gfx/angle/src/compiler/Intermediate.cpp

Wed, 31 Dec 2014 07:16:47 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 07:16:47 +0100
branch
TOR_BUG_9701
changeset 3
141e0f1194b1
permissions
-rw-r--r--

Revert simplistic fix pending revisit of Mozilla integration attempt.

michael@0 1 //
michael@0 2 // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
michael@0 3 // Use of this source code is governed by a BSD-style license that can be
michael@0 4 // found in the LICENSE file.
michael@0 5 //
michael@0 6
michael@0 7 //
michael@0 8 // Build the intermediate representation.
michael@0 9 //
michael@0 10
michael@0 11 #include <float.h>
michael@0 12 #include <limits.h>
michael@0 13 #include <algorithm>
michael@0 14
michael@0 15 #include "compiler/HashNames.h"
michael@0 16 #include "compiler/localintermediate.h"
michael@0 17 #include "compiler/QualifierAlive.h"
michael@0 18 #include "compiler/RemoveTree.h"
michael@0 19
michael@0 20 bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray);
michael@0 21
michael@0 22 static TPrecision GetHigherPrecision( TPrecision left, TPrecision right ){
michael@0 23 return left > right ? left : right;
michael@0 24 }
michael@0 25
michael@0 26 const char* getOperatorString(TOperator op) {
michael@0 27 switch (op) {
michael@0 28 case EOpInitialize: return "=";
michael@0 29 case EOpAssign: return "=";
michael@0 30 case EOpAddAssign: return "+=";
michael@0 31 case EOpSubAssign: return "-=";
michael@0 32 case EOpDivAssign: return "/=";
michael@0 33
michael@0 34 // Fall-through.
michael@0 35 case EOpMulAssign:
michael@0 36 case EOpVectorTimesMatrixAssign:
michael@0 37 case EOpVectorTimesScalarAssign:
michael@0 38 case EOpMatrixTimesScalarAssign:
michael@0 39 case EOpMatrixTimesMatrixAssign: return "*=";
michael@0 40
michael@0 41 // Fall-through.
michael@0 42 case EOpIndexDirect:
michael@0 43 case EOpIndexIndirect: return "[]";
michael@0 44
michael@0 45 case EOpIndexDirectStruct: return ".";
michael@0 46 case EOpVectorSwizzle: return ".";
michael@0 47 case EOpAdd: return "+";
michael@0 48 case EOpSub: return "-";
michael@0 49 case EOpMul: return "*";
michael@0 50 case EOpDiv: return "/";
michael@0 51 case EOpMod: UNIMPLEMENTED(); break;
michael@0 52 case EOpEqual: return "==";
michael@0 53 case EOpNotEqual: return "!=";
michael@0 54 case EOpLessThan: return "<";
michael@0 55 case EOpGreaterThan: return ">";
michael@0 56 case EOpLessThanEqual: return "<=";
michael@0 57 case EOpGreaterThanEqual: return ">=";
michael@0 58
michael@0 59 // Fall-through.
michael@0 60 case EOpVectorTimesScalar:
michael@0 61 case EOpVectorTimesMatrix:
michael@0 62 case EOpMatrixTimesVector:
michael@0 63 case EOpMatrixTimesScalar:
michael@0 64 case EOpMatrixTimesMatrix: return "*";
michael@0 65
michael@0 66 case EOpLogicalOr: return "||";
michael@0 67 case EOpLogicalXor: return "^^";
michael@0 68 case EOpLogicalAnd: return "&&";
michael@0 69 case EOpNegative: return "-";
michael@0 70 case EOpVectorLogicalNot: return "not";
michael@0 71 case EOpLogicalNot: return "!";
michael@0 72 case EOpPostIncrement: return "++";
michael@0 73 case EOpPostDecrement: return "--";
michael@0 74 case EOpPreIncrement: return "++";
michael@0 75 case EOpPreDecrement: return "--";
michael@0 76
michael@0 77 // Fall-through.
michael@0 78 case EOpConvIntToBool:
michael@0 79 case EOpConvFloatToBool: return "bool";
michael@0 80
michael@0 81 // Fall-through.
michael@0 82 case EOpConvBoolToFloat:
michael@0 83 case EOpConvIntToFloat: return "float";
michael@0 84
michael@0 85 // Fall-through.
michael@0 86 case EOpConvFloatToInt:
michael@0 87 case EOpConvBoolToInt: return "int";
michael@0 88
michael@0 89 case EOpRadians: return "radians";
michael@0 90 case EOpDegrees: return "degrees";
michael@0 91 case EOpSin: return "sin";
michael@0 92 case EOpCos: return "cos";
michael@0 93 case EOpTan: return "tan";
michael@0 94 case EOpAsin: return "asin";
michael@0 95 case EOpAcos: return "acos";
michael@0 96 case EOpAtan: return "atan";
michael@0 97 case EOpExp: return "exp";
michael@0 98 case EOpLog: return "log";
michael@0 99 case EOpExp2: return "exp2";
michael@0 100 case EOpLog2: return "log2";
michael@0 101 case EOpSqrt: return "sqrt";
michael@0 102 case EOpInverseSqrt: return "inversesqrt";
michael@0 103 case EOpAbs: return "abs";
michael@0 104 case EOpSign: return "sign";
michael@0 105 case EOpFloor: return "floor";
michael@0 106 case EOpCeil: return "ceil";
michael@0 107 case EOpFract: return "fract";
michael@0 108 case EOpLength: return "length";
michael@0 109 case EOpNormalize: return "normalize";
michael@0 110 case EOpDFdx: return "dFdx";
michael@0 111 case EOpDFdy: return "dFdy";
michael@0 112 case EOpFwidth: return "fwidth";
michael@0 113 case EOpAny: return "any";
michael@0 114 case EOpAll: return "all";
michael@0 115
michael@0 116 default: break;
michael@0 117 }
michael@0 118 return "";
michael@0 119 }
michael@0 120
michael@0 121 ////////////////////////////////////////////////////////////////////////////
michael@0 122 //
michael@0 123 // First set of functions are to help build the intermediate representation.
michael@0 124 // These functions are not member functions of the nodes.
michael@0 125 // They are called from parser productions.
michael@0 126 //
michael@0 127 /////////////////////////////////////////////////////////////////////////////
michael@0 128
michael@0 129 //
michael@0 130 // Add a terminal node for an identifier in an expression.
michael@0 131 //
michael@0 132 // Returns the added node.
michael@0 133 //
michael@0 134 TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, const TSourceLoc& line)
michael@0 135 {
michael@0 136 TIntermSymbol* node = new TIntermSymbol(id, name, type);
michael@0 137 node->setLine(line);
michael@0 138
michael@0 139 return node;
michael@0 140 }
michael@0 141
michael@0 142 //
michael@0 143 // Connect two nodes with a new parent that does a binary operation on the nodes.
michael@0 144 //
michael@0 145 // Returns the added node.
michael@0 146 //
michael@0 147 TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line, TSymbolTable& symbolTable)
michael@0 148 {
michael@0 149 switch (op) {
michael@0 150 case EOpEqual:
michael@0 151 case EOpNotEqual:
michael@0 152 if (left->isArray())
michael@0 153 return 0;
michael@0 154 break;
michael@0 155 case EOpLessThan:
michael@0 156 case EOpGreaterThan:
michael@0 157 case EOpLessThanEqual:
michael@0 158 case EOpGreaterThanEqual:
michael@0 159 if (left->isMatrix() || left->isArray() || left->isVector() || left->getBasicType() == EbtStruct) {
michael@0 160 return 0;
michael@0 161 }
michael@0 162 break;
michael@0 163 case EOpLogicalOr:
michael@0 164 case EOpLogicalXor:
michael@0 165 case EOpLogicalAnd:
michael@0 166 if (left->getBasicType() != EbtBool || left->isMatrix() || left->isArray() || left->isVector()) {
michael@0 167 return 0;
michael@0 168 }
michael@0 169 break;
michael@0 170 case EOpAdd:
michael@0 171 case EOpSub:
michael@0 172 case EOpDiv:
michael@0 173 case EOpMul:
michael@0 174 if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
michael@0 175 return 0;
michael@0 176 default: break;
michael@0 177 }
michael@0 178
michael@0 179 //
michael@0 180 // First try converting the children to compatible types.
michael@0 181 //
michael@0 182 if (left->getType().getStruct() && right->getType().getStruct()) {
michael@0 183 if (left->getType() != right->getType())
michael@0 184 return 0;
michael@0 185 } else {
michael@0 186 TIntermTyped* child = addConversion(op, left->getType(), right);
michael@0 187 if (child)
michael@0 188 right = child;
michael@0 189 else {
michael@0 190 child = addConversion(op, right->getType(), left);
michael@0 191 if (child)
michael@0 192 left = child;
michael@0 193 else
michael@0 194 return 0;
michael@0 195 }
michael@0 196 }
michael@0 197
michael@0 198 //
michael@0 199 // Need a new node holding things together then. Make
michael@0 200 // one and promote it to the right type.
michael@0 201 //
michael@0 202 TIntermBinary* node = new TIntermBinary(op);
michael@0 203 node->setLine(line);
michael@0 204
michael@0 205 node->setLeft(left);
michael@0 206 node->setRight(right);
michael@0 207 if (!node->promote(infoSink))
michael@0 208 return 0;
michael@0 209
michael@0 210 //
michael@0 211 // See if we can fold constants.
michael@0 212 //
michael@0 213 TIntermTyped* typedReturnNode = 0;
michael@0 214 TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
michael@0 215 TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
michael@0 216 if (leftTempConstant && rightTempConstant) {
michael@0 217 typedReturnNode = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
michael@0 218
michael@0 219 if (typedReturnNode)
michael@0 220 return typedReturnNode;
michael@0 221 }
michael@0 222
michael@0 223 return node;
michael@0 224 }
michael@0 225
michael@0 226 //
michael@0 227 // Connect two nodes through an assignment.
michael@0 228 //
michael@0 229 // Returns the added node.
michael@0 230 //
michael@0 231 TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line)
michael@0 232 {
michael@0 233 //
michael@0 234 // Like adding binary math, except the conversion can only go
michael@0 235 // from right to left.
michael@0 236 //
michael@0 237 TIntermBinary* node = new TIntermBinary(op);
michael@0 238 node->setLine(line);
michael@0 239
michael@0 240 TIntermTyped* child = addConversion(op, left->getType(), right);
michael@0 241 if (child == 0)
michael@0 242 return 0;
michael@0 243
michael@0 244 node->setLeft(left);
michael@0 245 node->setRight(child);
michael@0 246 if (! node->promote(infoSink))
michael@0 247 return 0;
michael@0 248
michael@0 249 return node;
michael@0 250 }
michael@0 251
michael@0 252 //
michael@0 253 // Connect two nodes through an index operator, where the left node is the base
michael@0 254 // of an array or struct, and the right node is a direct or indirect offset.
michael@0 255 //
michael@0 256 // Returns the added node.
michael@0 257 // The caller should set the type of the returned node.
michael@0 258 //
michael@0 259 TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, const TSourceLoc& line)
michael@0 260 {
michael@0 261 TIntermBinary* node = new TIntermBinary(op);
michael@0 262 node->setLine(line);
michael@0 263 node->setLeft(base);
michael@0 264 node->setRight(index);
michael@0 265
michael@0 266 // caller should set the type
michael@0 267
michael@0 268 return node;
michael@0 269 }
michael@0 270
michael@0 271 //
michael@0 272 // Add one node as the parent of another that it operates on.
michael@0 273 //
michael@0 274 // Returns the added node.
michael@0 275 //
michael@0 276 TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, const TSourceLoc& line, TSymbolTable& symbolTable)
michael@0 277 {
michael@0 278 TIntermUnary* node;
michael@0 279 TIntermTyped* child = childNode->getAsTyped();
michael@0 280
michael@0 281 if (child == 0) {
michael@0 282 infoSink.info.message(EPrefixInternalError, line, "Bad type in AddUnaryMath");
michael@0 283 return 0;
michael@0 284 }
michael@0 285
michael@0 286 switch (op) {
michael@0 287 case EOpLogicalNot:
michael@0 288 if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
michael@0 289 return 0;
michael@0 290 }
michael@0 291 break;
michael@0 292
michael@0 293 case EOpPostIncrement:
michael@0 294 case EOpPreIncrement:
michael@0 295 case EOpPostDecrement:
michael@0 296 case EOpPreDecrement:
michael@0 297 case EOpNegative:
michael@0 298 if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
michael@0 299 return 0;
michael@0 300 default: break;
michael@0 301 }
michael@0 302
michael@0 303 //
michael@0 304 // Do we need to promote the operand?
michael@0 305 //
michael@0 306 // Note: Implicit promotions were removed from the language.
michael@0 307 //
michael@0 308 TBasicType newType = EbtVoid;
michael@0 309 switch (op) {
michael@0 310 case EOpConstructInt: newType = EbtInt; break;
michael@0 311 case EOpConstructBool: newType = EbtBool; break;
michael@0 312 case EOpConstructFloat: newType = EbtFloat; break;
michael@0 313 default: break;
michael@0 314 }
michael@0 315
michael@0 316 if (newType != EbtVoid) {
michael@0 317 child = addConversion(op, TType(newType, child->getPrecision(), EvqTemporary,
michael@0 318 child->getNominalSize(),
michael@0 319 child->isMatrix(),
michael@0 320 child->isArray()),
michael@0 321 child);
michael@0 322 if (child == 0)
michael@0 323 return 0;
michael@0 324 }
michael@0 325
michael@0 326 //
michael@0 327 // For constructors, we are now done, it's all in the conversion.
michael@0 328 //
michael@0 329 switch (op) {
michael@0 330 case EOpConstructInt:
michael@0 331 case EOpConstructBool:
michael@0 332 case EOpConstructFloat:
michael@0 333 return child;
michael@0 334 default: break;
michael@0 335 }
michael@0 336
michael@0 337 TIntermConstantUnion *childTempConstant = 0;
michael@0 338 if (child->getAsConstantUnion())
michael@0 339 childTempConstant = child->getAsConstantUnion();
michael@0 340
michael@0 341 //
michael@0 342 // Make a new node for the operator.
michael@0 343 //
michael@0 344 node = new TIntermUnary(op);
michael@0 345 node->setLine(line);
michael@0 346 node->setOperand(child);
michael@0 347
michael@0 348 if (! node->promote(infoSink))
michael@0 349 return 0;
michael@0 350
michael@0 351 if (childTempConstant) {
michael@0 352 TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);
michael@0 353
michael@0 354 if (newChild)
michael@0 355 return newChild;
michael@0 356 }
michael@0 357
michael@0 358 return node;
michael@0 359 }
michael@0 360
michael@0 361 //
michael@0 362 // This is the safe way to change the operator on an aggregate, as it
michael@0 363 // does lots of error checking and fixing. Especially for establishing
michael@0 364 // a function call's operation on it's set of parameters. Sequences
michael@0 365 // of instructions are also aggregates, but they just direnctly set
michael@0 366 // their operator to EOpSequence.
michael@0 367 //
michael@0 368 // Returns an aggregate node, which could be the one passed in if
michael@0 369 // it was already an aggregate but no operator was set.
michael@0 370 //
michael@0 371 TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, const TSourceLoc& line)
michael@0 372 {
michael@0 373 TIntermAggregate* aggNode;
michael@0 374
michael@0 375 //
michael@0 376 // Make sure we have an aggregate. If not turn it into one.
michael@0 377 //
michael@0 378 if (node) {
michael@0 379 aggNode = node->getAsAggregate();
michael@0 380 if (aggNode == 0 || aggNode->getOp() != EOpNull) {
michael@0 381 //
michael@0 382 // Make an aggregate containing this node.
michael@0 383 //
michael@0 384 aggNode = new TIntermAggregate();
michael@0 385 aggNode->getSequence().push_back(node);
michael@0 386 }
michael@0 387 } else
michael@0 388 aggNode = new TIntermAggregate();
michael@0 389
michael@0 390 //
michael@0 391 // Set the operator.
michael@0 392 //
michael@0 393 aggNode->setOp(op);
michael@0 394 aggNode->setLine(line);
michael@0 395
michael@0 396 return aggNode;
michael@0 397 }
michael@0 398
michael@0 399 //
michael@0 400 // Convert one type to another.
michael@0 401 //
michael@0 402 // Returns the node representing the conversion, which could be the same
michael@0 403 // node passed in if no conversion was needed.
michael@0 404 //
michael@0 405 // Return 0 if a conversion can't be done.
michael@0 406 //
michael@0 407 TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node)
michael@0 408 {
michael@0 409 //
michael@0 410 // Does the base type allow operation?
michael@0 411 //
michael@0 412 switch (node->getBasicType()) {
michael@0 413 case EbtVoid:
michael@0 414 case EbtSampler2D:
michael@0 415 case EbtSamplerCube:
michael@0 416 return 0;
michael@0 417 default: break;
michael@0 418 }
michael@0 419
michael@0 420 //
michael@0 421 // Otherwise, if types are identical, no problem
michael@0 422 //
michael@0 423 if (type == node->getType())
michael@0 424 return node;
michael@0 425
michael@0 426 //
michael@0 427 // If one's a structure, then no conversions.
michael@0 428 //
michael@0 429 if (type.getStruct() || node->getType().getStruct())
michael@0 430 return 0;
michael@0 431
michael@0 432 //
michael@0 433 // If one's an array, then no conversions.
michael@0 434 //
michael@0 435 if (type.isArray() || node->getType().isArray())
michael@0 436 return 0;
michael@0 437
michael@0 438 TBasicType promoteTo;
michael@0 439
michael@0 440 switch (op) {
michael@0 441 //
michael@0 442 // Explicit conversions
michael@0 443 //
michael@0 444 case EOpConstructBool:
michael@0 445 promoteTo = EbtBool;
michael@0 446 break;
michael@0 447 case EOpConstructFloat:
michael@0 448 promoteTo = EbtFloat;
michael@0 449 break;
michael@0 450 case EOpConstructInt:
michael@0 451 promoteTo = EbtInt;
michael@0 452 break;
michael@0 453 default:
michael@0 454 //
michael@0 455 // implicit conversions were removed from the language.
michael@0 456 //
michael@0 457 if (type.getBasicType() != node->getType().getBasicType())
michael@0 458 return 0;
michael@0 459 //
michael@0 460 // Size and structure could still differ, but that's
michael@0 461 // handled by operator promotion.
michael@0 462 //
michael@0 463 return node;
michael@0 464 }
michael@0 465
michael@0 466 if (node->getAsConstantUnion()) {
michael@0 467
michael@0 468 return (promoteConstantUnion(promoteTo, node->getAsConstantUnion()));
michael@0 469 } else {
michael@0 470
michael@0 471 //
michael@0 472 // Add a new newNode for the conversion.
michael@0 473 //
michael@0 474 TIntermUnary* newNode = 0;
michael@0 475
michael@0 476 TOperator newOp = EOpNull;
michael@0 477 switch (promoteTo) {
michael@0 478 case EbtFloat:
michael@0 479 switch (node->getBasicType()) {
michael@0 480 case EbtInt: newOp = EOpConvIntToFloat; break;
michael@0 481 case EbtBool: newOp = EOpConvBoolToFloat; break;
michael@0 482 default:
michael@0 483 infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
michael@0 484 return 0;
michael@0 485 }
michael@0 486 break;
michael@0 487 case EbtBool:
michael@0 488 switch (node->getBasicType()) {
michael@0 489 case EbtInt: newOp = EOpConvIntToBool; break;
michael@0 490 case EbtFloat: newOp = EOpConvFloatToBool; break;
michael@0 491 default:
michael@0 492 infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
michael@0 493 return 0;
michael@0 494 }
michael@0 495 break;
michael@0 496 case EbtInt:
michael@0 497 switch (node->getBasicType()) {
michael@0 498 case EbtBool: newOp = EOpConvBoolToInt; break;
michael@0 499 case EbtFloat: newOp = EOpConvFloatToInt; break;
michael@0 500 default:
michael@0 501 infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
michael@0 502 return 0;
michael@0 503 }
michael@0 504 break;
michael@0 505 default:
michael@0 506 infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion type");
michael@0 507 return 0;
michael@0 508 }
michael@0 509
michael@0 510 TType type(promoteTo, node->getPrecision(), EvqTemporary, node->getNominalSize(), node->isMatrix(), node->isArray());
michael@0 511 newNode = new TIntermUnary(newOp, type);
michael@0 512 newNode->setLine(node->getLine());
michael@0 513 newNode->setOperand(node);
michael@0 514
michael@0 515 return newNode;
michael@0 516 }
michael@0 517 }
michael@0 518
michael@0 519 //
michael@0 520 // Safe way to combine two nodes into an aggregate. Works with null pointers,
michael@0 521 // a node that's not a aggregate yet, etc.
michael@0 522 //
michael@0 523 // Returns the resulting aggregate, unless 0 was passed in for
michael@0 524 // both existing nodes.
michael@0 525 //
michael@0 526 TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, const TSourceLoc& line)
michael@0 527 {
michael@0 528 if (left == 0 && right == 0)
michael@0 529 return 0;
michael@0 530
michael@0 531 TIntermAggregate* aggNode = 0;
michael@0 532 if (left)
michael@0 533 aggNode = left->getAsAggregate();
michael@0 534 if (!aggNode || aggNode->getOp() != EOpNull) {
michael@0 535 aggNode = new TIntermAggregate;
michael@0 536 if (left)
michael@0 537 aggNode->getSequence().push_back(left);
michael@0 538 }
michael@0 539
michael@0 540 if (right)
michael@0 541 aggNode->getSequence().push_back(right);
michael@0 542
michael@0 543 aggNode->setLine(line);
michael@0 544
michael@0 545 return aggNode;
michael@0 546 }
michael@0 547
michael@0 548 //
michael@0 549 // Turn an existing node into an aggregate.
michael@0 550 //
michael@0 551 // Returns an aggregate, unless 0 was passed in for the existing node.
michael@0 552 //
michael@0 553 TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, const TSourceLoc& line)
michael@0 554 {
michael@0 555 if (node == 0)
michael@0 556 return 0;
michael@0 557
michael@0 558 TIntermAggregate* aggNode = new TIntermAggregate;
michael@0 559 aggNode->getSequence().push_back(node);
michael@0 560 aggNode->setLine(line);
michael@0 561
michael@0 562 return aggNode;
michael@0 563 }
michael@0 564
michael@0 565 //
michael@0 566 // For "if" test nodes. There are three children; a condition,
michael@0 567 // a true path, and a false path. The two paths are in the
michael@0 568 // nodePair.
michael@0 569 //
michael@0 570 // Returns the selection node created.
michael@0 571 //
michael@0 572 TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, const TSourceLoc& line)
michael@0 573 {
michael@0 574 //
michael@0 575 // For compile time constant selections, prune the code and
michael@0 576 // test now.
michael@0 577 //
michael@0 578
michael@0 579 if (cond->getAsTyped() && cond->getAsTyped()->getAsConstantUnion()) {
michael@0 580 if (cond->getAsConstantUnion()->getBConst(0) == true)
michael@0 581 return nodePair.node1 ? setAggregateOperator(nodePair.node1, EOpSequence, nodePair.node1->getLine()) : NULL;
michael@0 582 else
michael@0 583 return nodePair.node2 ? setAggregateOperator(nodePair.node2, EOpSequence, nodePair.node2->getLine()) : NULL;
michael@0 584 }
michael@0 585
michael@0 586 TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
michael@0 587 node->setLine(line);
michael@0 588
michael@0 589 return node;
michael@0 590 }
michael@0 591
michael@0 592
michael@0 593 TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line)
michael@0 594 {
michael@0 595 if (left->getType().getQualifier() == EvqConst && right->getType().getQualifier() == EvqConst) {
michael@0 596 return right;
michael@0 597 } else {
michael@0 598 TIntermTyped *commaAggregate = growAggregate(left, right, line);
michael@0 599 commaAggregate->getAsAggregate()->setOp(EOpComma);
michael@0 600 commaAggregate->setType(right->getType());
michael@0 601 commaAggregate->getTypePointer()->setQualifier(EvqTemporary);
michael@0 602 return commaAggregate;
michael@0 603 }
michael@0 604 }
michael@0 605
michael@0 606 //
michael@0 607 // For "?:" test nodes. There are three children; a condition,
michael@0 608 // a true path, and a false path. The two paths are specified
michael@0 609 // as separate parameters.
michael@0 610 //
michael@0 611 // Returns the selection node created, or 0 if one could not be.
michael@0 612 //
michael@0 613 TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, const TSourceLoc& line)
michael@0 614 {
michael@0 615 //
michael@0 616 // Get compatible types.
michael@0 617 //
michael@0 618 TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
michael@0 619 if (child)
michael@0 620 falseBlock = child;
michael@0 621 else {
michael@0 622 child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
michael@0 623 if (child)
michael@0 624 trueBlock = child;
michael@0 625 else
michael@0 626 return 0;
michael@0 627 }
michael@0 628
michael@0 629 //
michael@0 630 // See if all the operands are constant, then fold it otherwise not.
michael@0 631 //
michael@0 632
michael@0 633 if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
michael@0 634 if (cond->getAsConstantUnion()->getBConst(0))
michael@0 635 return trueBlock;
michael@0 636 else
michael@0 637 return falseBlock;
michael@0 638 }
michael@0 639
michael@0 640 //
michael@0 641 // Make a selection node.
michael@0 642 //
michael@0 643 TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
michael@0 644 node->getTypePointer()->setQualifier(EvqTemporary);
michael@0 645 node->setLine(line);
michael@0 646
michael@0 647 return node;
michael@0 648 }
michael@0 649
michael@0 650 //
michael@0 651 // Constant terminal nodes. Has a union that contains bool, float or int constants
michael@0 652 //
michael@0 653 // Returns the constant union node created.
michael@0 654 //
michael@0 655
michael@0 656 TIntermConstantUnion* TIntermediate::addConstantUnion(ConstantUnion* unionArrayPointer, const TType& t, const TSourceLoc& line)
michael@0 657 {
michael@0 658 TIntermConstantUnion* node = new TIntermConstantUnion(unionArrayPointer, t);
michael@0 659 node->setLine(line);
michael@0 660
michael@0 661 return node;
michael@0 662 }
michael@0 663
michael@0 664 TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, const TSourceLoc& line)
michael@0 665 {
michael@0 666
michael@0 667 TIntermAggregate* node = new TIntermAggregate(EOpSequence);
michael@0 668
michael@0 669 node->setLine(line);
michael@0 670 TIntermConstantUnion* constIntNode;
michael@0 671 TIntermSequence &sequenceVector = node->getSequence();
michael@0 672 ConstantUnion* unionArray;
michael@0 673
michael@0 674 for (int i = 0; i < fields.num; i++) {
michael@0 675 unionArray = new ConstantUnion[1];
michael@0 676 unionArray->setIConst(fields.offsets[i]);
michael@0 677 constIntNode = addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), line);
michael@0 678 sequenceVector.push_back(constIntNode);
michael@0 679 }
michael@0 680
michael@0 681 return node;
michael@0 682 }
michael@0 683
michael@0 684 //
michael@0 685 // Create loop nodes.
michael@0 686 //
michael@0 687 TIntermNode* TIntermediate::addLoop(TLoopType type, TIntermNode* init, TIntermTyped* cond, TIntermTyped* expr, TIntermNode* body, const TSourceLoc& line)
michael@0 688 {
michael@0 689 TIntermNode* node = new TIntermLoop(type, init, cond, expr, body);
michael@0 690 node->setLine(line);
michael@0 691
michael@0 692 return node;
michael@0 693 }
michael@0 694
michael@0 695 //
michael@0 696 // Add branches.
michael@0 697 //
michael@0 698 TIntermBranch* TIntermediate::addBranch(TOperator branchOp, const TSourceLoc& line)
michael@0 699 {
michael@0 700 return addBranch(branchOp, 0, line);
michael@0 701 }
michael@0 702
michael@0 703 TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, const TSourceLoc& line)
michael@0 704 {
michael@0 705 TIntermBranch* node = new TIntermBranch(branchOp, expression);
michael@0 706 node->setLine(line);
michael@0 707
michael@0 708 return node;
michael@0 709 }
michael@0 710
michael@0 711 //
michael@0 712 // This is to be executed once the final root is put on top by the parsing
michael@0 713 // process.
michael@0 714 //
michael@0 715 bool TIntermediate::postProcess(TIntermNode* root)
michael@0 716 {
michael@0 717 if (root == 0)
michael@0 718 return true;
michael@0 719
michael@0 720 //
michael@0 721 // First, finish off the top level sequence, if any
michael@0 722 //
michael@0 723 TIntermAggregate* aggRoot = root->getAsAggregate();
michael@0 724 if (aggRoot && aggRoot->getOp() == EOpNull)
michael@0 725 aggRoot->setOp(EOpSequence);
michael@0 726
michael@0 727 return true;
michael@0 728 }
michael@0 729
michael@0 730 //
michael@0 731 // This deletes the tree.
michael@0 732 //
michael@0 733 void TIntermediate::remove(TIntermNode* root)
michael@0 734 {
michael@0 735 if (root)
michael@0 736 RemoveAllTreeNodes(root);
michael@0 737 }
michael@0 738
michael@0 739 ////////////////////////////////////////////////////////////////
michael@0 740 //
michael@0 741 // Member functions of the nodes used for building the tree.
michael@0 742 //
michael@0 743 ////////////////////////////////////////////////////////////////
michael@0 744
michael@0 745 //
michael@0 746 // Say whether or not an operation node changes the value of a variable.
michael@0 747 //
michael@0 748 // Returns true if state is modified.
michael@0 749 //
michael@0 750 bool TIntermOperator::modifiesState() const
michael@0 751 {
michael@0 752 switch (op) {
michael@0 753 case EOpPostIncrement:
michael@0 754 case EOpPostDecrement:
michael@0 755 case EOpPreIncrement:
michael@0 756 case EOpPreDecrement:
michael@0 757 case EOpAssign:
michael@0 758 case EOpAddAssign:
michael@0 759 case EOpSubAssign:
michael@0 760 case EOpMulAssign:
michael@0 761 case EOpVectorTimesMatrixAssign:
michael@0 762 case EOpVectorTimesScalarAssign:
michael@0 763 case EOpMatrixTimesScalarAssign:
michael@0 764 case EOpMatrixTimesMatrixAssign:
michael@0 765 case EOpDivAssign:
michael@0 766 return true;
michael@0 767 default:
michael@0 768 return false;
michael@0 769 }
michael@0 770 }
michael@0 771
michael@0 772 //
michael@0 773 // returns true if the operator is for one of the constructors
michael@0 774 //
michael@0 775 bool TIntermOperator::isConstructor() const
michael@0 776 {
michael@0 777 switch (op) {
michael@0 778 case EOpConstructVec2:
michael@0 779 case EOpConstructVec3:
michael@0 780 case EOpConstructVec4:
michael@0 781 case EOpConstructMat2:
michael@0 782 case EOpConstructMat3:
michael@0 783 case EOpConstructMat4:
michael@0 784 case EOpConstructFloat:
michael@0 785 case EOpConstructIVec2:
michael@0 786 case EOpConstructIVec3:
michael@0 787 case EOpConstructIVec4:
michael@0 788 case EOpConstructInt:
michael@0 789 case EOpConstructBVec2:
michael@0 790 case EOpConstructBVec3:
michael@0 791 case EOpConstructBVec4:
michael@0 792 case EOpConstructBool:
michael@0 793 case EOpConstructStruct:
michael@0 794 return true;
michael@0 795 default:
michael@0 796 return false;
michael@0 797 }
michael@0 798 }
michael@0 799 //
michael@0 800 // Make sure the type of a unary operator is appropriate for its
michael@0 801 // combination of operation and operand type.
michael@0 802 //
michael@0 803 // Returns false in nothing makes sense.
michael@0 804 //
michael@0 805 bool TIntermUnary::promote(TInfoSink&)
michael@0 806 {
michael@0 807 switch (op) {
michael@0 808 case EOpLogicalNot:
michael@0 809 if (operand->getBasicType() != EbtBool)
michael@0 810 return false;
michael@0 811 break;
michael@0 812 case EOpNegative:
michael@0 813 case EOpPostIncrement:
michael@0 814 case EOpPostDecrement:
michael@0 815 case EOpPreIncrement:
michael@0 816 case EOpPreDecrement:
michael@0 817 if (operand->getBasicType() == EbtBool)
michael@0 818 return false;
michael@0 819 break;
michael@0 820
michael@0 821 // operators for built-ins are already type checked against their prototype
michael@0 822 case EOpAny:
michael@0 823 case EOpAll:
michael@0 824 case EOpVectorLogicalNot:
michael@0 825 return true;
michael@0 826
michael@0 827 default:
michael@0 828 if (operand->getBasicType() != EbtFloat)
michael@0 829 return false;
michael@0 830 }
michael@0 831
michael@0 832 setType(operand->getType());
michael@0 833 type.setQualifier(EvqTemporary);
michael@0 834
michael@0 835 return true;
michael@0 836 }
michael@0 837
michael@0 838 //
michael@0 839 // Establishes the type of the resultant operation, as well as
michael@0 840 // makes the operator the correct one for the operands.
michael@0 841 //
michael@0 842 // Returns false if operator can't work on operands.
michael@0 843 //
michael@0 844 bool TIntermBinary::promote(TInfoSink& infoSink)
michael@0 845 {
michael@0 846 // This function only handles scalars, vectors, and matrices.
michael@0 847 if (left->isArray() || right->isArray()) {
michael@0 848 infoSink.info.message(EPrefixInternalError, getLine(), "Invalid operation for arrays");
michael@0 849 return false;
michael@0 850 }
michael@0 851
michael@0 852 // GLSL ES 2.0 does not support implicit type casting.
michael@0 853 // So the basic type should always match.
michael@0 854 if (left->getBasicType() != right->getBasicType())
michael@0 855 return false;
michael@0 856
michael@0 857 //
michael@0 858 // Base assumption: just make the type the same as the left
michael@0 859 // operand. Then only deviations from this need be coded.
michael@0 860 //
michael@0 861 setType(left->getType());
michael@0 862
michael@0 863 // The result gets promoted to the highest precision.
michael@0 864 TPrecision higherPrecision = GetHigherPrecision(left->getPrecision(), right->getPrecision());
michael@0 865 getTypePointer()->setPrecision(higherPrecision);
michael@0 866
michael@0 867 // Binary operations results in temporary variables unless both
michael@0 868 // operands are const.
michael@0 869 if (left->getQualifier() != EvqConst || right->getQualifier() != EvqConst) {
michael@0 870 getTypePointer()->setQualifier(EvqTemporary);
michael@0 871 }
michael@0 872
michael@0 873 int size = std::max(left->getNominalSize(), right->getNominalSize());
michael@0 874
michael@0 875 //
michael@0 876 // All scalars. Code after this test assumes this case is removed!
michael@0 877 //
michael@0 878 if (size == 1) {
michael@0 879 switch (op) {
michael@0 880 //
michael@0 881 // Promote to conditional
michael@0 882 //
michael@0 883 case EOpEqual:
michael@0 884 case EOpNotEqual:
michael@0 885 case EOpLessThan:
michael@0 886 case EOpGreaterThan:
michael@0 887 case EOpLessThanEqual:
michael@0 888 case EOpGreaterThanEqual:
michael@0 889 setType(TType(EbtBool, EbpUndefined));
michael@0 890 break;
michael@0 891
michael@0 892 //
michael@0 893 // And and Or operate on conditionals
michael@0 894 //
michael@0 895 case EOpLogicalAnd:
michael@0 896 case EOpLogicalOr:
michael@0 897 // Both operands must be of type bool.
michael@0 898 if (left->getBasicType() != EbtBool || right->getBasicType() != EbtBool)
michael@0 899 return false;
michael@0 900 setType(TType(EbtBool, EbpUndefined));
michael@0 901 break;
michael@0 902
michael@0 903 default:
michael@0 904 break;
michael@0 905 }
michael@0 906 return true;
michael@0 907 }
michael@0 908
michael@0 909 // If we reach here, at least one of the operands is vector or matrix.
michael@0 910 // The other operand could be a scalar, vector, or matrix.
michael@0 911 // Are the sizes compatible?
michael@0 912 //
michael@0 913 if (left->getNominalSize() != right->getNominalSize()) {
michael@0 914 // If the nominal size of operands do not match:
michael@0 915 // One of them must be scalar.
michael@0 916 if (left->getNominalSize() != 1 && right->getNominalSize() != 1)
michael@0 917 return false;
michael@0 918 // Operator cannot be of type pure assignment.
michael@0 919 if (op == EOpAssign || op == EOpInitialize)
michael@0 920 return false;
michael@0 921 }
michael@0 922
michael@0 923 //
michael@0 924 // Can these two operands be combined?
michael@0 925 //
michael@0 926 TBasicType basicType = left->getBasicType();
michael@0 927 switch (op) {
michael@0 928 case EOpMul:
michael@0 929 if (!left->isMatrix() && right->isMatrix()) {
michael@0 930 if (left->isVector())
michael@0 931 op = EOpVectorTimesMatrix;
michael@0 932 else {
michael@0 933 op = EOpMatrixTimesScalar;
michael@0 934 setType(TType(basicType, higherPrecision, EvqTemporary, size, true));
michael@0 935 }
michael@0 936 } else if (left->isMatrix() && !right->isMatrix()) {
michael@0 937 if (right->isVector()) {
michael@0 938 op = EOpMatrixTimesVector;
michael@0 939 setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
michael@0 940 } else {
michael@0 941 op = EOpMatrixTimesScalar;
michael@0 942 }
michael@0 943 } else if (left->isMatrix() && right->isMatrix()) {
michael@0 944 op = EOpMatrixTimesMatrix;
michael@0 945 } else if (!left->isMatrix() && !right->isMatrix()) {
michael@0 946 if (left->isVector() && right->isVector()) {
michael@0 947 // leave as component product
michael@0 948 } else if (left->isVector() || right->isVector()) {
michael@0 949 op = EOpVectorTimesScalar;
michael@0 950 setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
michael@0 951 }
michael@0 952 } else {
michael@0 953 infoSink.info.message(EPrefixInternalError, getLine(), "Missing elses");
michael@0 954 return false;
michael@0 955 }
michael@0 956 break;
michael@0 957 case EOpMulAssign:
michael@0 958 if (!left->isMatrix() && right->isMatrix()) {
michael@0 959 if (left->isVector())
michael@0 960 op = EOpVectorTimesMatrixAssign;
michael@0 961 else {
michael@0 962 return false;
michael@0 963 }
michael@0 964 } else if (left->isMatrix() && !right->isMatrix()) {
michael@0 965 if (right->isVector()) {
michael@0 966 return false;
michael@0 967 } else {
michael@0 968 op = EOpMatrixTimesScalarAssign;
michael@0 969 }
michael@0 970 } else if (left->isMatrix() && right->isMatrix()) {
michael@0 971 op = EOpMatrixTimesMatrixAssign;
michael@0 972 } else if (!left->isMatrix() && !right->isMatrix()) {
michael@0 973 if (left->isVector() && right->isVector()) {
michael@0 974 // leave as component product
michael@0 975 } else if (left->isVector() || right->isVector()) {
michael@0 976 if (! left->isVector())
michael@0 977 return false;
michael@0 978 op = EOpVectorTimesScalarAssign;
michael@0 979 setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
michael@0 980 }
michael@0 981 } else {
michael@0 982 infoSink.info.message(EPrefixInternalError, getLine(), "Missing elses");
michael@0 983 return false;
michael@0 984 }
michael@0 985 break;
michael@0 986
michael@0 987 case EOpAssign:
michael@0 988 case EOpInitialize:
michael@0 989 case EOpAdd:
michael@0 990 case EOpSub:
michael@0 991 case EOpDiv:
michael@0 992 case EOpAddAssign:
michael@0 993 case EOpSubAssign:
michael@0 994 case EOpDivAssign:
michael@0 995 if ((left->isMatrix() && right->isVector()) ||
michael@0 996 (left->isVector() && right->isMatrix()))
michael@0 997 return false;
michael@0 998 setType(TType(basicType, higherPrecision, EvqTemporary, size, left->isMatrix() || right->isMatrix()));
michael@0 999 break;
michael@0 1000
michael@0 1001 case EOpEqual:
michael@0 1002 case EOpNotEqual:
michael@0 1003 case EOpLessThan:
michael@0 1004 case EOpGreaterThan:
michael@0 1005 case EOpLessThanEqual:
michael@0 1006 case EOpGreaterThanEqual:
michael@0 1007 if ((left->isMatrix() && right->isVector()) ||
michael@0 1008 (left->isVector() && right->isMatrix()))
michael@0 1009 return false;
michael@0 1010 setType(TType(EbtBool, EbpUndefined));
michael@0 1011 break;
michael@0 1012
michael@0 1013 default:
michael@0 1014 return false;
michael@0 1015 }
michael@0 1016
michael@0 1017 return true;
michael@0 1018 }
michael@0 1019
michael@0 1020 bool CompareStruct(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
michael@0 1021 {
michael@0 1022 const TFieldList& fields = leftNodeType.getStruct()->fields();
michael@0 1023
michael@0 1024 size_t structSize = fields.size();
michael@0 1025 size_t index = 0;
michael@0 1026
michael@0 1027 for (size_t j = 0; j < structSize; j++) {
michael@0 1028 size_t size = fields[j]->type()->getObjectSize();
michael@0 1029 for (size_t i = 0; i < size; i++) {
michael@0 1030 if (fields[j]->type()->getBasicType() == EbtStruct) {
michael@0 1031 if (!CompareStructure(*(fields[j]->type()), &rightUnionArray[index], &leftUnionArray[index]))
michael@0 1032 return false;
michael@0 1033 } else {
michael@0 1034 if (leftUnionArray[index] != rightUnionArray[index])
michael@0 1035 return false;
michael@0 1036 index++;
michael@0 1037 }
michael@0 1038 }
michael@0 1039 }
michael@0 1040 return true;
michael@0 1041 }
michael@0 1042
michael@0 1043 bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
michael@0 1044 {
michael@0 1045 if (leftNodeType.isArray()) {
michael@0 1046 TType typeWithoutArrayness = leftNodeType;
michael@0 1047 typeWithoutArrayness.clearArrayness();
michael@0 1048
michael@0 1049 size_t arraySize = leftNodeType.getArraySize();
michael@0 1050
michael@0 1051 for (size_t i = 0; i < arraySize; ++i) {
michael@0 1052 size_t offset = typeWithoutArrayness.getObjectSize() * i;
michael@0 1053 if (!CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
michael@0 1054 return false;
michael@0 1055 }
michael@0 1056 } else
michael@0 1057 return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
michael@0 1058
michael@0 1059 return true;
michael@0 1060 }
michael@0 1061
michael@0 1062 //
michael@0 1063 // The fold functions see if an operation on a constant can be done in place,
michael@0 1064 // without generating run-time code.
michael@0 1065 //
michael@0 1066 // Returns the node to keep using, which may or may not be the node passed in.
michael@0 1067 //
michael@0 1068
michael@0 1069 TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
michael@0 1070 {
michael@0 1071 ConstantUnion *unionArray = getUnionArrayPointer();
michael@0 1072 size_t objectSize = getType().getObjectSize();
michael@0 1073
michael@0 1074 if (constantNode) { // binary operations
michael@0 1075 TIntermConstantUnion *node = constantNode->getAsConstantUnion();
michael@0 1076 ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
michael@0 1077 TType returnType = getType();
michael@0 1078
michael@0 1079 // for a case like float f = 1.2 + vec4(2,3,4,5);
michael@0 1080 if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
michael@0 1081 rightUnionArray = new ConstantUnion[objectSize];
michael@0 1082 for (size_t i = 0; i < objectSize; ++i)
michael@0 1083 rightUnionArray[i] = *node->getUnionArrayPointer();
michael@0 1084 returnType = getType();
michael@0 1085 } else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
michael@0 1086 // for a case like float f = vec4(2,3,4,5) + 1.2;
michael@0 1087 unionArray = new ConstantUnion[constantNode->getType().getObjectSize()];
michael@0 1088 for (size_t i = 0; i < constantNode->getType().getObjectSize(); ++i)
michael@0 1089 unionArray[i] = *getUnionArrayPointer();
michael@0 1090 returnType = node->getType();
michael@0 1091 objectSize = constantNode->getType().getObjectSize();
michael@0 1092 }
michael@0 1093
michael@0 1094 ConstantUnion* tempConstArray = 0;
michael@0 1095 TIntermConstantUnion *tempNode;
michael@0 1096
michael@0 1097 bool boolNodeFlag = false;
michael@0 1098 switch(op) {
michael@0 1099 case EOpAdd:
michael@0 1100 tempConstArray = new ConstantUnion[objectSize];
michael@0 1101 {// support MSVC++6.0
michael@0 1102 for (size_t i = 0; i < objectSize; i++)
michael@0 1103 tempConstArray[i] = unionArray[i] + rightUnionArray[i];
michael@0 1104 }
michael@0 1105 break;
michael@0 1106 case EOpSub:
michael@0 1107 tempConstArray = new ConstantUnion[objectSize];
michael@0 1108 {// support MSVC++6.0
michael@0 1109 for (size_t i = 0; i < objectSize; i++)
michael@0 1110 tempConstArray[i] = unionArray[i] - rightUnionArray[i];
michael@0 1111 }
michael@0 1112 break;
michael@0 1113
michael@0 1114 case EOpMul:
michael@0 1115 case EOpVectorTimesScalar:
michael@0 1116 case EOpMatrixTimesScalar:
michael@0 1117 tempConstArray = new ConstantUnion[objectSize];
michael@0 1118 {// support MSVC++6.0
michael@0 1119 for (size_t i = 0; i < objectSize; i++)
michael@0 1120 tempConstArray[i] = unionArray[i] * rightUnionArray[i];
michael@0 1121 }
michael@0 1122 break;
michael@0 1123 case EOpMatrixTimesMatrix:
michael@0 1124 if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) {
michael@0 1125 infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for matrix multiply");
michael@0 1126 return 0;
michael@0 1127 }
michael@0 1128 {// support MSVC++6.0
michael@0 1129 int size = getNominalSize();
michael@0 1130 tempConstArray = new ConstantUnion[size*size];
michael@0 1131 for (int row = 0; row < size; row++) {
michael@0 1132 for (int column = 0; column < size; column++) {
michael@0 1133 tempConstArray[size * column + row].setFConst(0.0f);
michael@0 1134 for (int i = 0; i < size; i++) {
michael@0 1135 tempConstArray[size * column + row].setFConst(tempConstArray[size * column + row].getFConst() + unionArray[i * size + row].getFConst() * (rightUnionArray[column * size + i].getFConst()));
michael@0 1136 }
michael@0 1137 }
michael@0 1138 }
michael@0 1139 }
michael@0 1140 break;
michael@0 1141 case EOpDiv:
michael@0 1142 tempConstArray = new ConstantUnion[objectSize];
michael@0 1143 {// support MSVC++6.0
michael@0 1144 for (size_t i = 0; i < objectSize; i++) {
michael@0 1145 switch (getType().getBasicType()) {
michael@0 1146 case EbtFloat:
michael@0 1147 if (rightUnionArray[i] == 0.0f) {
michael@0 1148 infoSink.info.message(EPrefixWarning, getLine(), "Divide by zero error during constant folding");
michael@0 1149 tempConstArray[i].setFConst(unionArray[i].getFConst() < 0 ? -FLT_MAX : FLT_MAX);
michael@0 1150 } else
michael@0 1151 tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
michael@0 1152 break;
michael@0 1153
michael@0 1154 case EbtInt:
michael@0 1155 if (rightUnionArray[i] == 0) {
michael@0 1156 infoSink.info.message(EPrefixWarning, getLine(), "Divide by zero error during constant folding");
michael@0 1157 tempConstArray[i].setIConst(INT_MAX);
michael@0 1158 } else
michael@0 1159 tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
michael@0 1160 break;
michael@0 1161 default:
michael@0 1162 infoSink.info.message(EPrefixInternalError, getLine(), "Constant folding cannot be done for \"/\"");
michael@0 1163 return 0;
michael@0 1164 }
michael@0 1165 }
michael@0 1166 }
michael@0 1167 break;
michael@0 1168
michael@0 1169 case EOpMatrixTimesVector:
michael@0 1170 if (node->getBasicType() != EbtFloat) {
michael@0 1171 infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for matrix times vector");
michael@0 1172 return 0;
michael@0 1173 }
michael@0 1174 tempConstArray = new ConstantUnion[getNominalSize()];
michael@0 1175
michael@0 1176 {// support MSVC++6.0
michael@0 1177 for (int size = getNominalSize(), i = 0; i < size; i++) {
michael@0 1178 tempConstArray[i].setFConst(0.0f);
michael@0 1179 for (int j = 0; j < size; j++) {
michael@0 1180 tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j*size + i].getFConst()) * rightUnionArray[j].getFConst()));
michael@0 1181 }
michael@0 1182 }
michael@0 1183 }
michael@0 1184
michael@0 1185 tempNode = new TIntermConstantUnion(tempConstArray, node->getType());
michael@0 1186 tempNode->setLine(getLine());
michael@0 1187
michael@0 1188 return tempNode;
michael@0 1189
michael@0 1190 case EOpVectorTimesMatrix:
michael@0 1191 if (getType().getBasicType() != EbtFloat) {
michael@0 1192 infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for vector times matrix");
michael@0 1193 return 0;
michael@0 1194 }
michael@0 1195
michael@0 1196 tempConstArray = new ConstantUnion[getNominalSize()];
michael@0 1197 {// support MSVC++6.0
michael@0 1198 for (int size = getNominalSize(), i = 0; i < size; i++) {
michael@0 1199 tempConstArray[i].setFConst(0.0f);
michael@0 1200 for (int j = 0; j < size; j++) {
michael@0 1201 tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j].getFConst()) * rightUnionArray[i*size + j].getFConst()));
michael@0 1202 }
michael@0 1203 }
michael@0 1204 }
michael@0 1205 break;
michael@0 1206
michael@0 1207 case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
michael@0 1208 tempConstArray = new ConstantUnion[objectSize];
michael@0 1209 {// support MSVC++6.0
michael@0 1210 for (size_t i = 0; i < objectSize; i++)
michael@0 1211 tempConstArray[i] = unionArray[i] && rightUnionArray[i];
michael@0 1212 }
michael@0 1213 break;
michael@0 1214
michael@0 1215 case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
michael@0 1216 tempConstArray = new ConstantUnion[objectSize];
michael@0 1217 {// support MSVC++6.0
michael@0 1218 for (size_t i = 0; i < objectSize; i++)
michael@0 1219 tempConstArray[i] = unionArray[i] || rightUnionArray[i];
michael@0 1220 }
michael@0 1221 break;
michael@0 1222
michael@0 1223 case EOpLogicalXor:
michael@0 1224 tempConstArray = new ConstantUnion[objectSize];
michael@0 1225 {// support MSVC++6.0
michael@0 1226 for (size_t i = 0; i < objectSize; i++)
michael@0 1227 switch (getType().getBasicType()) {
michael@0 1228 case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
michael@0 1229 default: assert(false && "Default missing");
michael@0 1230 }
michael@0 1231 }
michael@0 1232 break;
michael@0 1233
michael@0 1234 case EOpLessThan:
michael@0 1235 assert(objectSize == 1);
michael@0 1236 tempConstArray = new ConstantUnion[1];
michael@0 1237 tempConstArray->setBConst(*unionArray < *rightUnionArray);
michael@0 1238 returnType = TType(EbtBool, EbpUndefined, EvqConst);
michael@0 1239 break;
michael@0 1240 case EOpGreaterThan:
michael@0 1241 assert(objectSize == 1);
michael@0 1242 tempConstArray = new ConstantUnion[1];
michael@0 1243 tempConstArray->setBConst(*unionArray > *rightUnionArray);
michael@0 1244 returnType = TType(EbtBool, EbpUndefined, EvqConst);
michael@0 1245 break;
michael@0 1246 case EOpLessThanEqual:
michael@0 1247 {
michael@0 1248 assert(objectSize == 1);
michael@0 1249 ConstantUnion constant;
michael@0 1250 constant.setBConst(*unionArray > *rightUnionArray);
michael@0 1251 tempConstArray = new ConstantUnion[1];
michael@0 1252 tempConstArray->setBConst(!constant.getBConst());
michael@0 1253 returnType = TType(EbtBool, EbpUndefined, EvqConst);
michael@0 1254 break;
michael@0 1255 }
michael@0 1256 case EOpGreaterThanEqual:
michael@0 1257 {
michael@0 1258 assert(objectSize == 1);
michael@0 1259 ConstantUnion constant;
michael@0 1260 constant.setBConst(*unionArray < *rightUnionArray);
michael@0 1261 tempConstArray = new ConstantUnion[1];
michael@0 1262 tempConstArray->setBConst(!constant.getBConst());
michael@0 1263 returnType = TType(EbtBool, EbpUndefined, EvqConst);
michael@0 1264 break;
michael@0 1265 }
michael@0 1266
michael@0 1267 case EOpEqual:
michael@0 1268 if (getType().getBasicType() == EbtStruct) {
michael@0 1269 if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
michael@0 1270 boolNodeFlag = true;
michael@0 1271 } else {
michael@0 1272 for (size_t i = 0; i < objectSize; i++) {
michael@0 1273 if (unionArray[i] != rightUnionArray[i]) {
michael@0 1274 boolNodeFlag = true;
michael@0 1275 break; // break out of for loop
michael@0 1276 }
michael@0 1277 }
michael@0 1278 }
michael@0 1279
michael@0 1280 tempConstArray = new ConstantUnion[1];
michael@0 1281 if (!boolNodeFlag) {
michael@0 1282 tempConstArray->setBConst(true);
michael@0 1283 }
michael@0 1284 else {
michael@0 1285 tempConstArray->setBConst(false);
michael@0 1286 }
michael@0 1287
michael@0 1288 tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
michael@0 1289 tempNode->setLine(getLine());
michael@0 1290
michael@0 1291 return tempNode;
michael@0 1292
michael@0 1293 case EOpNotEqual:
michael@0 1294 if (getType().getBasicType() == EbtStruct) {
michael@0 1295 if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
michael@0 1296 boolNodeFlag = true;
michael@0 1297 } else {
michael@0 1298 for (size_t i = 0; i < objectSize; i++) {
michael@0 1299 if (unionArray[i] == rightUnionArray[i]) {
michael@0 1300 boolNodeFlag = true;
michael@0 1301 break; // break out of for loop
michael@0 1302 }
michael@0 1303 }
michael@0 1304 }
michael@0 1305
michael@0 1306 tempConstArray = new ConstantUnion[1];
michael@0 1307 if (!boolNodeFlag) {
michael@0 1308 tempConstArray->setBConst(true);
michael@0 1309 }
michael@0 1310 else {
michael@0 1311 tempConstArray->setBConst(false);
michael@0 1312 }
michael@0 1313
michael@0 1314 tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
michael@0 1315 tempNode->setLine(getLine());
michael@0 1316
michael@0 1317 return tempNode;
michael@0 1318
michael@0 1319 default:
michael@0 1320 infoSink.info.message(EPrefixInternalError, getLine(), "Invalid operator for constant folding");
michael@0 1321 return 0;
michael@0 1322 }
michael@0 1323 tempNode = new TIntermConstantUnion(tempConstArray, returnType);
michael@0 1324 tempNode->setLine(getLine());
michael@0 1325
michael@0 1326 return tempNode;
michael@0 1327 } else {
michael@0 1328 //
michael@0 1329 // Do unary operations
michael@0 1330 //
michael@0 1331 TIntermConstantUnion *newNode = 0;
michael@0 1332 ConstantUnion* tempConstArray = new ConstantUnion[objectSize];
michael@0 1333 for (size_t i = 0; i < objectSize; i++) {
michael@0 1334 switch(op) {
michael@0 1335 case EOpNegative:
michael@0 1336 switch (getType().getBasicType()) {
michael@0 1337 case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
michael@0 1338 case EbtInt: tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
michael@0 1339 default:
michael@0 1340 infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
michael@0 1341 return 0;
michael@0 1342 }
michael@0 1343 break;
michael@0 1344 case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
michael@0 1345 switch (getType().getBasicType()) {
michael@0 1346 case EbtBool: tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
michael@0 1347 default:
michael@0 1348 infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
michael@0 1349 return 0;
michael@0 1350 }
michael@0 1351 break;
michael@0 1352 default:
michael@0 1353 return 0;
michael@0 1354 }
michael@0 1355 }
michael@0 1356 newNode = new TIntermConstantUnion(tempConstArray, getType());
michael@0 1357 newNode->setLine(getLine());
michael@0 1358 return newNode;
michael@0 1359 }
michael@0 1360 }
michael@0 1361
michael@0 1362 TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
michael@0 1363 {
michael@0 1364 size_t size = node->getType().getObjectSize();
michael@0 1365
michael@0 1366 ConstantUnion *leftUnionArray = new ConstantUnion[size];
michael@0 1367
michael@0 1368 for (size_t i = 0; i < size; i++) {
michael@0 1369
michael@0 1370 switch (promoteTo) {
michael@0 1371 case EbtFloat:
michael@0 1372 switch (node->getType().getBasicType()) {
michael@0 1373 case EbtInt:
michael@0 1374 leftUnionArray[i].setFConst(static_cast<float>(node->getIConst(i)));
michael@0 1375 break;
michael@0 1376 case EbtBool:
michael@0 1377 leftUnionArray[i].setFConst(static_cast<float>(node->getBConst(i)));
michael@0 1378 break;
michael@0 1379 case EbtFloat:
michael@0 1380 leftUnionArray[i].setFConst(static_cast<float>(node->getFConst(i)));
michael@0 1381 break;
michael@0 1382 default:
michael@0 1383 infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
michael@0 1384 return 0;
michael@0 1385 }
michael@0 1386 break;
michael@0 1387 case EbtInt:
michael@0 1388 switch (node->getType().getBasicType()) {
michael@0 1389 case EbtInt:
michael@0 1390 leftUnionArray[i].setIConst(static_cast<int>(node->getIConst(i)));
michael@0 1391 break;
michael@0 1392 case EbtBool:
michael@0 1393 leftUnionArray[i].setIConst(static_cast<int>(node->getBConst(i)));
michael@0 1394 break;
michael@0 1395 case EbtFloat:
michael@0 1396 leftUnionArray[i].setIConst(static_cast<int>(node->getFConst(i)));
michael@0 1397 break;
michael@0 1398 default:
michael@0 1399 infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
michael@0 1400 return 0;
michael@0 1401 }
michael@0 1402 break;
michael@0 1403 case EbtBool:
michael@0 1404 switch (node->getType().getBasicType()) {
michael@0 1405 case EbtInt:
michael@0 1406 leftUnionArray[i].setBConst(node->getIConst(i) != 0);
michael@0 1407 break;
michael@0 1408 case EbtBool:
michael@0 1409 leftUnionArray[i].setBConst(node->getBConst(i));
michael@0 1410 break;
michael@0 1411 case EbtFloat:
michael@0 1412 leftUnionArray[i].setBConst(node->getFConst(i) != 0.0f);
michael@0 1413 break;
michael@0 1414 default:
michael@0 1415 infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
michael@0 1416 return 0;
michael@0 1417 }
michael@0 1418
michael@0 1419 break;
michael@0 1420 default:
michael@0 1421 infoSink.info.message(EPrefixInternalError, node->getLine(), "Incorrect data type found");
michael@0 1422 return 0;
michael@0 1423 }
michael@0 1424
michael@0 1425 }
michael@0 1426
michael@0 1427 const TType& t = node->getType();
michael@0 1428
michael@0 1429 return addConstantUnion(leftUnionArray, TType(promoteTo, t.getPrecision(), t.getQualifier(), t.getNominalSize(), t.isMatrix(), t.isArray()), node->getLine());
michael@0 1430 }
michael@0 1431
michael@0 1432 // static
michael@0 1433 TString TIntermTraverser::hash(const TString& name, ShHashFunction64 hashFunction)
michael@0 1434 {
michael@0 1435 if (hashFunction == NULL || name.empty())
michael@0 1436 return name;
michael@0 1437 khronos_uint64_t number = (*hashFunction)(name.c_str(), name.length());
michael@0 1438 TStringStream stream;
michael@0 1439 stream << HASHED_NAME_PREFIX << std::hex << number;
michael@0 1440 TString hashedName = stream.str();
michael@0 1441 return hashedName;
michael@0 1442 }

mercurial