Fri, 16 Jan 2015 04:50:19 +0100
Replace accessor implementation with direct member state manipulation, by
request https://trac.torproject.org/projects/tor/ticket/9701#comment:32
michael@0 | 1 | /* |
michael@0 | 2 | * Copyright (C) 2012 Google Inc. All rights reserved. |
michael@0 | 3 | * |
michael@0 | 4 | * Redistribution and use in source and binary forms, with or without |
michael@0 | 5 | * modification, are permitted provided that the following conditions |
michael@0 | 6 | * are met: |
michael@0 | 7 | * |
michael@0 | 8 | * 1. Redistributions of source code must retain the above copyright |
michael@0 | 9 | * notice, this list of conditions and the following disclaimer. |
michael@0 | 10 | * 2. Redistributions in binary form must reproduce the above copyright |
michael@0 | 11 | * notice, this list of conditions and the following disclaimer in the |
michael@0 | 12 | * documentation and/or other materials provided with the distribution. |
michael@0 | 13 | * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of |
michael@0 | 14 | * its contributors may be used to endorse or promote products derived |
michael@0 | 15 | * from this software without specific prior written permission. |
michael@0 | 16 | * |
michael@0 | 17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
michael@0 | 18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
michael@0 | 19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
michael@0 | 20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
michael@0 | 21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
michael@0 | 22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
michael@0 | 23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
michael@0 | 24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
michael@0 | 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
michael@0 | 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
michael@0 | 27 | */ |
michael@0 | 28 | |
michael@0 | 29 | #include "PeriodicWave.h" |
michael@0 | 30 | #include <algorithm> |
michael@0 | 31 | #include <cmath> |
michael@0 | 32 | #include "mozilla/FFTBlock.h" |
michael@0 | 33 | |
michael@0 | 34 | const unsigned PeriodicWaveSize = 4096; // This must be a power of two. |
michael@0 | 35 | const unsigned NumberOfRanges = 36; // There should be 3 * log2(PeriodicWaveSize) 1/3 octave ranges. |
michael@0 | 36 | const float CentsPerRange = 1200 / 3; // 1/3 Octave. |
michael@0 | 37 | |
michael@0 | 38 | using namespace mozilla; |
michael@0 | 39 | using mozilla::dom::OscillatorType; |
michael@0 | 40 | |
michael@0 | 41 | namespace WebCore { |
michael@0 | 42 | |
michael@0 | 43 | PeriodicWave* PeriodicWave::create(float sampleRate, |
michael@0 | 44 | const float* real, |
michael@0 | 45 | const float* imag, |
michael@0 | 46 | size_t numberOfComponents) |
michael@0 | 47 | { |
michael@0 | 48 | bool isGood = real && imag && numberOfComponents > 0 && |
michael@0 | 49 | numberOfComponents <= PeriodicWaveSize; |
michael@0 | 50 | MOZ_ASSERT(isGood); |
michael@0 | 51 | if (isGood) { |
michael@0 | 52 | PeriodicWave* periodicWave = new PeriodicWave(sampleRate); |
michael@0 | 53 | periodicWave->createBandLimitedTables(real, imag, numberOfComponents); |
michael@0 | 54 | return periodicWave; |
michael@0 | 55 | } |
michael@0 | 56 | return 0; |
michael@0 | 57 | } |
michael@0 | 58 | |
michael@0 | 59 | PeriodicWave* PeriodicWave::createSine(float sampleRate) |
michael@0 | 60 | { |
michael@0 | 61 | PeriodicWave* periodicWave = new PeriodicWave(sampleRate); |
michael@0 | 62 | periodicWave->generateBasicWaveform(OscillatorType::Sine); |
michael@0 | 63 | return periodicWave; |
michael@0 | 64 | } |
michael@0 | 65 | |
michael@0 | 66 | PeriodicWave* PeriodicWave::createSquare(float sampleRate) |
michael@0 | 67 | { |
michael@0 | 68 | PeriodicWave* periodicWave = new PeriodicWave(sampleRate); |
michael@0 | 69 | periodicWave->generateBasicWaveform(OscillatorType::Square); |
michael@0 | 70 | return periodicWave; |
michael@0 | 71 | } |
michael@0 | 72 | |
michael@0 | 73 | PeriodicWave* PeriodicWave::createSawtooth(float sampleRate) |
michael@0 | 74 | { |
michael@0 | 75 | PeriodicWave* periodicWave = new PeriodicWave(sampleRate); |
michael@0 | 76 | periodicWave->generateBasicWaveform(OscillatorType::Sawtooth); |
michael@0 | 77 | return periodicWave; |
michael@0 | 78 | } |
michael@0 | 79 | |
michael@0 | 80 | PeriodicWave* PeriodicWave::createTriangle(float sampleRate) |
michael@0 | 81 | { |
michael@0 | 82 | PeriodicWave* periodicWave = new PeriodicWave(sampleRate); |
michael@0 | 83 | periodicWave->generateBasicWaveform(OscillatorType::Triangle); |
michael@0 | 84 | return periodicWave; |
michael@0 | 85 | } |
michael@0 | 86 | |
michael@0 | 87 | PeriodicWave::PeriodicWave(float sampleRate) |
michael@0 | 88 | : m_sampleRate(sampleRate) |
michael@0 | 89 | , m_periodicWaveSize(PeriodicWaveSize) |
michael@0 | 90 | , m_numberOfRanges(NumberOfRanges) |
michael@0 | 91 | , m_centsPerRange(CentsPerRange) |
michael@0 | 92 | { |
michael@0 | 93 | float nyquist = 0.5 * m_sampleRate; |
michael@0 | 94 | m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials(); |
michael@0 | 95 | m_rateScale = m_periodicWaveSize / m_sampleRate; |
michael@0 | 96 | } |
michael@0 | 97 | |
michael@0 | 98 | size_t PeriodicWave::sizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const |
michael@0 | 99 | { |
michael@0 | 100 | size_t amount = aMallocSizeOf(this); |
michael@0 | 101 | |
michael@0 | 102 | amount += m_bandLimitedTables.SizeOfExcludingThis(aMallocSizeOf); |
michael@0 | 103 | for (size_t i = 0; i < m_bandLimitedTables.Length(); i++) { |
michael@0 | 104 | if (m_bandLimitedTables[i]) { |
michael@0 | 105 | amount += m_bandLimitedTables[i]->SizeOfIncludingThis(aMallocSizeOf); |
michael@0 | 106 | } |
michael@0 | 107 | } |
michael@0 | 108 | |
michael@0 | 109 | return amount; |
michael@0 | 110 | } |
michael@0 | 111 | |
michael@0 | 112 | void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor) |
michael@0 | 113 | { |
michael@0 | 114 | // Negative frequencies are allowed, in which case we alias |
michael@0 | 115 | // to the positive frequency. |
michael@0 | 116 | fundamentalFrequency = fabsf(fundamentalFrequency); |
michael@0 | 117 | |
michael@0 | 118 | // Calculate the pitch range. |
michael@0 | 119 | float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5; |
michael@0 | 120 | float centsAboveLowestFrequency = logf(ratio)/logf(2.0f) * 1200; |
michael@0 | 121 | |
michael@0 | 122 | // Add one to round-up to the next range just in time to truncate |
michael@0 | 123 | // partials before aliasing occurs. |
michael@0 | 124 | float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange; |
michael@0 | 125 | |
michael@0 | 126 | pitchRange = std::max(pitchRange, 0.0f); |
michael@0 | 127 | pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1)); |
michael@0 | 128 | |
michael@0 | 129 | // The words "lower" and "higher" refer to the table data having |
michael@0 | 130 | // the lower and higher numbers of partials. It's a little confusing |
michael@0 | 131 | // since the range index gets larger the more partials we cull out. |
michael@0 | 132 | // So the lower table data will have a larger range index. |
michael@0 | 133 | unsigned rangeIndex1 = static_cast<unsigned>(pitchRange); |
michael@0 | 134 | unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1; |
michael@0 | 135 | |
michael@0 | 136 | lowerWaveData = m_bandLimitedTables[rangeIndex2]->Elements(); |
michael@0 | 137 | higherWaveData = m_bandLimitedTables[rangeIndex1]->Elements(); |
michael@0 | 138 | |
michael@0 | 139 | // Ranges from 0 -> 1 to interpolate between lower -> higher. |
michael@0 | 140 | tableInterpolationFactor = pitchRange - rangeIndex1; |
michael@0 | 141 | } |
michael@0 | 142 | |
michael@0 | 143 | unsigned PeriodicWave::maxNumberOfPartials() const |
michael@0 | 144 | { |
michael@0 | 145 | return m_periodicWaveSize / 2; |
michael@0 | 146 | } |
michael@0 | 147 | |
michael@0 | 148 | unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const |
michael@0 | 149 | { |
michael@0 | 150 | // Number of cents below nyquist where we cull partials. |
michael@0 | 151 | float centsToCull = rangeIndex * m_centsPerRange; |
michael@0 | 152 | |
michael@0 | 153 | // A value from 0 -> 1 representing what fraction of the partials to keep. |
michael@0 | 154 | float cullingScale = pow(2, -centsToCull / 1200); |
michael@0 | 155 | |
michael@0 | 156 | // The very top range will have all the partials culled. |
michael@0 | 157 | unsigned numberOfPartials = cullingScale * maxNumberOfPartials(); |
michael@0 | 158 | |
michael@0 | 159 | return numberOfPartials; |
michael@0 | 160 | } |
michael@0 | 161 | |
michael@0 | 162 | // Convert into time-domain wave buffers. |
michael@0 | 163 | // One table is created for each range for non-aliasing playback |
michael@0 | 164 | // at different playback rates. Thus, higher ranges have more |
michael@0 | 165 | // high-frequency partials culled out. |
michael@0 | 166 | void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents) |
michael@0 | 167 | { |
michael@0 | 168 | float normalizationScale = 1; |
michael@0 | 169 | |
michael@0 | 170 | unsigned fftSize = m_periodicWaveSize; |
michael@0 | 171 | unsigned halfSize = fftSize / 2 + 1; |
michael@0 | 172 | unsigned i; |
michael@0 | 173 | |
michael@0 | 174 | numberOfComponents = std::min(numberOfComponents, halfSize); |
michael@0 | 175 | |
michael@0 | 176 | m_bandLimitedTables.SetCapacity(m_numberOfRanges); |
michael@0 | 177 | |
michael@0 | 178 | for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) { |
michael@0 | 179 | // This FFTBlock is used to cull partials (represented by frequency bins). |
michael@0 | 180 | FFTBlock frame(fftSize); |
michael@0 | 181 | nsAutoArrayPtr<float> realP(new float[halfSize]); |
michael@0 | 182 | nsAutoArrayPtr<float> imagP(new float[halfSize]); |
michael@0 | 183 | |
michael@0 | 184 | // Copy from loaded frequency data and scale. |
michael@0 | 185 | float scale = fftSize; |
michael@0 | 186 | AudioBufferCopyWithScale(realData, scale, realP, numberOfComponents); |
michael@0 | 187 | AudioBufferCopyWithScale(imagData, scale, imagP, numberOfComponents); |
michael@0 | 188 | |
michael@0 | 189 | // If fewer components were provided than 1/2 FFT size, |
michael@0 | 190 | // then clear the remaining bins. |
michael@0 | 191 | for (i = numberOfComponents; i < halfSize; ++i) { |
michael@0 | 192 | realP[i] = 0; |
michael@0 | 193 | imagP[i] = 0; |
michael@0 | 194 | } |
michael@0 | 195 | |
michael@0 | 196 | // Generate complex conjugate because of the way the |
michael@0 | 197 | // inverse FFT is defined. |
michael@0 | 198 | float minusOne = -1; |
michael@0 | 199 | AudioBufferInPlaceScale(imagP, minusOne, halfSize); |
michael@0 | 200 | |
michael@0 | 201 | // Find the starting bin where we should start culling. |
michael@0 | 202 | // We need to clear out the highest frequencies to band-limit |
michael@0 | 203 | // the waveform. |
michael@0 | 204 | unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex); |
michael@0 | 205 | |
michael@0 | 206 | // Cull the aliasing partials for this pitch range. |
michael@0 | 207 | for (i = numberOfPartials + 1; i < halfSize; ++i) { |
michael@0 | 208 | realP[i] = 0; |
michael@0 | 209 | imagP[i] = 0; |
michael@0 | 210 | } |
michael@0 | 211 | // Clear nyquist if necessary. |
michael@0 | 212 | if (numberOfPartials < halfSize) |
michael@0 | 213 | realP[halfSize-1] = 0; |
michael@0 | 214 | |
michael@0 | 215 | // Clear any DC-offset. |
michael@0 | 216 | realP[0] = 0; |
michael@0 | 217 | |
michael@0 | 218 | // Clear values which have no effect. |
michael@0 | 219 | imagP[0] = 0; |
michael@0 | 220 | imagP[halfSize-1] = 0; |
michael@0 | 221 | |
michael@0 | 222 | // Create the band-limited table. |
michael@0 | 223 | AudioFloatArray* table = new AudioFloatArray(m_periodicWaveSize); |
michael@0 | 224 | m_bandLimitedTables.AppendElement(table); |
michael@0 | 225 | |
michael@0 | 226 | // Apply an inverse FFT to generate the time-domain table data. |
michael@0 | 227 | float* data = m_bandLimitedTables[rangeIndex]->Elements(); |
michael@0 | 228 | frame.PerformInverseFFT(realP, imagP, data); |
michael@0 | 229 | |
michael@0 | 230 | // For the first range (which has the highest power), calculate |
michael@0 | 231 | // its peak value then compute normalization scale. |
michael@0 | 232 | if (!rangeIndex) { |
michael@0 | 233 | float maxValue; |
michael@0 | 234 | maxValue = AudioBufferPeakValue(data, m_periodicWaveSize); |
michael@0 | 235 | |
michael@0 | 236 | if (maxValue) |
michael@0 | 237 | normalizationScale = 1.0f / maxValue; |
michael@0 | 238 | } |
michael@0 | 239 | |
michael@0 | 240 | // Apply normalization scale. |
michael@0 | 241 | AudioBufferInPlaceScale(data, normalizationScale, m_periodicWaveSize); |
michael@0 | 242 | } |
michael@0 | 243 | } |
michael@0 | 244 | |
michael@0 | 245 | void PeriodicWave::generateBasicWaveform(OscillatorType shape) |
michael@0 | 246 | { |
michael@0 | 247 | const float piFloat = M_PI; |
michael@0 | 248 | unsigned fftSize = periodicWaveSize(); |
michael@0 | 249 | unsigned halfSize = fftSize / 2 + 1; |
michael@0 | 250 | |
michael@0 | 251 | AudioFloatArray real(halfSize); |
michael@0 | 252 | AudioFloatArray imag(halfSize); |
michael@0 | 253 | float* realP = real.Elements(); |
michael@0 | 254 | float* imagP = imag.Elements(); |
michael@0 | 255 | |
michael@0 | 256 | // Clear DC and Nyquist. |
michael@0 | 257 | realP[0] = 0; |
michael@0 | 258 | imagP[0] = 0; |
michael@0 | 259 | realP[halfSize-1] = 0; |
michael@0 | 260 | imagP[halfSize-1] = 0; |
michael@0 | 261 | |
michael@0 | 262 | for (unsigned n = 1; n < halfSize; ++n) { |
michael@0 | 263 | float omega = 2 * piFloat * n; |
michael@0 | 264 | float invOmega = 1 / omega; |
michael@0 | 265 | |
michael@0 | 266 | // Fourier coefficients according to standard definition. |
michael@0 | 267 | float a; // Coefficient for cos(). |
michael@0 | 268 | float b; // Coefficient for sin(). |
michael@0 | 269 | |
michael@0 | 270 | // Calculate Fourier coefficients depending on the shape. |
michael@0 | 271 | // Note that the overall scaling (magnitude) of the waveforms |
michael@0 | 272 | // is normalized in createBandLimitedTables(). |
michael@0 | 273 | switch (shape) { |
michael@0 | 274 | case OscillatorType::Sine: |
michael@0 | 275 | // Standard sine wave function. |
michael@0 | 276 | a = 0; |
michael@0 | 277 | b = (n == 1) ? 1 : 0; |
michael@0 | 278 | break; |
michael@0 | 279 | case OscillatorType::Square: |
michael@0 | 280 | // Square-shaped waveform with the first half its maximum value |
michael@0 | 281 | // and the second half its minimum value. |
michael@0 | 282 | a = 0; |
michael@0 | 283 | b = invOmega * ((n & 1) ? 2 : 0); |
michael@0 | 284 | break; |
michael@0 | 285 | case OscillatorType::Sawtooth: |
michael@0 | 286 | // Sawtooth-shaped waveform with the first half ramping from |
michael@0 | 287 | // zero to maximum and the second half from minimum to zero. |
michael@0 | 288 | a = 0; |
michael@0 | 289 | b = -invOmega * cos(0.5 * omega); |
michael@0 | 290 | break; |
michael@0 | 291 | case OscillatorType::Triangle: |
michael@0 | 292 | // Triangle-shaped waveform going from its maximum value to |
michael@0 | 293 | // its minimum value then back to the maximum value. |
michael@0 | 294 | a = (4 - 4 * cos(0.5 * omega)) / (n * n * piFloat * piFloat); |
michael@0 | 295 | b = 0; |
michael@0 | 296 | break; |
michael@0 | 297 | default: |
michael@0 | 298 | NS_NOTREACHED("invalid oscillator type"); |
michael@0 | 299 | a = 0; |
michael@0 | 300 | b = 0; |
michael@0 | 301 | break; |
michael@0 | 302 | } |
michael@0 | 303 | |
michael@0 | 304 | realP[n] = a; |
michael@0 | 305 | imagP[n] = b; |
michael@0 | 306 | } |
michael@0 | 307 | |
michael@0 | 308 | createBandLimitedTables(realP, imagP, halfSize); |
michael@0 | 309 | } |
michael@0 | 310 | |
michael@0 | 311 | } // namespace WebCore |