python/mock-1.0.0/docs/examples.txt

Fri, 16 Jan 2015 18:13:44 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Fri, 16 Jan 2015 18:13:44 +0100
branch
TOR_BUG_9701
changeset 14
925c144e1f1f
permissions
-rw-r--r--

Integrate suggestion from review to improve consistency with existing code.

michael@0 1 .. _further-examples:
michael@0 2
michael@0 3 ==================
michael@0 4 Further Examples
michael@0 5 ==================
michael@0 6
michael@0 7 .. currentmodule:: mock
michael@0 8
michael@0 9 .. testsetup::
michael@0 10
michael@0 11 from datetime import date
michael@0 12
michael@0 13 BackendProvider = Mock()
michael@0 14 sys.modules['mymodule'] = mymodule = Mock(name='mymodule')
michael@0 15
michael@0 16 def grob(val):
michael@0 17 "First frob and then clear val"
michael@0 18 mymodule.frob(val)
michael@0 19 val.clear()
michael@0 20
michael@0 21 mymodule.frob = lambda val: val
michael@0 22 mymodule.grob = grob
michael@0 23 mymodule.date = date
michael@0 24
michael@0 25 class TestCase(unittest2.TestCase):
michael@0 26 def run(self):
michael@0 27 result = unittest2.TestResult()
michael@0 28 out = unittest2.TestCase.run(self, result)
michael@0 29 assert result.wasSuccessful()
michael@0 30
michael@0 31 from mock import inPy3k
michael@0 32
michael@0 33
michael@0 34
michael@0 35 For comprehensive examples, see the unit tests included in the full source
michael@0 36 distribution.
michael@0 37
michael@0 38 Here are some more examples for some slightly more advanced scenarios than in
michael@0 39 the :ref:`getting started <getting-started>` guide.
michael@0 40
michael@0 41
michael@0 42 Mocking chained calls
michael@0 43 =====================
michael@0 44
michael@0 45 Mocking chained calls is actually straightforward with mock once you
michael@0 46 understand the :attr:`~Mock.return_value` attribute. When a mock is called for
michael@0 47 the first time, or you fetch its `return_value` before it has been called, a
michael@0 48 new `Mock` is created.
michael@0 49
michael@0 50 This means that you can see how the object returned from a call to a mocked
michael@0 51 object has been used by interrogating the `return_value` mock:
michael@0 52
michael@0 53 .. doctest::
michael@0 54
michael@0 55 >>> mock = Mock()
michael@0 56 >>> mock().foo(a=2, b=3)
michael@0 57 <Mock name='mock().foo()' id='...'>
michael@0 58 >>> mock.return_value.foo.assert_called_with(a=2, b=3)
michael@0 59
michael@0 60 From here it is a simple step to configure and then make assertions about
michael@0 61 chained calls. Of course another alternative is writing your code in a more
michael@0 62 testable way in the first place...
michael@0 63
michael@0 64 So, suppose we have some code that looks a little bit like this:
michael@0 65
michael@0 66 .. doctest::
michael@0 67
michael@0 68 >>> class Something(object):
michael@0 69 ... def __init__(self):
michael@0 70 ... self.backend = BackendProvider()
michael@0 71 ... def method(self):
michael@0 72 ... response = self.backend.get_endpoint('foobar').create_call('spam', 'eggs').start_call()
michael@0 73 ... # more code
michael@0 74
michael@0 75 Assuming that `BackendProvider` is already well tested, how do we test
michael@0 76 `method()`? Specifically, we want to test that the code section `# more
michael@0 77 code` uses the response object in the correct way.
michael@0 78
michael@0 79 As this chain of calls is made from an instance attribute we can monkey patch
michael@0 80 the `backend` attribute on a `Something` instance. In this particular case
michael@0 81 we are only interested in the return value from the final call to
michael@0 82 `start_call` so we don't have much configuration to do. Let's assume the
michael@0 83 object it returns is 'file-like', so we'll ensure that our response object
michael@0 84 uses the builtin `file` as its `spec`.
michael@0 85
michael@0 86 To do this we create a mock instance as our mock backend and create a mock
michael@0 87 response object for it. To set the response as the return value for that final
michael@0 88 `start_call` we could do this:
michael@0 89
michael@0 90 `mock_backend.get_endpoint.return_value.create_call.return_value.start_call.return_value = mock_response`.
michael@0 91
michael@0 92 We can do that in a slightly nicer way using the :meth:`~Mock.configure_mock`
michael@0 93 method to directly set the return value for us:
michael@0 94
michael@0 95 .. doctest::
michael@0 96
michael@0 97 >>> something = Something()
michael@0 98 >>> mock_response = Mock(spec=file)
michael@0 99 >>> mock_backend = Mock()
michael@0 100 >>> config = {'get_endpoint.return_value.create_call.return_value.start_call.return_value': mock_response}
michael@0 101 >>> mock_backend.configure_mock(**config)
michael@0 102
michael@0 103 With these we monkey patch the "mock backend" in place and can make the real
michael@0 104 call:
michael@0 105
michael@0 106 .. doctest::
michael@0 107
michael@0 108 >>> something.backend = mock_backend
michael@0 109 >>> something.method()
michael@0 110
michael@0 111 Using :attr:`~Mock.mock_calls` we can check the chained call with a single
michael@0 112 assert. A chained call is several calls in one line of code, so there will be
michael@0 113 several entries in `mock_calls`. We can use :meth:`call.call_list` to create
michael@0 114 this list of calls for us:
michael@0 115
michael@0 116 .. doctest::
michael@0 117
michael@0 118 >>> chained = call.get_endpoint('foobar').create_call('spam', 'eggs').start_call()
michael@0 119 >>> call_list = chained.call_list()
michael@0 120 >>> assert mock_backend.mock_calls == call_list
michael@0 121
michael@0 122
michael@0 123 Partial mocking
michael@0 124 ===============
michael@0 125
michael@0 126 In some tests I wanted to mock out a call to `datetime.date.today()
michael@0 127 <http://docs.python.org/library/datetime.html#datetime.date.today>`_ to return
michael@0 128 a known date, but I didn't want to prevent the code under test from
michael@0 129 creating new date objects. Unfortunately `datetime.date` is written in C, and
michael@0 130 so I couldn't just monkey-patch out the static `date.today` method.
michael@0 131
michael@0 132 I found a simple way of doing this that involved effectively wrapping the date
michael@0 133 class with a mock, but passing through calls to the constructor to the real
michael@0 134 class (and returning real instances).
michael@0 135
michael@0 136 The :func:`patch decorator <patch>` is used here to
michael@0 137 mock out the `date` class in the module under test. The :attr:`side_effect`
michael@0 138 attribute on the mock date class is then set to a lambda function that returns
michael@0 139 a real date. When the mock date class is called a real date will be
michael@0 140 constructed and returned by `side_effect`.
michael@0 141
michael@0 142 .. doctest::
michael@0 143
michael@0 144 >>> from datetime import date
michael@0 145 >>> with patch('mymodule.date') as mock_date:
michael@0 146 ... mock_date.today.return_value = date(2010, 10, 8)
michael@0 147 ... mock_date.side_effect = lambda *args, **kw: date(*args, **kw)
michael@0 148 ...
michael@0 149 ... assert mymodule.date.today() == date(2010, 10, 8)
michael@0 150 ... assert mymodule.date(2009, 6, 8) == date(2009, 6, 8)
michael@0 151 ...
michael@0 152
michael@0 153 Note that we don't patch `datetime.date` globally, we patch `date` in the
michael@0 154 module that *uses* it. See :ref:`where to patch <where-to-patch>`.
michael@0 155
michael@0 156 When `date.today()` is called a known date is returned, but calls to the
michael@0 157 `date(...)` constructor still return normal dates. Without this you can find
michael@0 158 yourself having to calculate an expected result using exactly the same
michael@0 159 algorithm as the code under test, which is a classic testing anti-pattern.
michael@0 160
michael@0 161 Calls to the date constructor are recorded in the `mock_date` attributes
michael@0 162 (`call_count` and friends) which may also be useful for your tests.
michael@0 163
michael@0 164 An alternative way of dealing with mocking dates, or other builtin classes,
michael@0 165 is discussed in `this blog entry
michael@0 166 <http://williamjohnbert.com/2011/07/how-to-unit-testing-in-django-with-mocking-and-patching/>`_.
michael@0 167
michael@0 168
michael@0 169 Mocking a Generator Method
michael@0 170 ==========================
michael@0 171
michael@0 172 A Python generator is a function or method that uses the `yield statement
michael@0 173 <http://docs.python.org/reference/simple_stmts.html#the-yield-statement>`_ to
michael@0 174 return a series of values when iterated over [#]_.
michael@0 175
michael@0 176 A generator method / function is called to return the generator object. It is
michael@0 177 the generator object that is then iterated over. The protocol method for
michael@0 178 iteration is `__iter__
michael@0 179 <http://docs.python.org/library/stdtypes.html#container.__iter__>`_, so we can
michael@0 180 mock this using a `MagicMock`.
michael@0 181
michael@0 182 Here's an example class with an "iter" method implemented as a generator:
michael@0 183
michael@0 184 .. doctest::
michael@0 185
michael@0 186 >>> class Foo(object):
michael@0 187 ... def iter(self):
michael@0 188 ... for i in [1, 2, 3]:
michael@0 189 ... yield i
michael@0 190 ...
michael@0 191 >>> foo = Foo()
michael@0 192 >>> list(foo.iter())
michael@0 193 [1, 2, 3]
michael@0 194
michael@0 195
michael@0 196 How would we mock this class, and in particular its "iter" method?
michael@0 197
michael@0 198 To configure the values returned from the iteration (implicit in the call to
michael@0 199 `list`), we need to configure the object returned by the call to `foo.iter()`.
michael@0 200
michael@0 201 .. doctest::
michael@0 202
michael@0 203 >>> mock_foo = MagicMock()
michael@0 204 >>> mock_foo.iter.return_value = iter([1, 2, 3])
michael@0 205 >>> list(mock_foo.iter())
michael@0 206 [1, 2, 3]
michael@0 207
michael@0 208 .. [#] There are also generator expressions and more `advanced uses
michael@0 209 <http://www.dabeaz.com/coroutines/index.html>`_ of generators, but we aren't
michael@0 210 concerned about them here. A very good introduction to generators and how
michael@0 211 powerful they are is: `Generator Tricks for Systems Programmers
michael@0 212 <http://www.dabeaz.com/generators/>`_.
michael@0 213
michael@0 214
michael@0 215 Applying the same patch to every test method
michael@0 216 ============================================
michael@0 217
michael@0 218 If you want several patches in place for multiple test methods the obvious way
michael@0 219 is to apply the patch decorators to every method. This can feel like unnecessary
michael@0 220 repetition. For Python 2.6 or more recent you can use `patch` (in all its
michael@0 221 various forms) as a class decorator. This applies the patches to all test
michael@0 222 methods on the class. A test method is identified by methods whose names start
michael@0 223 with `test`:
michael@0 224
michael@0 225 .. doctest::
michael@0 226
michael@0 227 >>> @patch('mymodule.SomeClass')
michael@0 228 ... class MyTest(TestCase):
michael@0 229 ...
michael@0 230 ... def test_one(self, MockSomeClass):
michael@0 231 ... self.assertTrue(mymodule.SomeClass is MockSomeClass)
michael@0 232 ...
michael@0 233 ... def test_two(self, MockSomeClass):
michael@0 234 ... self.assertTrue(mymodule.SomeClass is MockSomeClass)
michael@0 235 ...
michael@0 236 ... def not_a_test(self):
michael@0 237 ... return 'something'
michael@0 238 ...
michael@0 239 >>> MyTest('test_one').test_one()
michael@0 240 >>> MyTest('test_two').test_two()
michael@0 241 >>> MyTest('test_two').not_a_test()
michael@0 242 'something'
michael@0 243
michael@0 244 An alternative way of managing patches is to use the :ref:`start-and-stop`.
michael@0 245 These allow you to move the patching into your `setUp` and `tearDown` methods.
michael@0 246
michael@0 247 .. doctest::
michael@0 248
michael@0 249 >>> class MyTest(TestCase):
michael@0 250 ... def setUp(self):
michael@0 251 ... self.patcher = patch('mymodule.foo')
michael@0 252 ... self.mock_foo = self.patcher.start()
michael@0 253 ...
michael@0 254 ... def test_foo(self):
michael@0 255 ... self.assertTrue(mymodule.foo is self.mock_foo)
michael@0 256 ...
michael@0 257 ... def tearDown(self):
michael@0 258 ... self.patcher.stop()
michael@0 259 ...
michael@0 260 >>> MyTest('test_foo').run()
michael@0 261
michael@0 262 If you use this technique you must ensure that the patching is "undone" by
michael@0 263 calling `stop`. This can be fiddlier than you might think, because if an
michael@0 264 exception is raised in the setUp then tearDown is not called. `unittest2
michael@0 265 <http://pypi.python.org/pypi/unittest2>`_ cleanup functions make this simpler:
michael@0 266
michael@0 267
michael@0 268 .. doctest::
michael@0 269
michael@0 270 >>> class MyTest(TestCase):
michael@0 271 ... def setUp(self):
michael@0 272 ... patcher = patch('mymodule.foo')
michael@0 273 ... self.addCleanup(patcher.stop)
michael@0 274 ... self.mock_foo = patcher.start()
michael@0 275 ...
michael@0 276 ... def test_foo(self):
michael@0 277 ... self.assertTrue(mymodule.foo is self.mock_foo)
michael@0 278 ...
michael@0 279 >>> MyTest('test_foo').run()
michael@0 280
michael@0 281
michael@0 282 Mocking Unbound Methods
michael@0 283 =======================
michael@0 284
michael@0 285 Whilst writing tests today I needed to patch an *unbound method* (patching the
michael@0 286 method on the class rather than on the instance). I needed self to be passed
michael@0 287 in as the first argument because I want to make asserts about which objects
michael@0 288 were calling this particular method. The issue is that you can't patch with a
michael@0 289 mock for this, because if you replace an unbound method with a mock it doesn't
michael@0 290 become a bound method when fetched from the instance, and so it doesn't get
michael@0 291 self passed in. The workaround is to patch the unbound method with a real
michael@0 292 function instead. The :func:`patch` decorator makes it so simple to
michael@0 293 patch out methods with a mock that having to create a real function becomes a
michael@0 294 nuisance.
michael@0 295
michael@0 296 If you pass `autospec=True` to patch then it does the patching with a
michael@0 297 *real* function object. This function object has the same signature as the one
michael@0 298 it is replacing, but delegates to a mock under the hood. You still get your
michael@0 299 mock auto-created in exactly the same way as before. What it means though, is
michael@0 300 that if you use it to patch out an unbound method on a class the mocked
michael@0 301 function will be turned into a bound method if it is fetched from an instance.
michael@0 302 It will have `self` passed in as the first argument, which is exactly what I
michael@0 303 wanted:
michael@0 304
michael@0 305 .. doctest::
michael@0 306
michael@0 307 >>> class Foo(object):
michael@0 308 ... def foo(self):
michael@0 309 ... pass
michael@0 310 ...
michael@0 311 >>> with patch.object(Foo, 'foo', autospec=True) as mock_foo:
michael@0 312 ... mock_foo.return_value = 'foo'
michael@0 313 ... foo = Foo()
michael@0 314 ... foo.foo()
michael@0 315 ...
michael@0 316 'foo'
michael@0 317 >>> mock_foo.assert_called_once_with(foo)
michael@0 318
michael@0 319 If we don't use `autospec=True` then the unbound method is patched out
michael@0 320 with a Mock instance instead, and isn't called with `self`.
michael@0 321
michael@0 322
michael@0 323 Checking multiple calls with mock
michael@0 324 =================================
michael@0 325
michael@0 326 mock has a nice API for making assertions about how your mock objects are used.
michael@0 327
michael@0 328 .. doctest::
michael@0 329
michael@0 330 >>> mock = Mock()
michael@0 331 >>> mock.foo_bar.return_value = None
michael@0 332 >>> mock.foo_bar('baz', spam='eggs')
michael@0 333 >>> mock.foo_bar.assert_called_with('baz', spam='eggs')
michael@0 334
michael@0 335 If your mock is only being called once you can use the
michael@0 336 :meth:`assert_called_once_with` method that also asserts that the
michael@0 337 :attr:`call_count` is one.
michael@0 338
michael@0 339 .. doctest::
michael@0 340
michael@0 341 >>> mock.foo_bar.assert_called_once_with('baz', spam='eggs')
michael@0 342 >>> mock.foo_bar()
michael@0 343 >>> mock.foo_bar.assert_called_once_with('baz', spam='eggs')
michael@0 344 Traceback (most recent call last):
michael@0 345 ...
michael@0 346 AssertionError: Expected to be called once. Called 2 times.
michael@0 347
michael@0 348 Both `assert_called_with` and `assert_called_once_with` make assertions about
michael@0 349 the *most recent* call. If your mock is going to be called several times, and
michael@0 350 you want to make assertions about *all* those calls you can use
michael@0 351 :attr:`~Mock.call_args_list`:
michael@0 352
michael@0 353 .. doctest::
michael@0 354
michael@0 355 >>> mock = Mock(return_value=None)
michael@0 356 >>> mock(1, 2, 3)
michael@0 357 >>> mock(4, 5, 6)
michael@0 358 >>> mock()
michael@0 359 >>> mock.call_args_list
michael@0 360 [call(1, 2, 3), call(4, 5, 6), call()]
michael@0 361
michael@0 362 The :data:`call` helper makes it easy to make assertions about these calls. You
michael@0 363 can build up a list of expected calls and compare it to `call_args_list`. This
michael@0 364 looks remarkably similar to the repr of the `call_args_list`:
michael@0 365
michael@0 366 .. doctest::
michael@0 367
michael@0 368 >>> expected = [call(1, 2, 3), call(4, 5, 6), call()]
michael@0 369 >>> mock.call_args_list == expected
michael@0 370 True
michael@0 371
michael@0 372
michael@0 373 Coping with mutable arguments
michael@0 374 =============================
michael@0 375
michael@0 376 Another situation is rare, but can bite you, is when your mock is called with
michael@0 377 mutable arguments. `call_args` and `call_args_list` store *references* to the
michael@0 378 arguments. If the arguments are mutated by the code under test then you can no
michael@0 379 longer make assertions about what the values were when the mock was called.
michael@0 380
michael@0 381 Here's some example code that shows the problem. Imagine the following functions
michael@0 382 defined in 'mymodule'::
michael@0 383
michael@0 384 def frob(val):
michael@0 385 pass
michael@0 386
michael@0 387 def grob(val):
michael@0 388 "First frob and then clear val"
michael@0 389 frob(val)
michael@0 390 val.clear()
michael@0 391
michael@0 392 When we try to test that `grob` calls `frob` with the correct argument look
michael@0 393 what happens:
michael@0 394
michael@0 395 .. doctest::
michael@0 396
michael@0 397 >>> with patch('mymodule.frob') as mock_frob:
michael@0 398 ... val = set([6])
michael@0 399 ... mymodule.grob(val)
michael@0 400 ...
michael@0 401 >>> val
michael@0 402 set([])
michael@0 403 >>> mock_frob.assert_called_with(set([6]))
michael@0 404 Traceback (most recent call last):
michael@0 405 ...
michael@0 406 AssertionError: Expected: ((set([6]),), {})
michael@0 407 Called with: ((set([]),), {})
michael@0 408
michael@0 409 One possibility would be for mock to copy the arguments you pass in. This
michael@0 410 could then cause problems if you do assertions that rely on object identity
michael@0 411 for equality.
michael@0 412
michael@0 413 Here's one solution that uses the :attr:`side_effect`
michael@0 414 functionality. If you provide a `side_effect` function for a mock then
michael@0 415 `side_effect` will be called with the same args as the mock. This gives us an
michael@0 416 opportunity to copy the arguments and store them for later assertions. In this
michael@0 417 example I'm using *another* mock to store the arguments so that I can use the
michael@0 418 mock methods for doing the assertion. Again a helper function sets this up for
michael@0 419 me.
michael@0 420
michael@0 421 .. doctest::
michael@0 422
michael@0 423 >>> from copy import deepcopy
michael@0 424 >>> from mock import Mock, patch, DEFAULT
michael@0 425 >>> def copy_call_args(mock):
michael@0 426 ... new_mock = Mock()
michael@0 427 ... def side_effect(*args, **kwargs):
michael@0 428 ... args = deepcopy(args)
michael@0 429 ... kwargs = deepcopy(kwargs)
michael@0 430 ... new_mock(*args, **kwargs)
michael@0 431 ... return DEFAULT
michael@0 432 ... mock.side_effect = side_effect
michael@0 433 ... return new_mock
michael@0 434 ...
michael@0 435 >>> with patch('mymodule.frob') as mock_frob:
michael@0 436 ... new_mock = copy_call_args(mock_frob)
michael@0 437 ... val = set([6])
michael@0 438 ... mymodule.grob(val)
michael@0 439 ...
michael@0 440 >>> new_mock.assert_called_with(set([6]))
michael@0 441 >>> new_mock.call_args
michael@0 442 call(set([6]))
michael@0 443
michael@0 444 `copy_call_args` is called with the mock that will be called. It returns a new
michael@0 445 mock that we do the assertion on. The `side_effect` function makes a copy of
michael@0 446 the args and calls our `new_mock` with the copy.
michael@0 447
michael@0 448 .. note::
michael@0 449
michael@0 450 If your mock is only going to be used once there is an easier way of
michael@0 451 checking arguments at the point they are called. You can simply do the
michael@0 452 checking inside a `side_effect` function.
michael@0 453
michael@0 454 .. doctest::
michael@0 455
michael@0 456 >>> def side_effect(arg):
michael@0 457 ... assert arg == set([6])
michael@0 458 ...
michael@0 459 >>> mock = Mock(side_effect=side_effect)
michael@0 460 >>> mock(set([6]))
michael@0 461 >>> mock(set())
michael@0 462 Traceback (most recent call last):
michael@0 463 ...
michael@0 464 AssertionError
michael@0 465
michael@0 466 An alternative approach is to create a subclass of `Mock` or `MagicMock` that
michael@0 467 copies (using `copy.deepcopy
michael@0 468 <http://docs.python.org/library/copy.html#copy.deepcopy>`_) the arguments.
michael@0 469 Here's an example implementation:
michael@0 470
michael@0 471 .. doctest::
michael@0 472
michael@0 473 >>> from copy import deepcopy
michael@0 474 >>> class CopyingMock(MagicMock):
michael@0 475 ... def __call__(self, *args, **kwargs):
michael@0 476 ... args = deepcopy(args)
michael@0 477 ... kwargs = deepcopy(kwargs)
michael@0 478 ... return super(CopyingMock, self).__call__(*args, **kwargs)
michael@0 479 ...
michael@0 480 >>> c = CopyingMock(return_value=None)
michael@0 481 >>> arg = set()
michael@0 482 >>> c(arg)
michael@0 483 >>> arg.add(1)
michael@0 484 >>> c.assert_called_with(set())
michael@0 485 >>> c.assert_called_with(arg)
michael@0 486 Traceback (most recent call last):
michael@0 487 ...
michael@0 488 AssertionError: Expected call: mock(set([1]))
michael@0 489 Actual call: mock(set([]))
michael@0 490 >>> c.foo
michael@0 491 <CopyingMock name='mock.foo' id='...'>
michael@0 492
michael@0 493 When you subclass `Mock` or `MagicMock` all dynamically created attributes,
michael@0 494 and the `return_value` will use your subclass automatically. That means all
michael@0 495 children of a `CopyingMock` will also have the type `CopyingMock`.
michael@0 496
michael@0 497
michael@0 498 Raising exceptions on attribute access
michael@0 499 ======================================
michael@0 500
michael@0 501 You can use :class:`PropertyMock` to mimic the behaviour of properties. This
michael@0 502 includes raising exceptions when an attribute is accessed.
michael@0 503
michael@0 504 Here's an example raising a `ValueError` when the 'foo' attribute is accessed:
michael@0 505
michael@0 506 .. doctest::
michael@0 507
michael@0 508 >>> m = MagicMock()
michael@0 509 >>> p = PropertyMock(side_effect=ValueError)
michael@0 510 >>> type(m).foo = p
michael@0 511 >>> m.foo
michael@0 512 Traceback (most recent call last):
michael@0 513 ....
michael@0 514 ValueError
michael@0 515
michael@0 516 Because every mock object has its own type, a new subclass of whichever mock
michael@0 517 class you're using, all mock objects are isolated from each other. You can
michael@0 518 safely attach properties (or other descriptors or whatever you want in fact)
michael@0 519 to `type(mock)` without affecting other mock objects.
michael@0 520
michael@0 521
michael@0 522 Multiple calls with different effects
michael@0 523 =====================================
michael@0 524
michael@0 525 .. note::
michael@0 526
michael@0 527 In mock 1.0 the handling of iterable `side_effect` was changed. Any
michael@0 528 exceptions in the iterable will be raised instead of returned.
michael@0 529
michael@0 530 Handling code that needs to behave differently on subsequent calls during the
michael@0 531 test can be tricky. For example you may have a function that needs to raise
michael@0 532 an exception the first time it is called but returns a response on the second
michael@0 533 call (testing retry behaviour).
michael@0 534
michael@0 535 One approach is to use a :attr:`side_effect` function that replaces itself. The
michael@0 536 first time it is called the `side_effect` sets a new `side_effect` that will
michael@0 537 be used for the second call. It then raises an exception:
michael@0 538
michael@0 539 .. doctest::
michael@0 540
michael@0 541 >>> def side_effect(*args):
michael@0 542 ... def second_call(*args):
michael@0 543 ... return 'response'
michael@0 544 ... mock.side_effect = second_call
michael@0 545 ... raise Exception('boom')
michael@0 546 ...
michael@0 547 >>> mock = Mock(side_effect=side_effect)
michael@0 548 >>> mock('first')
michael@0 549 Traceback (most recent call last):
michael@0 550 ...
michael@0 551 Exception: boom
michael@0 552 >>> mock('second')
michael@0 553 'response'
michael@0 554 >>> mock.assert_called_with('second')
michael@0 555
michael@0 556 Another perfectly valid way would be to pop return values from a list. If the
michael@0 557 return value is an exception, raise it instead of returning it:
michael@0 558
michael@0 559 .. doctest::
michael@0 560
michael@0 561 >>> returns = [Exception('boom'), 'response']
michael@0 562 >>> def side_effect(*args):
michael@0 563 ... result = returns.pop(0)
michael@0 564 ... if isinstance(result, Exception):
michael@0 565 ... raise result
michael@0 566 ... return result
michael@0 567 ...
michael@0 568 >>> mock = Mock(side_effect=side_effect)
michael@0 569 >>> mock('first')
michael@0 570 Traceback (most recent call last):
michael@0 571 ...
michael@0 572 Exception: boom
michael@0 573 >>> mock('second')
michael@0 574 'response'
michael@0 575 >>> mock.assert_called_with('second')
michael@0 576
michael@0 577 Which approach you prefer is a matter of taste. The first approach is actually
michael@0 578 a line shorter but maybe the second approach is more readable.
michael@0 579
michael@0 580
michael@0 581 Nesting Patches
michael@0 582 ===============
michael@0 583
michael@0 584 Using patch as a context manager is nice, but if you do multiple patches you
michael@0 585 can end up with nested with statements indenting further and further to the
michael@0 586 right:
michael@0 587
michael@0 588 .. doctest::
michael@0 589
michael@0 590 >>> class MyTest(TestCase):
michael@0 591 ...
michael@0 592 ... def test_foo(self):
michael@0 593 ... with patch('mymodule.Foo') as mock_foo:
michael@0 594 ... with patch('mymodule.Bar') as mock_bar:
michael@0 595 ... with patch('mymodule.Spam') as mock_spam:
michael@0 596 ... assert mymodule.Foo is mock_foo
michael@0 597 ... assert mymodule.Bar is mock_bar
michael@0 598 ... assert mymodule.Spam is mock_spam
michael@0 599 ...
michael@0 600 >>> original = mymodule.Foo
michael@0 601 >>> MyTest('test_foo').test_foo()
michael@0 602 >>> assert mymodule.Foo is original
michael@0 603
michael@0 604 With unittest2_ `cleanup` functions and the :ref:`start-and-stop` we can
michael@0 605 achieve the same effect without the nested indentation. A simple helper
michael@0 606 method, `create_patch`, puts the patch in place and returns the created mock
michael@0 607 for us:
michael@0 608
michael@0 609 .. doctest::
michael@0 610
michael@0 611 >>> class MyTest(TestCase):
michael@0 612 ...
michael@0 613 ... def create_patch(self, name):
michael@0 614 ... patcher = patch(name)
michael@0 615 ... thing = patcher.start()
michael@0 616 ... self.addCleanup(patcher.stop)
michael@0 617 ... return thing
michael@0 618 ...
michael@0 619 ... def test_foo(self):
michael@0 620 ... mock_foo = self.create_patch('mymodule.Foo')
michael@0 621 ... mock_bar = self.create_patch('mymodule.Bar')
michael@0 622 ... mock_spam = self.create_patch('mymodule.Spam')
michael@0 623 ...
michael@0 624 ... assert mymodule.Foo is mock_foo
michael@0 625 ... assert mymodule.Bar is mock_bar
michael@0 626 ... assert mymodule.Spam is mock_spam
michael@0 627 ...
michael@0 628 >>> original = mymodule.Foo
michael@0 629 >>> MyTest('test_foo').run()
michael@0 630 >>> assert mymodule.Foo is original
michael@0 631
michael@0 632
michael@0 633 Mocking a dictionary with MagicMock
michael@0 634 ===================================
michael@0 635
michael@0 636 You may want to mock a dictionary, or other container object, recording all
michael@0 637 access to it whilst having it still behave like a dictionary.
michael@0 638
michael@0 639 We can do this with :class:`MagicMock`, which will behave like a dictionary,
michael@0 640 and using :data:`~Mock.side_effect` to delegate dictionary access to a real
michael@0 641 underlying dictionary that is under our control.
michael@0 642
michael@0 643 When the `__getitem__` and `__setitem__` methods of our `MagicMock` are called
michael@0 644 (normal dictionary access) then `side_effect` is called with the key (and in
michael@0 645 the case of `__setitem__` the value too). We can also control what is returned.
michael@0 646
michael@0 647 After the `MagicMock` has been used we can use attributes like
michael@0 648 :data:`~Mock.call_args_list` to assert about how the dictionary was used:
michael@0 649
michael@0 650 .. doctest::
michael@0 651
michael@0 652 >>> my_dict = {'a': 1, 'b': 2, 'c': 3}
michael@0 653 >>> def getitem(name):
michael@0 654 ... return my_dict[name]
michael@0 655 ...
michael@0 656 >>> def setitem(name, val):
michael@0 657 ... my_dict[name] = val
michael@0 658 ...
michael@0 659 >>> mock = MagicMock()
michael@0 660 >>> mock.__getitem__.side_effect = getitem
michael@0 661 >>> mock.__setitem__.side_effect = setitem
michael@0 662
michael@0 663 .. note::
michael@0 664
michael@0 665 An alternative to using `MagicMock` is to use `Mock` and *only* provide
michael@0 666 the magic methods you specifically want:
michael@0 667
michael@0 668 .. doctest::
michael@0 669
michael@0 670 >>> mock = Mock()
michael@0 671 >>> mock.__setitem__ = Mock(side_effect=getitem)
michael@0 672 >>> mock.__getitem__ = Mock(side_effect=setitem)
michael@0 673
michael@0 674 A *third* option is to use `MagicMock` but passing in `dict` as the `spec`
michael@0 675 (or `spec_set`) argument so that the `MagicMock` created only has
michael@0 676 dictionary magic methods available:
michael@0 677
michael@0 678 .. doctest::
michael@0 679
michael@0 680 >>> mock = MagicMock(spec_set=dict)
michael@0 681 >>> mock.__getitem__.side_effect = getitem
michael@0 682 >>> mock.__setitem__.side_effect = setitem
michael@0 683
michael@0 684 With these side effect functions in place, the `mock` will behave like a normal
michael@0 685 dictionary but recording the access. It even raises a `KeyError` if you try
michael@0 686 to access a key that doesn't exist.
michael@0 687
michael@0 688 .. doctest::
michael@0 689
michael@0 690 >>> mock['a']
michael@0 691 1
michael@0 692 >>> mock['c']
michael@0 693 3
michael@0 694 >>> mock['d']
michael@0 695 Traceback (most recent call last):
michael@0 696 ...
michael@0 697 KeyError: 'd'
michael@0 698 >>> mock['b'] = 'fish'
michael@0 699 >>> mock['d'] = 'eggs'
michael@0 700 >>> mock['b']
michael@0 701 'fish'
michael@0 702 >>> mock['d']
michael@0 703 'eggs'
michael@0 704
michael@0 705 After it has been used you can make assertions about the access using the normal
michael@0 706 mock methods and attributes:
michael@0 707
michael@0 708 .. doctest::
michael@0 709
michael@0 710 >>> mock.__getitem__.call_args_list
michael@0 711 [call('a'), call('c'), call('d'), call('b'), call('d')]
michael@0 712 >>> mock.__setitem__.call_args_list
michael@0 713 [call('b', 'fish'), call('d', 'eggs')]
michael@0 714 >>> my_dict
michael@0 715 {'a': 1, 'c': 3, 'b': 'fish', 'd': 'eggs'}
michael@0 716
michael@0 717
michael@0 718 Mock subclasses and their attributes
michael@0 719 ====================================
michael@0 720
michael@0 721 There are various reasons why you might want to subclass `Mock`. One reason
michael@0 722 might be to add helper methods. Here's a silly example:
michael@0 723
michael@0 724 .. doctest::
michael@0 725
michael@0 726 >>> class MyMock(MagicMock):
michael@0 727 ... def has_been_called(self):
michael@0 728 ... return self.called
michael@0 729 ...
michael@0 730 >>> mymock = MyMock(return_value=None)
michael@0 731 >>> mymock
michael@0 732 <MyMock id='...'>
michael@0 733 >>> mymock.has_been_called()
michael@0 734 False
michael@0 735 >>> mymock()
michael@0 736 >>> mymock.has_been_called()
michael@0 737 True
michael@0 738
michael@0 739 The standard behaviour for `Mock` instances is that attributes and the return
michael@0 740 value mocks are of the same type as the mock they are accessed on. This ensures
michael@0 741 that `Mock` attributes are `Mocks` and `MagicMock` attributes are `MagicMocks`
michael@0 742 [#]_. So if you're subclassing to add helper methods then they'll also be
michael@0 743 available on the attributes and return value mock of instances of your
michael@0 744 subclass.
michael@0 745
michael@0 746 .. doctest::
michael@0 747
michael@0 748 >>> mymock.foo
michael@0 749 <MyMock name='mock.foo' id='...'>
michael@0 750 >>> mymock.foo.has_been_called()
michael@0 751 False
michael@0 752 >>> mymock.foo()
michael@0 753 <MyMock name='mock.foo()' id='...'>
michael@0 754 >>> mymock.foo.has_been_called()
michael@0 755 True
michael@0 756
michael@0 757 Sometimes this is inconvenient. For example, `one user
michael@0 758 <https://code.google.com/p/mock/issues/detail?id=105>`_ is subclassing mock to
michael@0 759 created a `Twisted adaptor
michael@0 760 <http://twistedmatrix.com/documents/11.0.0/api/twisted.python.components.html>`_.
michael@0 761 Having this applied to attributes too actually causes errors.
michael@0 762
michael@0 763 `Mock` (in all its flavours) uses a method called `_get_child_mock` to create
michael@0 764 these "sub-mocks" for attributes and return values. You can prevent your
michael@0 765 subclass being used for attributes by overriding this method. The signature is
michael@0 766 that it takes arbitrary keyword arguments (`**kwargs`) which are then passed
michael@0 767 onto the mock constructor:
michael@0 768
michael@0 769 .. doctest::
michael@0 770
michael@0 771 >>> class Subclass(MagicMock):
michael@0 772 ... def _get_child_mock(self, **kwargs):
michael@0 773 ... return MagicMock(**kwargs)
michael@0 774 ...
michael@0 775 >>> mymock = Subclass()
michael@0 776 >>> mymock.foo
michael@0 777 <MagicMock name='mock.foo' id='...'>
michael@0 778 >>> assert isinstance(mymock, Subclass)
michael@0 779 >>> assert not isinstance(mymock.foo, Subclass)
michael@0 780 >>> assert not isinstance(mymock(), Subclass)
michael@0 781
michael@0 782 .. [#] An exception to this rule are the non-callable mocks. Attributes use the
michael@0 783 callable variant because otherwise non-callable mocks couldn't have callable
michael@0 784 methods.
michael@0 785
michael@0 786
michael@0 787 Mocking imports with patch.dict
michael@0 788 ===============================
michael@0 789
michael@0 790 One situation where mocking can be hard is where you have a local import inside
michael@0 791 a function. These are harder to mock because they aren't using an object from
michael@0 792 the module namespace that we can patch out.
michael@0 793
michael@0 794 Generally local imports are to be avoided. They are sometimes done to prevent
michael@0 795 circular dependencies, for which there is *usually* a much better way to solve
michael@0 796 the problem (refactor the code) or to prevent "up front costs" by delaying the
michael@0 797 import. This can also be solved in better ways than an unconditional local
michael@0 798 import (store the module as a class or module attribute and only do the import
michael@0 799 on first use).
michael@0 800
michael@0 801 That aside there is a way to use `mock` to affect the results of an import.
michael@0 802 Importing fetches an *object* from the `sys.modules` dictionary. Note that it
michael@0 803 fetches an *object*, which need not be a module. Importing a module for the
michael@0 804 first time results in a module object being put in `sys.modules`, so usually
michael@0 805 when you import something you get a module back. This need not be the case
michael@0 806 however.
michael@0 807
michael@0 808 This means you can use :func:`patch.dict` to *temporarily* put a mock in place
michael@0 809 in `sys.modules`. Any imports whilst this patch is active will fetch the mock.
michael@0 810 When the patch is complete (the decorated function exits, the with statement
michael@0 811 body is complete or `patcher.stop()` is called) then whatever was there
michael@0 812 previously will be restored safely.
michael@0 813
michael@0 814 Here's an example that mocks out the 'fooble' module.
michael@0 815
michael@0 816 .. doctest::
michael@0 817
michael@0 818 >>> mock = Mock()
michael@0 819 >>> with patch.dict('sys.modules', {'fooble': mock}):
michael@0 820 ... import fooble
michael@0 821 ... fooble.blob()
michael@0 822 ...
michael@0 823 <Mock name='mock.blob()' id='...'>
michael@0 824 >>> assert 'fooble' not in sys.modules
michael@0 825 >>> mock.blob.assert_called_once_with()
michael@0 826
michael@0 827 As you can see the `import fooble` succeeds, but on exit there is no 'fooble'
michael@0 828 left in `sys.modules`.
michael@0 829
michael@0 830 This also works for the `from module import name` form:
michael@0 831
michael@0 832 .. doctest::
michael@0 833
michael@0 834 >>> mock = Mock()
michael@0 835 >>> with patch.dict('sys.modules', {'fooble': mock}):
michael@0 836 ... from fooble import blob
michael@0 837 ... blob.blip()
michael@0 838 ...
michael@0 839 <Mock name='mock.blob.blip()' id='...'>
michael@0 840 >>> mock.blob.blip.assert_called_once_with()
michael@0 841
michael@0 842 With slightly more work you can also mock package imports:
michael@0 843
michael@0 844 .. doctest::
michael@0 845
michael@0 846 >>> mock = Mock()
michael@0 847 >>> modules = {'package': mock, 'package.module': mock.module}
michael@0 848 >>> with patch.dict('sys.modules', modules):
michael@0 849 ... from package.module import fooble
michael@0 850 ... fooble()
michael@0 851 ...
michael@0 852 <Mock name='mock.module.fooble()' id='...'>
michael@0 853 >>> mock.module.fooble.assert_called_once_with()
michael@0 854
michael@0 855
michael@0 856 Tracking order of calls and less verbose call assertions
michael@0 857 ========================================================
michael@0 858
michael@0 859 The :class:`Mock` class allows you to track the *order* of method calls on
michael@0 860 your mock objects through the :attr:`~Mock.method_calls` attribute. This
michael@0 861 doesn't allow you to track the order of calls between separate mock objects,
michael@0 862 however we can use :attr:`~Mock.mock_calls` to achieve the same effect.
michael@0 863
michael@0 864 Because mocks track calls to child mocks in `mock_calls`, and accessing an
michael@0 865 arbitrary attribute of a mock creates a child mock, we can create our separate
michael@0 866 mocks from a parent one. Calls to those child mock will then all be recorded,
michael@0 867 in order, in the `mock_calls` of the parent:
michael@0 868
michael@0 869 .. doctest::
michael@0 870
michael@0 871 >>> manager = Mock()
michael@0 872 >>> mock_foo = manager.foo
michael@0 873 >>> mock_bar = manager.bar
michael@0 874
michael@0 875 >>> mock_foo.something()
michael@0 876 <Mock name='mock.foo.something()' id='...'>
michael@0 877 >>> mock_bar.other.thing()
michael@0 878 <Mock name='mock.bar.other.thing()' id='...'>
michael@0 879
michael@0 880 >>> manager.mock_calls
michael@0 881 [call.foo.something(), call.bar.other.thing()]
michael@0 882
michael@0 883 We can then assert about the calls, including the order, by comparing with
michael@0 884 the `mock_calls` attribute on the manager mock:
michael@0 885
michael@0 886 .. doctest::
michael@0 887
michael@0 888 >>> expected_calls = [call.foo.something(), call.bar.other.thing()]
michael@0 889 >>> manager.mock_calls == expected_calls
michael@0 890 True
michael@0 891
michael@0 892 If `patch` is creating, and putting in place, your mocks then you can attach
michael@0 893 them to a manager mock using the :meth:`~Mock.attach_mock` method. After
michael@0 894 attaching calls will be recorded in `mock_calls` of the manager.
michael@0 895
michael@0 896 .. doctest::
michael@0 897
michael@0 898 >>> manager = MagicMock()
michael@0 899 >>> with patch('mymodule.Class1') as MockClass1:
michael@0 900 ... with patch('mymodule.Class2') as MockClass2:
michael@0 901 ... manager.attach_mock(MockClass1, 'MockClass1')
michael@0 902 ... manager.attach_mock(MockClass2, 'MockClass2')
michael@0 903 ... MockClass1().foo()
michael@0 904 ... MockClass2().bar()
michael@0 905 ...
michael@0 906 <MagicMock name='mock.MockClass1().foo()' id='...'>
michael@0 907 <MagicMock name='mock.MockClass2().bar()' id='...'>
michael@0 908 >>> manager.mock_calls
michael@0 909 [call.MockClass1(),
michael@0 910 call.MockClass1().foo(),
michael@0 911 call.MockClass2(),
michael@0 912 call.MockClass2().bar()]
michael@0 913
michael@0 914 If many calls have been made, but you're only interested in a particular
michael@0 915 sequence of them then an alternative is to use the
michael@0 916 :meth:`~Mock.assert_has_calls` method. This takes a list of calls (constructed
michael@0 917 with the :data:`call` object). If that sequence of calls are in
michael@0 918 :attr:`~Mock.mock_calls` then the assert succeeds.
michael@0 919
michael@0 920 .. doctest::
michael@0 921
michael@0 922 >>> m = MagicMock()
michael@0 923 >>> m().foo().bar().baz()
michael@0 924 <MagicMock name='mock().foo().bar().baz()' id='...'>
michael@0 925 >>> m.one().two().three()
michael@0 926 <MagicMock name='mock.one().two().three()' id='...'>
michael@0 927 >>> calls = call.one().two().three().call_list()
michael@0 928 >>> m.assert_has_calls(calls)
michael@0 929
michael@0 930 Even though the chained call `m.one().two().three()` aren't the only calls that
michael@0 931 have been made to the mock, the assert still succeeds.
michael@0 932
michael@0 933 Sometimes a mock may have several calls made to it, and you are only interested
michael@0 934 in asserting about *some* of those calls. You may not even care about the
michael@0 935 order. In this case you can pass `any_order=True` to `assert_has_calls`:
michael@0 936
michael@0 937 .. doctest::
michael@0 938
michael@0 939 >>> m = MagicMock()
michael@0 940 >>> m(1), m.two(2, 3), m.seven(7), m.fifty('50')
michael@0 941 (...)
michael@0 942 >>> calls = [call.fifty('50'), call(1), call.seven(7)]
michael@0 943 >>> m.assert_has_calls(calls, any_order=True)
michael@0 944
michael@0 945
michael@0 946 More complex argument matching
michael@0 947 ==============================
michael@0 948
michael@0 949 Using the same basic concept as `ANY` we can implement matchers to do more
michael@0 950 complex assertions on objects used as arguments to mocks.
michael@0 951
michael@0 952 Suppose we expect some object to be passed to a mock that by default
michael@0 953 compares equal based on object identity (which is the Python default for user
michael@0 954 defined classes). To use :meth:`~Mock.assert_called_with` we would need to pass
michael@0 955 in the exact same object. If we are only interested in some of the attributes
michael@0 956 of this object then we can create a matcher that will check these attributes
michael@0 957 for us.
michael@0 958
michael@0 959 You can see in this example how a 'standard' call to `assert_called_with` isn't
michael@0 960 sufficient:
michael@0 961
michael@0 962 .. doctest::
michael@0 963
michael@0 964 >>> class Foo(object):
michael@0 965 ... def __init__(self, a, b):
michael@0 966 ... self.a, self.b = a, b
michael@0 967 ...
michael@0 968 >>> mock = Mock(return_value=None)
michael@0 969 >>> mock(Foo(1, 2))
michael@0 970 >>> mock.assert_called_with(Foo(1, 2))
michael@0 971 Traceback (most recent call last):
michael@0 972 ...
michael@0 973 AssertionError: Expected: call(<__main__.Foo object at 0x...>)
michael@0 974 Actual call: call(<__main__.Foo object at 0x...>)
michael@0 975
michael@0 976 A comparison function for our `Foo` class might look something like this:
michael@0 977
michael@0 978 .. doctest::
michael@0 979
michael@0 980 >>> def compare(self, other):
michael@0 981 ... if not type(self) == type(other):
michael@0 982 ... return False
michael@0 983 ... if self.a != other.a:
michael@0 984 ... return False
michael@0 985 ... if self.b != other.b:
michael@0 986 ... return False
michael@0 987 ... return True
michael@0 988 ...
michael@0 989
michael@0 990 And a matcher object that can use comparison functions like this for its
michael@0 991 equality operation would look something like this:
michael@0 992
michael@0 993 .. doctest::
michael@0 994
michael@0 995 >>> class Matcher(object):
michael@0 996 ... def __init__(self, compare, some_obj):
michael@0 997 ... self.compare = compare
michael@0 998 ... self.some_obj = some_obj
michael@0 999 ... def __eq__(self, other):
michael@0 1000 ... return self.compare(self.some_obj, other)
michael@0 1001 ...
michael@0 1002
michael@0 1003 Putting all this together:
michael@0 1004
michael@0 1005 .. doctest::
michael@0 1006
michael@0 1007 >>> match_foo = Matcher(compare, Foo(1, 2))
michael@0 1008 >>> mock.assert_called_with(match_foo)
michael@0 1009
michael@0 1010 The `Matcher` is instantiated with our compare function and the `Foo` object
michael@0 1011 we want to compare against. In `assert_called_with` the `Matcher` equality
michael@0 1012 method will be called, which compares the object the mock was called with
michael@0 1013 against the one we created our matcher with. If they match then
michael@0 1014 `assert_called_with` passes, and if they don't an `AssertionError` is raised:
michael@0 1015
michael@0 1016 .. doctest::
michael@0 1017
michael@0 1018 >>> match_wrong = Matcher(compare, Foo(3, 4))
michael@0 1019 >>> mock.assert_called_with(match_wrong)
michael@0 1020 Traceback (most recent call last):
michael@0 1021 ...
michael@0 1022 AssertionError: Expected: ((<Matcher object at 0x...>,), {})
michael@0 1023 Called with: ((<Foo object at 0x...>,), {})
michael@0 1024
michael@0 1025 With a bit of tweaking you could have the comparison function raise the
michael@0 1026 `AssertionError` directly and provide a more useful failure message.
michael@0 1027
michael@0 1028 As of version 1.5, the Python testing library `PyHamcrest
michael@0 1029 <http://pypi.python.org/pypi/PyHamcrest>`_ provides similar functionality,
michael@0 1030 that may be useful here, in the form of its equality matcher
michael@0 1031 (`hamcrest.library.integration.match_equality
michael@0 1032 <http://packages.python.org/PyHamcrest/integration.html#hamcrest.library.integration.match_equality>`_).
michael@0 1033
michael@0 1034
michael@0 1035 Less verbose configuration of mock objects
michael@0 1036 ==========================================
michael@0 1037
michael@0 1038 This recipe, for easier configuration of mock objects, is now part of `Mock`.
michael@0 1039 See the :meth:`~Mock.configure_mock` method.
michael@0 1040
michael@0 1041
michael@0 1042 Matching any argument in assertions
michael@0 1043 ===================================
michael@0 1044
michael@0 1045 This example is now built in to mock. See :data:`ANY`.
michael@0 1046
michael@0 1047
michael@0 1048 Mocking Properties
michael@0 1049 ==================
michael@0 1050
michael@0 1051 This example is now built in to mock. See :class:`PropertyMock`.
michael@0 1052
michael@0 1053
michael@0 1054 Mocking open
michael@0 1055 ============
michael@0 1056
michael@0 1057 This example is now built in to mock. See :func:`mock_open`.
michael@0 1058
michael@0 1059
michael@0 1060 Mocks without some attributes
michael@0 1061 =============================
michael@0 1062
michael@0 1063 This example is now built in to mock. See :ref:`deleting-attributes`.

mercurial