Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | /* -*- Mode: javascript; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
michael@0 | 2 | /* vim: set ts=2 et sw=2 tw=80: */ |
michael@0 | 3 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 4 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 5 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 6 | "use strict"; |
michael@0 | 7 | |
michael@0 | 8 | /** |
michael@0 | 9 | * This worker handles picking, given a set of vertices and a ray (calculates |
michael@0 | 10 | * the intersection points and offers back information about the closest hit). |
michael@0 | 11 | * |
michael@0 | 12 | * Used in the TiltVisualization.Presenter object. |
michael@0 | 13 | */ |
michael@0 | 14 | self.onmessage = function TWP_onMessage(event) |
michael@0 | 15 | { |
michael@0 | 16 | let data = event.data; |
michael@0 | 17 | let vertices = data.vertices; |
michael@0 | 18 | let ray = data.ray; |
michael@0 | 19 | |
michael@0 | 20 | let intersection = null; |
michael@0 | 21 | let hit = []; |
michael@0 | 22 | |
michael@0 | 23 | // calculates the squared distance between two points |
michael@0 | 24 | function dsq(p1, p2) { |
michael@0 | 25 | let xd = p2[0] - p1[0]; |
michael@0 | 26 | let yd = p2[1] - p1[1]; |
michael@0 | 27 | let zd = p2[2] - p1[2]; |
michael@0 | 28 | |
michael@0 | 29 | return xd * xd + yd * yd + zd * zd; |
michael@0 | 30 | } |
michael@0 | 31 | |
michael@0 | 32 | // check each stack face in the visualization mesh for intersections with |
michael@0 | 33 | // the mouse ray (using a ray picking algorithm) |
michael@0 | 34 | for (let i = 0, len = vertices.length; i < len; i += 36) { |
michael@0 | 35 | |
michael@0 | 36 | // the front quad |
michael@0 | 37 | let v0f = [vertices[i], vertices[i + 1], vertices[i + 2]]; |
michael@0 | 38 | let v1f = [vertices[i + 3], vertices[i + 4], vertices[i + 5]]; |
michael@0 | 39 | let v2f = [vertices[i + 6], vertices[i + 7], vertices[i + 8]]; |
michael@0 | 40 | let v3f = [vertices[i + 9], vertices[i + 10], vertices[i + 11]]; |
michael@0 | 41 | |
michael@0 | 42 | // the back quad |
michael@0 | 43 | let v0b = [vertices[i + 24], vertices[i + 25], vertices[i + 26]]; |
michael@0 | 44 | let v1b = [vertices[i + 27], vertices[i + 28], vertices[i + 29]]; |
michael@0 | 45 | let v2b = [vertices[i + 30], vertices[i + 31], vertices[i + 32]]; |
michael@0 | 46 | let v3b = [vertices[i + 33], vertices[i + 34], vertices[i + 35]]; |
michael@0 | 47 | |
michael@0 | 48 | // don't do anything with degenerate quads |
michael@0 | 49 | if (!v0f[0] && !v1f[0] && !v2f[0] && !v3f[0]) { |
michael@0 | 50 | continue; |
michael@0 | 51 | } |
michael@0 | 52 | |
michael@0 | 53 | // for each triangle in the stack box, check for the intersections |
michael@0 | 54 | if (self.intersect(v0f, v1f, v2f, ray, hit) || // front left |
michael@0 | 55 | self.intersect(v0f, v2f, v3f, ray, hit) || // front right |
michael@0 | 56 | self.intersect(v0b, v1b, v1f, ray, hit) || // left back |
michael@0 | 57 | self.intersect(v0b, v1f, v0f, ray, hit) || // left front |
michael@0 | 58 | self.intersect(v3f, v2b, v3b, ray, hit) || // right back |
michael@0 | 59 | self.intersect(v3f, v2f, v2b, ray, hit) || // right front |
michael@0 | 60 | self.intersect(v0b, v0f, v3f, ray, hit) || // top left |
michael@0 | 61 | self.intersect(v0b, v3f, v3b, ray, hit) || // top right |
michael@0 | 62 | self.intersect(v1f, v1b, v2b, ray, hit) || // bottom left |
michael@0 | 63 | self.intersect(v1f, v2b, v2f, ray, hit)) { // bottom right |
michael@0 | 64 | |
michael@0 | 65 | // calculate the distance between the intersection hit point and camera |
michael@0 | 66 | let d = dsq(hit, ray.origin); |
michael@0 | 67 | |
michael@0 | 68 | // we're picking the closest stack in the mesh from the camera |
michael@0 | 69 | if (intersection === null || d < intersection.distance) { |
michael@0 | 70 | intersection = { |
michael@0 | 71 | // each mesh stack is composed of 12 vertices, so there's information |
michael@0 | 72 | // about a node once in 12 * 3 = 36 iterations (to avoid duplication) |
michael@0 | 73 | index: i / 36, |
michael@0 | 74 | distance: d |
michael@0 | 75 | }; |
michael@0 | 76 | } |
michael@0 | 77 | } |
michael@0 | 78 | } |
michael@0 | 79 | |
michael@0 | 80 | self.postMessage(intersection); |
michael@0 | 81 | close(); |
michael@0 | 82 | }; |
michael@0 | 83 | |
michael@0 | 84 | /** |
michael@0 | 85 | * Utility function for finding intersections between a ray and a triangle. |
michael@0 | 86 | */ |
michael@0 | 87 | self.intersect = (function() { |
michael@0 | 88 | |
michael@0 | 89 | // creates a new instance of a vector |
michael@0 | 90 | function create() { |
michael@0 | 91 | return new Float32Array(3); |
michael@0 | 92 | } |
michael@0 | 93 | |
michael@0 | 94 | // performs a vector addition |
michael@0 | 95 | function add(aVec, aVec2, aDest) { |
michael@0 | 96 | aDest[0] = aVec[0] + aVec2[0]; |
michael@0 | 97 | aDest[1] = aVec[1] + aVec2[1]; |
michael@0 | 98 | aDest[2] = aVec[2] + aVec2[2]; |
michael@0 | 99 | return aDest; |
michael@0 | 100 | } |
michael@0 | 101 | |
michael@0 | 102 | // performs a vector subtraction |
michael@0 | 103 | function subtract(aVec, aVec2, aDest) { |
michael@0 | 104 | aDest[0] = aVec[0] - aVec2[0]; |
michael@0 | 105 | aDest[1] = aVec[1] - aVec2[1]; |
michael@0 | 106 | aDest[2] = aVec[2] - aVec2[2]; |
michael@0 | 107 | return aDest; |
michael@0 | 108 | } |
michael@0 | 109 | |
michael@0 | 110 | // performs a vector scaling |
michael@0 | 111 | function scale(aVec, aVal, aDest) { |
michael@0 | 112 | aDest[0] = aVec[0] * aVal; |
michael@0 | 113 | aDest[1] = aVec[1] * aVal; |
michael@0 | 114 | aDest[2] = aVec[2] * aVal; |
michael@0 | 115 | return aDest; |
michael@0 | 116 | } |
michael@0 | 117 | |
michael@0 | 118 | // generates the cross product of two vectors |
michael@0 | 119 | function cross(aVec, aVec2, aDest) { |
michael@0 | 120 | let x = aVec[0]; |
michael@0 | 121 | let y = aVec[1]; |
michael@0 | 122 | let z = aVec[2]; |
michael@0 | 123 | let x2 = aVec2[0]; |
michael@0 | 124 | let y2 = aVec2[1]; |
michael@0 | 125 | let z2 = aVec2[2]; |
michael@0 | 126 | |
michael@0 | 127 | aDest[0] = y * z2 - z * y2; |
michael@0 | 128 | aDest[1] = z * x2 - x * z2; |
michael@0 | 129 | aDest[2] = x * y2 - y * x2; |
michael@0 | 130 | return aDest; |
michael@0 | 131 | } |
michael@0 | 132 | |
michael@0 | 133 | // calculates the dot product of two vectors |
michael@0 | 134 | function dot(aVec, aVec2) { |
michael@0 | 135 | return aVec[0] * aVec2[0] + aVec[1] * aVec2[1] + aVec[2] * aVec2[2]; |
michael@0 | 136 | } |
michael@0 | 137 | |
michael@0 | 138 | let edge1 = create(); |
michael@0 | 139 | let edge2 = create(); |
michael@0 | 140 | let pvec = create(); |
michael@0 | 141 | let tvec = create(); |
michael@0 | 142 | let qvec = create(); |
michael@0 | 143 | let lvec = create(); |
michael@0 | 144 | |
michael@0 | 145 | // checks for ray-triangle intersections using the Fast Minimum-Storage |
michael@0 | 146 | // (simplified) algorithm by Tomas Moller and Ben Trumbore |
michael@0 | 147 | return function intersect(aVert0, aVert1, aVert2, aRay, aDest) { |
michael@0 | 148 | let dir = aRay.direction; |
michael@0 | 149 | let orig = aRay.origin; |
michael@0 | 150 | |
michael@0 | 151 | // find vectors for two edges sharing vert0 |
michael@0 | 152 | subtract(aVert1, aVert0, edge1); |
michael@0 | 153 | subtract(aVert2, aVert0, edge2); |
michael@0 | 154 | |
michael@0 | 155 | // begin calculating determinant - also used to calculate the U parameter |
michael@0 | 156 | cross(dir, edge2, pvec); |
michael@0 | 157 | |
michael@0 | 158 | // if determinant is near zero, ray lines in plane of triangle |
michael@0 | 159 | let inv_det = 1 / dot(edge1, pvec); |
michael@0 | 160 | |
michael@0 | 161 | // calculate distance from vert0 to ray origin |
michael@0 | 162 | subtract(orig, aVert0, tvec); |
michael@0 | 163 | |
michael@0 | 164 | // calculate U parameter and test bounds |
michael@0 | 165 | let u = dot(tvec, pvec) * inv_det; |
michael@0 | 166 | if (u < 0 || u > 1) { |
michael@0 | 167 | return false; |
michael@0 | 168 | } |
michael@0 | 169 | |
michael@0 | 170 | // prepare to test V parameter |
michael@0 | 171 | cross(tvec, edge1, qvec); |
michael@0 | 172 | |
michael@0 | 173 | // calculate V parameter and test bounds |
michael@0 | 174 | let v = dot(dir, qvec) * inv_det; |
michael@0 | 175 | if (v < 0 || u + v > 1) { |
michael@0 | 176 | return false; |
michael@0 | 177 | } |
michael@0 | 178 | |
michael@0 | 179 | // calculate T, ray intersects triangle |
michael@0 | 180 | let t = dot(edge2, qvec) * inv_det; |
michael@0 | 181 | |
michael@0 | 182 | scale(dir, t, lvec); |
michael@0 | 183 | add(orig, lvec, aDest); |
michael@0 | 184 | return true; |
michael@0 | 185 | }; |
michael@0 | 186 | }()); |