python/mock-1.0.0/README.txt

Wed, 31 Dec 2014 06:55:50 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:55:50 +0100
changeset 2
7e26c7da4463
permissions
-rw-r--r--

Added tag UPSTREAM_283F7C6 for changeset ca08bd8f51b2

michael@0 1 mock is a library for testing in Python. It allows you to replace parts of
michael@0 2 your system under test with mock objects and make assertions about how they
michael@0 3 have been used.
michael@0 4
michael@0 5 mock is now part of the Python standard library, available as `unittest.mock <
michael@0 6 http://docs.python.org/py3k/library/unittest.mock.html#module-unittest.mock>`_
michael@0 7 in Python 3.3 onwards.
michael@0 8
michael@0 9 mock provides a core `MagicMock` class removing the need to create a host of
michael@0 10 stubs throughout your test suite. After performing an action, you can make
michael@0 11 assertions about which methods / attributes were used and arguments they were
michael@0 12 called with. You can also specify return values and set needed attributes in
michael@0 13 the normal way.
michael@0 14
michael@0 15 mock is tested on Python versions 2.4-2.7 and Python 3. mock is also tested
michael@0 16 with the latest versions of Jython and pypy.
michael@0 17
michael@0 18 The mock module also provides utility functions / objects to assist with
michael@0 19 testing, particularly monkey patching.
michael@0 20
michael@0 21 * `PDF documentation for 1.0 beta 1
michael@0 22 <http://www.voidspace.org.uk/downloads/mock-1.0.0.pdf>`_
michael@0 23 * `mock on google code (repository and issue tracker)
michael@0 24 <http://code.google.com/p/mock/>`_
michael@0 25 * `mock documentation
michael@0 26 <http://www.voidspace.org.uk/python/mock/>`_
michael@0 27 * `mock on PyPI <http://pypi.python.org/pypi/mock/>`_
michael@0 28 * `Mailing list (testing-in-python@lists.idyll.org)
michael@0 29 <http://lists.idyll.org/listinfo/testing-in-python>`_
michael@0 30
michael@0 31 Mock is very easy to use and is designed for use with
michael@0 32 `unittest <http://pypi.python.org/pypi/unittest2>`_. Mock is based on
michael@0 33 the 'action -> assertion' pattern instead of 'record -> replay' used by many
michael@0 34 mocking frameworks. See the `mock documentation`_ for full details.
michael@0 35
michael@0 36 Mock objects create all attributes and methods as you access them and store
michael@0 37 details of how they have been used. You can configure them, to specify return
michael@0 38 values or limit what attributes are available, and then make assertions about
michael@0 39 how they have been used::
michael@0 40
michael@0 41 >>> from mock import Mock
michael@0 42 >>> real = ProductionClass()
michael@0 43 >>> real.method = Mock(return_value=3)
michael@0 44 >>> real.method(3, 4, 5, key='value')
michael@0 45 3
michael@0 46 >>> real.method.assert_called_with(3, 4, 5, key='value')
michael@0 47
michael@0 48 `side_effect` allows you to perform side effects, return different values or
michael@0 49 raise an exception when a mock is called::
michael@0 50
michael@0 51 >>> mock = Mock(side_effect=KeyError('foo'))
michael@0 52 >>> mock()
michael@0 53 Traceback (most recent call last):
michael@0 54 ...
michael@0 55 KeyError: 'foo'
michael@0 56 >>> values = {'a': 1, 'b': 2, 'c': 3}
michael@0 57 >>> def side_effect(arg):
michael@0 58 ... return values[arg]
michael@0 59 ...
michael@0 60 >>> mock.side_effect = side_effect
michael@0 61 >>> mock('a'), mock('b'), mock('c')
michael@0 62 (3, 2, 1)
michael@0 63 >>> mock.side_effect = [5, 4, 3, 2, 1]
michael@0 64 >>> mock(), mock(), mock()
michael@0 65 (5, 4, 3)
michael@0 66
michael@0 67 Mock has many other ways you can configure it and control its behaviour. For
michael@0 68 example the `spec` argument configures the mock to take its specification from
michael@0 69 another object. Attempting to access attributes or methods on the mock that
michael@0 70 don't exist on the spec will fail with an `AttributeError`.
michael@0 71
michael@0 72 The `patch` decorator / context manager makes it easy to mock classes or
michael@0 73 objects in a module under test. The object you specify will be replaced with a
michael@0 74 mock (or other object) during the test and restored when the test ends::
michael@0 75
michael@0 76 >>> from mock import patch
michael@0 77 >>> @patch('test_module.ClassName1')
michael@0 78 ... @patch('test_module.ClassName2')
michael@0 79 ... def test(MockClass2, MockClass1):
michael@0 80 ... test_module.ClassName1()
michael@0 81 ... test_module.ClassName2()
michael@0 82
michael@0 83 ... assert MockClass1.called
michael@0 84 ... assert MockClass2.called
michael@0 85 ...
michael@0 86 >>> test()
michael@0 87
michael@0 88 .. note::
michael@0 89
michael@0 90 When you nest patch decorators the mocks are passed in to the decorated
michael@0 91 function in the same order they applied (the normal *python* order that
michael@0 92 decorators are applied). This means from the bottom up, so in the example
michael@0 93 above the mock for `test_module.ClassName2` is passed in first.
michael@0 94
michael@0 95 With `patch` it matters that you patch objects in the namespace where they
michael@0 96 are looked up. This is normally straightforward, but for a quick guide
michael@0 97 read `where to patch
michael@0 98 <http://www.voidspace.org.uk/python/mock/patch.html#where-to-patch>`_.
michael@0 99
michael@0 100 As well as a decorator `patch` can be used as a context manager in a with
michael@0 101 statement::
michael@0 102
michael@0 103 >>> with patch.object(ProductionClass, 'method') as mock_method:
michael@0 104 ... mock_method.return_value = None
michael@0 105 ... real = ProductionClass()
michael@0 106 ... real.method(1, 2, 3)
michael@0 107 ...
michael@0 108 >>> mock_method.assert_called_once_with(1, 2, 3)
michael@0 109
michael@0 110 There is also `patch.dict` for setting values in a dictionary just during the
michael@0 111 scope of a test and restoring the dictionary to its original state when the
michael@0 112 test ends::
michael@0 113
michael@0 114 >>> foo = {'key': 'value'}
michael@0 115 >>> original = foo.copy()
michael@0 116 >>> with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):
michael@0 117 ... assert foo == {'newkey': 'newvalue'}
michael@0 118 ...
michael@0 119 >>> assert foo == original
michael@0 120
michael@0 121 Mock supports the mocking of Python magic methods. The easiest way of
michael@0 122 using magic methods is with the `MagicMock` class. It allows you to do
michael@0 123 things like::
michael@0 124
michael@0 125 >>> from mock import MagicMock
michael@0 126 >>> mock = MagicMock()
michael@0 127 >>> mock.__str__.return_value = 'foobarbaz'
michael@0 128 >>> str(mock)
michael@0 129 'foobarbaz'
michael@0 130 >>> mock.__str__.assert_called_once_with()
michael@0 131
michael@0 132 Mock allows you to assign functions (or other Mock instances) to magic methods
michael@0 133 and they will be called appropriately. The MagicMock class is just a Mock
michael@0 134 variant that has all of the magic methods pre-created for you (well - all the
michael@0 135 useful ones anyway).
michael@0 136
michael@0 137 The following is an example of using magic methods with the ordinary Mock
michael@0 138 class::
michael@0 139
michael@0 140 >>> from mock import Mock
michael@0 141 >>> mock = Mock()
michael@0 142 >>> mock.__str__ = Mock(return_value = 'wheeeeee')
michael@0 143 >>> str(mock)
michael@0 144 'wheeeeee'
michael@0 145
michael@0 146 For ensuring that the mock objects your tests use have the same api as the
michael@0 147 objects they are replacing, you can use "auto-speccing". Auto-speccing can
michael@0 148 be done through the `autospec` argument to patch, or the `create_autospec`
michael@0 149 function. Auto-speccing creates mock objects that have the same attributes
michael@0 150 and methods as the objects they are replacing, and any functions and methods
michael@0 151 (including constructors) have the same call signature as the real object.
michael@0 152
michael@0 153 This ensures that your mocks will fail in the same way as your production
michael@0 154 code if they are used incorrectly::
michael@0 155
michael@0 156 >>> from mock import create_autospec
michael@0 157 >>> def function(a, b, c):
michael@0 158 ... pass
michael@0 159 ...
michael@0 160 >>> mock_function = create_autospec(function, return_value='fishy')
michael@0 161 >>> mock_function(1, 2, 3)
michael@0 162 'fishy'
michael@0 163 >>> mock_function.assert_called_once_with(1, 2, 3)
michael@0 164 >>> mock_function('wrong arguments')
michael@0 165 Traceback (most recent call last):
michael@0 166 ...
michael@0 167 TypeError: <lambda>() takes exactly 3 arguments (1 given)
michael@0 168
michael@0 169 `create_autospec` can also be used on classes, where it copies the signature of
michael@0 170 the `__init__` method, and on callable objects where it copies the signature of
michael@0 171 the `__call__` method.
michael@0 172
michael@0 173 The distribution contains tests and documentation. The tests require
michael@0 174 `unittest2 <http://pypi.python.org/pypi/unittest2>`_ to run.
michael@0 175
michael@0 176 Docs from the in-development version of `mock` can be found at
michael@0 177 `mock.readthedocs.org <http://mock.readthedocs.org>`_.

mercurial