js/src/tests/ecma/Expressions/11.5.3.js

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
michael@0 2 /* This Source Code Form is subject to the terms of the Mozilla Public
michael@0 3 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 5
michael@0 6
michael@0 7 /**
michael@0 8 File Name: 11.5.3.js
michael@0 9 ECMA Section: 11.5.3 Applying the % operator
michael@0 10 Description:
michael@0 11
michael@0 12 The binary % operator is said to yield the remainder of its operands from
michael@0 13 an implied division; the left operand is the dividend and the right operand
michael@0 14 is the divisor. In C and C++, the remainder operator accepts only integral
michael@0 15 operands, but in ECMAScript, it also accepts floating-point operands.
michael@0 16
michael@0 17 The result of a floating-point remainder operation as computed by the %
michael@0 18 operator is not the same as the "remainder" operation defined by IEEE 754.
michael@0 19 The IEEE 754 "remainder" operation computes the remainder from a rounding
michael@0 20 division, not a truncating division, and so its behavior is not analogous
michael@0 21 to that of the usual integer remainder operator. Instead the ECMAScript
michael@0 22 language defines % on floating-point operations to behave in a manner
michael@0 23 analogous to that of the Java integer remainder operator; this may be
michael@0 24 compared with the C library function fmod.
michael@0 25
michael@0 26 The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
michael@0 27
michael@0 28 If either operand is NaN, the result is NaN.
michael@0 29 The sign of the result equals the sign of the dividend.
michael@0 30 If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
michael@0 31 If the dividend is finite and the divisor is an infinity, the result equals the dividend.
michael@0 32 If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
michael@0 33 In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
michael@0 34 from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
michael@0 35 is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
michael@0 36 possible without exceeding the magnitude of the true mathematical quotient of n and d.
michael@0 37
michael@0 38 Author: christine@netscape.com
michael@0 39 Date: 12 november 1997
michael@0 40 */
michael@0 41 var SECTION = "11.5.3";
michael@0 42 var VERSION = "ECMA_1";
michael@0 43 var BUGNUMBER="111202";
michael@0 44 startTest();
michael@0 45
michael@0 46
michael@0 47 writeHeaderToLog( SECTION + " Applying the % operator");
michael@0 48
michael@0 49 // if either operand is NaN, the result is NaN.
michael@0 50
michael@0 51 new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN );
michael@0 52 new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 );
michael@0 53 new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN );
michael@0 54
michael@0 55 new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN );
michael@0 56 new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN );
michael@0 57
michael@0 58 // If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
michael@0 59 // dividend is an infinity
michael@0 60
michael@0 61 new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
michael@0 62 new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
michael@0 63 new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
michael@0 64 new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
michael@0 65
michael@0 66 new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 );
michael@0 67 new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 );
michael@0 68 new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 );
michael@0 69 new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 );
michael@0 70
michael@0 71 new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 );
michael@0 72 new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 );
michael@0 73 new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 );
michael@0 74 new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 );
michael@0 75
michael@0 76 new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
michael@0 77 new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
michael@0 78 new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE );
michael@0 79 new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
michael@0 80
michael@0 81 // divisor is 0
michael@0 82 new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 );
michael@0 83 new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 );
michael@0 84 new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 );
michael@0 85 new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 );
michael@0 86
michael@0 87 new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 );
michael@0 88 new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 );
michael@0 89 new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 );
michael@0 90 new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 );
michael@0 91
michael@0 92 new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 );
michael@0 93 new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 );
michael@0 94 new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 );
michael@0 95 new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 );
michael@0 96
michael@0 97 // If the dividend is finite and the divisor is an infinity, the result equals the dividend.
michael@0 98
michael@0 99 new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY );
michael@0 100 new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY );
michael@0 101 new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY );
michael@0 102 new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY );
michael@0 103
michael@0 104 new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
michael@0 105 new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY );
michael@0 106 new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
michael@0 107 new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
michael@0 108
michael@0 109 new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY );
michael@0 110 new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY );
michael@0 111 new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY );
michael@0 112 new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY );
michael@0 113
michael@0 114 // If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
michael@0 115
michael@0 116 new TestCase( SECTION, "0 % 1", 0, 0 % 1 );
michael@0 117 new TestCase( SECTION, "0 % -1", -0, 0 % -1 );
michael@0 118 new TestCase( SECTION, "-0 % 1", -0, -0 % 1 );
michael@0 119 new TestCase( SECTION, "-0 % -1", 0, -0 % -1 );
michael@0 120
michael@0 121 // In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
michael@0 122 // from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
michael@0 123 // is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
michael@0 124 // possible without exceeding the magnitude of the true mathematical quotient of n and d.
michael@0 125
michael@0 126 test();
michael@0 127

mercurial