of them are not
michael@0 290 * available on all platforms.
michael@0 291 *
michael@0 292 * If you add a new distinguished amount, please update
michael@0 293 * toolkit/components/aboutmemory/tests/test_memoryReporters.xul.
michael@0 294 *
michael@0 295 * |explicit| (UNITS_BYTES) The total size of explicit memory allocations,
michael@0 296 * both at the OS-level (eg. via mmap, VirtualAlloc) and at the heap level
michael@0 297 * (eg. via malloc, calloc, operator new). It covers all heap allocations,
michael@0 298 * but will miss any OS-level ones not covered by memory reporters.
michael@0 299 *
michael@0 300 * |vsize| (UNITS_BYTES) The virtual size, i.e. the amount of address space
michael@0 301 * taken up.
michael@0 302 *
michael@0 303 * |vsizeMaxContiguous| (UNITS_BYTES) The size of the largest contiguous
michael@0 304 * block of virtual memory.
michael@0 305 *
michael@0 306 * |resident| (UNITS_BYTES) The resident size (a.k.a. RSS or physical memory
michael@0 307 * used).
michael@0 308 *
michael@0 309 * |residentFast| (UNITS_BYTES) This is like |resident|, but on Mac OS
michael@0 310 * |resident| can purge pages, which is slow. It also affects the result of
michael@0 311 * |residentFast|, and so |resident| and |residentFast| should not be used
michael@0 312 * together.
michael@0 313 *
michael@0 314 * |heapAllocated| (UNITS_BYTES) Memory mapped by the heap allocator.
michael@0 315 *
michael@0 316 * |heapOverheadRatio| (UNITS_PERCENTAGE) In the heap allocator, this is the
michael@0 317 * ratio of committed, unused bytes to allocated bytes. Like all
michael@0 318 * UNITS_PERCENTAGE measurements, its amount is multiplied by 100x so it can
michael@0 319 * be represented by an int64_t.
michael@0 320 *
michael@0 321 * |JSMainRuntimeGCHeap| (UNITS_BYTES) Size of the main JS runtime's GC
michael@0 322 * heap.
michael@0 323 *
michael@0 324 * |JSMainRuntimeTemporaryPeak| (UNITS_BYTES) Peak size of the transient
michael@0 325 * storage in the main JSRuntime.
michael@0 326 *
michael@0 327 * |JSMainRuntimeCompartments{System,User}| (UNITS_COUNT) The number of
michael@0 328 * {system,user} compartments in the main JS runtime.
michael@0 329 *
michael@0 330 * |imagesContentUsedUncompressed| (UNITS_BYTES) Memory used for decoded
michael@0 331 * images in content.
michael@0 332 *
michael@0 333 * |storageSQLite| (UNITS_BYTES) Memory used by SQLite.
michael@0 334 *
michael@0 335 * |lowMemoryEvents{Virtual,Physical}| (UNITS_COUNT_CUMULATIVE) The number
michael@0 336 * of low-{virtual,physical}-memory events that have occurred since the
michael@0 337 * process started.
michael@0 338 *
michael@0 339 * |ghostWindows| (UNITS_COUNT) The number of ghost windows.
michael@0 340 *
michael@0 341 * |pageFaultsHard| (UNITS_COUNT_CUMULATIVE) The number of hard (a.k.a.
michael@0 342 * major) page faults that have occurred since the process started.
michael@0 343 */
michael@0 344 readonly attribute int64_t explicit;
michael@0 345 readonly attribute int64_t vsize;
michael@0 346 readonly attribute int64_t vsizeMaxContiguous;
michael@0 347 readonly attribute int64_t resident;
michael@0 348 readonly attribute int64_t residentFast;
michael@0 349
michael@0 350 readonly attribute int64_t heapAllocated;
michael@0 351 readonly attribute int64_t heapOverheadRatio;
michael@0 352
michael@0 353 readonly attribute int64_t JSMainRuntimeGCHeap;
michael@0 354 readonly attribute int64_t JSMainRuntimeTemporaryPeak;
michael@0 355 readonly attribute int64_t JSMainRuntimeCompartmentsSystem;
michael@0 356 readonly attribute int64_t JSMainRuntimeCompartmentsUser;
michael@0 357
michael@0 358 readonly attribute int64_t imagesContentUsedUncompressed;
michael@0 359
michael@0 360 readonly attribute int64_t storageSQLite;
michael@0 361
michael@0 362 readonly attribute int64_t lowMemoryEventsVirtual;
michael@0 363 readonly attribute int64_t lowMemoryEventsPhysical;
michael@0 364
michael@0 365 readonly attribute int64_t ghostWindows;
michael@0 366
michael@0 367 readonly attribute int64_t pageFaultsHard;
michael@0 368
michael@0 369 /*
michael@0 370 * This attribute indicates if moz_malloc_usable_size() works.
michael@0 371 */
michael@0 372 [infallible] readonly attribute boolean hasMozMallocUsableSize;
michael@0 373
michael@0 374 /*
michael@0 375 * Run a series of GC/CC's in an attempt to minimize the application's memory
michael@0 376 * usage. When we're finished, we invoke the given runnable if it's not
michael@0 377 * null.
michael@0 378 */
michael@0 379 void minimizeMemoryUsage(in nsIRunnable callback);
michael@0 380
michael@0 381 /*
michael@0 382 * Measure the memory that is known to be owned by this tab, split up into
michael@0 383 * several broad categories. Note that this will be an underestimate of the
michael@0 384 * true number, due to imperfect memory reporter coverage (corresponding to
michael@0 385 * about:memory's "heap-unclassified"), and due to some memory shared between
michael@0 386 * tabs not being counted.
michael@0 387 *
michael@0 388 * The time taken for the measurement (split into JS and non-JS parts) is
michael@0 389 * also returned.
michael@0 390 */
michael@0 391 void sizeOfTab(in nsIDOMWindow window,
michael@0 392 out int64_t jsObjectsSize, out int64_t jsStringsSize,
michael@0 393 out int64_t jsOtherSize, out int64_t domSize,
michael@0 394 out int64_t styleSize, out int64_t otherSize,
michael@0 395 out int64_t totalSize,
michael@0 396 out double jsMilliseconds, out double nonJSMilliseconds);
michael@0 397 };
michael@0 398
michael@0 399 %{C++
michael@0 400
michael@0 401 #include "js/TypeDecls.h"
michael@0 402 #include "nsStringGlue.h"
michael@0 403 #include "nsTArray.h"
michael@0 404 #include "mozilla/Atomics.h"
michael@0 405
michael@0 406 class nsPIDOMWindow;
michael@0 407
michael@0 408 // nsIHandleReportCallback is a better name, but keep nsIMemoryReporterCallback
michael@0 409 // around for backwards compatibility.
michael@0 410 typedef nsIMemoryReporterCallback nsIHandleReportCallback;
michael@0 411
michael@0 412 namespace mozilla {
michael@0 413
michael@0 414 // Register a memory reporter. The manager service will hold a strong
michael@0 415 // reference to this reporter.
michael@0 416 XPCOM_API(nsresult) RegisterStrongMemoryReporter(nsIMemoryReporter* aReporter);
michael@0 417
michael@0 418 // Register a memory reporter. The manager service will hold a weak reference
michael@0 419 // to this reporter.
michael@0 420 XPCOM_API(nsresult) RegisterWeakMemoryReporter(nsIMemoryReporter* aReporter);
michael@0 421
michael@0 422 // Unregister a weak memory reporter.
michael@0 423 XPCOM_API(nsresult) UnregisterWeakMemoryReporter(nsIMemoryReporter* aReporter);
michael@0 424
michael@0 425 // The memory reporter manager provides access to several distinguished
michael@0 426 // amounts via attributes. Some of these amounts are provided by Gecko
michael@0 427 // components that cannot be accessed directly from XPCOM code. So we provide
michael@0 428 // the following functions for those components to be registered with the
michael@0 429 // manager.
michael@0 430
michael@0 431 typedef int64_t (*InfallibleAmountFn)();
michael@0 432 typedef nsresult (*FallibleAmountFn)(int64_t* aAmount);
michael@0 433
michael@0 434 #define DECL_REGISTER_DISTINGUISHED_AMOUNT(kind, name) \
michael@0 435 nsresult Register##name##DistinguishedAmount(kind##AmountFn aAmountFn);
michael@0 436 #define DECL_UNREGISTER_DISTINGUISHED_AMOUNT(name) \
michael@0 437 nsresult Unregister##name##DistinguishedAmount();
michael@0 438
michael@0 439 DECL_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeGCHeap)
michael@0 440 DECL_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeTemporaryPeak)
michael@0 441 DECL_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeCompartmentsSystem)
michael@0 442 DECL_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeCompartmentsUser)
michael@0 443
michael@0 444 DECL_REGISTER_DISTINGUISHED_AMOUNT(Infallible, ImagesContentUsedUncompressed)
michael@0 445
michael@0 446 DECL_REGISTER_DISTINGUISHED_AMOUNT(Infallible, StorageSQLite)
michael@0 447 DECL_UNREGISTER_DISTINGUISHED_AMOUNT(StorageSQLite)
michael@0 448
michael@0 449 DECL_REGISTER_DISTINGUISHED_AMOUNT(Infallible, LowMemoryEventsVirtual)
michael@0 450 DECL_REGISTER_DISTINGUISHED_AMOUNT(Infallible, LowMemoryEventsPhysical)
michael@0 451
michael@0 452 DECL_REGISTER_DISTINGUISHED_AMOUNT(Infallible, GhostWindows)
michael@0 453
michael@0 454 #undef DECL_REGISTER_DISTINGUISHED_AMOUNT
michael@0 455 #undef DECL_UNREGISTER_DISTINGUISHED_AMOUNT
michael@0 456
michael@0 457 // Likewise for per-tab measurement.
michael@0 458
michael@0 459 typedef nsresult (*JSSizeOfTabFn)(JSObject* aObj,
michael@0 460 size_t* aJsObjectsSize,
michael@0 461 size_t* aJsStringSize,
michael@0 462 size_t* aJsPrivateSize,
michael@0 463 size_t* aJsOtherSize);
michael@0 464 typedef nsresult (*NonJSSizeOfTabFn)(nsPIDOMWindow* aWindow,
michael@0 465 size_t* aDomSize,
michael@0 466 size_t* aStyleSize,
michael@0 467 size_t* aOtherSize);
michael@0 468
michael@0 469 nsresult RegisterJSSizeOfTab(JSSizeOfTabFn aSizeOfTabFn);
michael@0 470 nsresult RegisterNonJSSizeOfTab(NonJSSizeOfTabFn aSizeOfTabFn);
michael@0 471
michael@0 472 }
michael@0 473
michael@0 474 #if defined(MOZ_DMD)
michael@0 475 namespace mozilla {
michael@0 476 namespace dmd {
michael@0 477 // This runs all the memory reporters in the current process but does nothing
michael@0 478 // with the results; i.e. it does the minimal amount of work possible for DMD
michael@0 479 // to do its thing. It does nothing with child processes.
michael@0 480 void RunReportersForThisProcess();
michael@0 481 }
michael@0 482 }
michael@0 483
michael@0 484 #if !defined(MOZ_MEMORY)
michael@0 485 #error "MOZ_DMD requires MOZ_MEMORY"
michael@0 486 #endif
michael@0 487
michael@0 488 #include "DMD.h"
michael@0 489
michael@0 490 #define MOZ_REPORT(ptr) mozilla::dmd::Report(ptr)
michael@0 491 #define MOZ_REPORT_ON_ALLOC(ptr) mozilla::dmd::ReportOnAlloc(ptr)
michael@0 492
michael@0 493 #else
michael@0 494
michael@0 495 #define MOZ_REPORT(ptr)
michael@0 496 #define MOZ_REPORT_ON_ALLOC(ptr)
michael@0 497
michael@0 498 #endif // defined(MOZ_DMD)
michael@0 499
michael@0 500 // Functions generated via this macro should be used by all traversal-based
michael@0 501 // memory reporters. Such functions return |moz_malloc_size_of(ptr)|; this
michael@0 502 // will always be zero on some obscure platforms.
michael@0 503 //
michael@0 504 // You might be wondering why we have a macro that creates multiple functions
michael@0 505 // that differ only in their name, instead of a single MallocSizeOf function.
michael@0 506 // It's mostly to help with DMD integration, though it sometimes also helps
michael@0 507 // with debugging and temporary ad hoc profiling. The function name chosen
michael@0 508 // doesn't matter greatly, but it's best to make it similar to the path used by
michael@0 509 // the relevant memory reporter(s).
michael@0 510 #define MOZ_DEFINE_MALLOC_SIZE_OF(fn) \
michael@0 511 static size_t fn(const void* aPtr) \
michael@0 512 { \
michael@0 513 MOZ_REPORT(aPtr); \
michael@0 514 return moz_malloc_size_of(aPtr); \
michael@0 515 }
michael@0 516
michael@0 517 // Functions generated by the next two macros should be used by wrapping
michael@0 518 // allocators that report heap blocks as soon as they are allocated and
michael@0 519 // unreport them as soon as they are freed. Such allocators are used in cases
michael@0 520 // where we have third-party code that we cannot modify. The two functions
michael@0 521 // must always be used in tandem.
michael@0 522 #define MOZ_DEFINE_MALLOC_SIZE_OF_ON_ALLOC(fn) \
michael@0 523 static size_t fn(const void* aPtr) \
michael@0 524 { \
michael@0 525 MOZ_REPORT_ON_ALLOC(aPtr); \
michael@0 526 return moz_malloc_size_of(aPtr); \
michael@0 527 }
michael@0 528 #define MOZ_DEFINE_MALLOC_SIZE_OF_ON_FREE(fn) \
michael@0 529 static size_t fn(const void* aPtr) \
michael@0 530 { \
michael@0 531 return moz_malloc_size_of(aPtr); \
michael@0 532 }
michael@0 533
michael@0 534 namespace mozilla {
michael@0 535
michael@0 536 // This CRTP class handles several details of wrapping allocators and should
michael@0 537 // be preferred to manually counting with MOZ_DEFINE_MALLOC_SIZE_OF_ON_ALLOC
michael@0 538 // and MOZ_DEFINE_MALLOC_SIZE_OF_ON_FREE. The typical use is in a memory
michael@0 539 // reporter for a particular third party library:
michael@0 540 //
michael@0 541 // class MyMemoryReporter : public CountingAllocatorBase<MyMemoryReporter>
michael@0 542 // {
michael@0 543 // ...
michael@0 544 // NS_IMETHODIMP
michael@0 545 // CollectReports(nsIHandleReportCallback* aHandleReport, nsISupports* aData)
michael@0 546 // {
michael@0 547 // return MOZ_COLLECT_REPORTER(
michael@0 548 // "explicit/path/to/somewhere", KIND_HEAP, UNITS_BYTES,
michael@0 549 // MemoryAllocated(),
michael@0 550 // "A description of what we are reporting."
michael@0 551 // }
michael@0 552 // };
michael@0 553 //
michael@0 554 // ...somewhere later in the code...
michael@0 555 // SetThirdPartyMemoryFunctions(MyMemoryReporter::CountingAlloc,
michael@0 556 // MyMemoryReporter::CountingFree);
michael@0 557 template<typename T>
michael@0 558 class CountingAllocatorBase
michael@0 559 {
michael@0 560 public:
michael@0 561 CountingAllocatorBase()
michael@0 562 {
michael@0 563 #ifdef DEBUG
michael@0 564 // There must be only one instance of this class, due to |sAmount| being
michael@0 565 // static.
michael@0 566 static bool hasRun = false;
michael@0 567 MOZ_ASSERT(!hasRun);
michael@0 568 hasRun = true;
michael@0 569 #endif
michael@0 570 }
michael@0 571
michael@0 572 static size_t
michael@0 573 MemoryAllocated()
michael@0 574 {
michael@0 575 return sAmount;
michael@0 576 }
michael@0 577
michael@0 578 static void*
michael@0 579 CountingMalloc(size_t size)
michael@0 580 {
michael@0 581 void* p = malloc(size);
michael@0 582 sAmount += MallocSizeOfOnAlloc(p);
michael@0 583 return p;
michael@0 584 }
michael@0 585
michael@0 586 static void*
michael@0 587 CountingCalloc(size_t nmemb, size_t size)
michael@0 588 {
michael@0 589 void* p = calloc(nmemb, size);
michael@0 590 sAmount += MallocSizeOfOnAlloc(p);
michael@0 591 return p;
michael@0 592 }
michael@0 593
michael@0 594 static void*
michael@0 595 CountingRealloc(void* p, size_t size)
michael@0 596 {
michael@0 597 size_t oldsize = MallocSizeOfOnFree(p);
michael@0 598 void *pnew = realloc(p, size);
michael@0 599 if (pnew) {
michael@0 600 size_t newsize = MallocSizeOfOnAlloc(pnew);
michael@0 601 sAmount += newsize - oldsize;
michael@0 602 } else if (size == 0) {
michael@0 603 // We asked for a 0-sized (re)allocation of some existing pointer
michael@0 604 // and received NULL in return. 0-sized allocations are permitted
michael@0 605 // to either return NULL or to allocate a unique object per call (!).
michael@0 606 // For a malloc implementation that chooses the second strategy,
michael@0 607 // that allocation may fail (unlikely, but possible).
michael@0 608 //
michael@0 609 // Given a NULL return value and an allocation size of 0, then, we
michael@0 610 // don't know if that means the original pointer was freed or if
michael@0 611 // the allocation of the unique object failed. If the original
michael@0 612 // pointer was freed, then we have nothing to do here. If the
michael@0 613 // allocation of the unique object failed, the original pointer is
michael@0 614 // still valid and we ought to undo the decrement from above.
michael@0 615 // However, we have no way of knowing how the underlying realloc
michael@0 616 // implementation is behaving. Assuming that the original pointer
michael@0 617 // was freed is the safest course of action. We do, however, need
michael@0 618 // to note that we freed memory.
michael@0 619 sAmount -= oldsize;
michael@0 620 } else {
michael@0 621 // realloc failed. The amount allocated hasn't changed.
michael@0 622 }
michael@0 623 return pnew;
michael@0 624 }
michael@0 625
michael@0 626 static void
michael@0 627 CountingFree(void* p)
michael@0 628 {
michael@0 629 sAmount -= MallocSizeOfOnFree(p);
michael@0 630 free(p);
michael@0 631 }
michael@0 632
michael@0 633 private:
michael@0 634 // |sAmount| can be (implicitly) accessed by multiple threads, so it
michael@0 635 // must be thread-safe.
michael@0 636 static Atomic<size_t> sAmount;
michael@0 637
michael@0 638 MOZ_DEFINE_MALLOC_SIZE_OF_ON_ALLOC(MallocSizeOfOnAlloc)
michael@0 639 MOZ_DEFINE_MALLOC_SIZE_OF_ON_FREE(MallocSizeOfOnFree)
michael@0 640 };
michael@0 641
michael@0 642 }
michael@0 643
michael@0 644 // This macro assumes the presence of appropriate |aHandleReport| and |aData|
michael@0 645 // variables.
michael@0 646 #define MOZ_COLLECT_REPORT(path, kind, units, amount, description) \
michael@0 647 aHandleReport->Callback(EmptyCString(), NS_LITERAL_CSTRING(path), \
michael@0 648 kind, units, amount, \
michael@0 649 NS_LITERAL_CSTRING(description), aData)
michael@0 650
michael@0 651 %}

mercurial