Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- |
michael@0 | 2 | * This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 3 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 4 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 5 | |
michael@0 | 6 | #ifndef MOZILLA_GFX_PATHHELPERS_H_ |
michael@0 | 7 | #define MOZILLA_GFX_PATHHELPERS_H_ |
michael@0 | 8 | |
michael@0 | 9 | #include "2D.h" |
michael@0 | 10 | #include "mozilla/Constants.h" |
michael@0 | 11 | |
michael@0 | 12 | namespace mozilla { |
michael@0 | 13 | namespace gfx { |
michael@0 | 14 | |
michael@0 | 15 | template <typename T> |
michael@0 | 16 | void ArcToBezier(T* aSink, const Point &aOrigin, const Size &aRadius, |
michael@0 | 17 | float aStartAngle, float aEndAngle, bool aAntiClockwise) |
michael@0 | 18 | { |
michael@0 | 19 | Point startPoint(aOrigin.x + cos(aStartAngle) * aRadius.width, |
michael@0 | 20 | aOrigin.y + sin(aStartAngle) * aRadius.height); |
michael@0 | 21 | |
michael@0 | 22 | aSink->LineTo(startPoint); |
michael@0 | 23 | |
michael@0 | 24 | // Clockwise we always sweep from the smaller to the larger angle, ccw |
michael@0 | 25 | // it's vice versa. |
michael@0 | 26 | if (!aAntiClockwise && (aEndAngle < aStartAngle)) { |
michael@0 | 27 | Float correction = Float(ceil((aStartAngle - aEndAngle) / (2.0f * M_PI))); |
michael@0 | 28 | aEndAngle += float(correction * 2.0f * M_PI); |
michael@0 | 29 | } else if (aAntiClockwise && (aStartAngle < aEndAngle)) { |
michael@0 | 30 | Float correction = (Float)ceil((aEndAngle - aStartAngle) / (2.0f * M_PI)); |
michael@0 | 31 | aStartAngle += float(correction * 2.0f * M_PI); |
michael@0 | 32 | } |
michael@0 | 33 | |
michael@0 | 34 | // Sweeping more than 2 * pi is a full circle. |
michael@0 | 35 | if (!aAntiClockwise && (aEndAngle - aStartAngle > 2 * M_PI)) { |
michael@0 | 36 | aEndAngle = float(aStartAngle + 2.0f * M_PI); |
michael@0 | 37 | } else if (aAntiClockwise && (aStartAngle - aEndAngle > 2.0f * M_PI)) { |
michael@0 | 38 | aEndAngle = float(aStartAngle - 2.0f * M_PI); |
michael@0 | 39 | } |
michael@0 | 40 | |
michael@0 | 41 | // Calculate the total arc we're going to sweep. |
michael@0 | 42 | Float arcSweepLeft = fabs(aEndAngle - aStartAngle); |
michael@0 | 43 | |
michael@0 | 44 | Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f; |
michael@0 | 45 | |
michael@0 | 46 | Float currentStartAngle = aStartAngle; |
michael@0 | 47 | |
michael@0 | 48 | while (arcSweepLeft > 0) { |
michael@0 | 49 | // We guarantee here the current point is the start point of the next |
michael@0 | 50 | // curve segment. |
michael@0 | 51 | Float currentEndAngle; |
michael@0 | 52 | |
michael@0 | 53 | if (arcSweepLeft > M_PI / 2.0f) { |
michael@0 | 54 | currentEndAngle = Float(currentStartAngle + M_PI / 2.0f * sweepDirection); |
michael@0 | 55 | } else { |
michael@0 | 56 | currentEndAngle = currentStartAngle + arcSweepLeft * sweepDirection; |
michael@0 | 57 | } |
michael@0 | 58 | |
michael@0 | 59 | Point currentStartPoint(aOrigin.x + cos(currentStartAngle) * aRadius.width, |
michael@0 | 60 | aOrigin.y + sin(currentStartAngle) * aRadius.height); |
michael@0 | 61 | Point currentEndPoint(aOrigin.x + cos(currentEndAngle) * aRadius.width, |
michael@0 | 62 | aOrigin.y + sin(currentEndAngle) * aRadius.height); |
michael@0 | 63 | |
michael@0 | 64 | // Calculate kappa constant for partial curve. The sign of angle in the |
michael@0 | 65 | // tangent will actually ensure this is negative for a counter clockwise |
michael@0 | 66 | // sweep, so changing signs later isn't needed. |
michael@0 | 67 | Float kappaFactor = (4.0f / 3.0f) * tan((currentEndAngle - currentStartAngle) / 4.0f); |
michael@0 | 68 | Float kappaX = kappaFactor * aRadius.width; |
michael@0 | 69 | Float kappaY = kappaFactor * aRadius.height; |
michael@0 | 70 | |
michael@0 | 71 | Point tangentStart(-sin(currentStartAngle), cos(currentStartAngle)); |
michael@0 | 72 | Point cp1 = currentStartPoint; |
michael@0 | 73 | cp1 += Point(tangentStart.x * kappaX, tangentStart.y * kappaY); |
michael@0 | 74 | |
michael@0 | 75 | Point revTangentEnd(sin(currentEndAngle), -cos(currentEndAngle)); |
michael@0 | 76 | Point cp2 = currentEndPoint; |
michael@0 | 77 | cp2 += Point(revTangentEnd.x * kappaX, revTangentEnd.y * kappaY); |
michael@0 | 78 | |
michael@0 | 79 | aSink->BezierTo(cp1, cp2, currentEndPoint); |
michael@0 | 80 | |
michael@0 | 81 | arcSweepLeft -= Float(M_PI / 2.0f); |
michael@0 | 82 | currentStartAngle = currentEndAngle; |
michael@0 | 83 | } |
michael@0 | 84 | } |
michael@0 | 85 | |
michael@0 | 86 | /** |
michael@0 | 87 | * Appends a path represending a rounded rectangle to the path being built by |
michael@0 | 88 | * aPathBuilder. |
michael@0 | 89 | * |
michael@0 | 90 | * aRect The rectangle to append. |
michael@0 | 91 | * aCornerRadii Contains the radii of the top-left, top-right, bottom-right |
michael@0 | 92 | * and bottom-left corners, in that order. |
michael@0 | 93 | * aDrawClockwise If set to true, the path will start at the left of the top |
michael@0 | 94 | * left edge and draw clockwise. If set to false the path will |
michael@0 | 95 | * start at the right of the top left edge and draw counter- |
michael@0 | 96 | * clockwise. |
michael@0 | 97 | */ |
michael@0 | 98 | GFX2D_API void AppendRoundedRectToPath(PathBuilder* aPathBuilder, |
michael@0 | 99 | const Rect& aRect, |
michael@0 | 100 | const Size(& aCornerRadii)[4], |
michael@0 | 101 | bool aDrawClockwise = true); |
michael@0 | 102 | |
michael@0 | 103 | /** |
michael@0 | 104 | * Appends a path represending an ellipse to the path being built by |
michael@0 | 105 | * aPathBuilder. |
michael@0 | 106 | * |
michael@0 | 107 | * The ellipse extends aDimensions.width / 2.0 in the horizontal direction |
michael@0 | 108 | * from aCenter, and aDimensions.height / 2.0 in the vertical direction. |
michael@0 | 109 | */ |
michael@0 | 110 | GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder, |
michael@0 | 111 | const Point& aCenter, |
michael@0 | 112 | const Size& aDimensions); |
michael@0 | 113 | |
michael@0 | 114 | static inline bool |
michael@0 | 115 | UserToDevicePixelSnapped(Rect& aRect, const Matrix& aTransform) |
michael@0 | 116 | { |
michael@0 | 117 | Point p1 = aTransform * aRect.TopLeft(); |
michael@0 | 118 | Point p2 = aTransform * aRect.TopRight(); |
michael@0 | 119 | Point p3 = aTransform * aRect.BottomRight(); |
michael@0 | 120 | |
michael@0 | 121 | // Check that the rectangle is axis-aligned. For an axis-aligned rectangle, |
michael@0 | 122 | // two opposite corners define the entire rectangle. So check if |
michael@0 | 123 | // the axis-aligned rectangle with opposite corners p1 and p3 |
michael@0 | 124 | // define an axis-aligned rectangle whose other corners are p2 and p4. |
michael@0 | 125 | // We actually only need to check one of p2 and p4, since an affine |
michael@0 | 126 | // transform maps parallelograms to parallelograms. |
michael@0 | 127 | if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) { |
michael@0 | 128 | p1.Round(); |
michael@0 | 129 | p3.Round(); |
michael@0 | 130 | |
michael@0 | 131 | aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y))); |
michael@0 | 132 | aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(), |
michael@0 | 133 | std::max(p1.y, p3.y) - aRect.Y())); |
michael@0 | 134 | return true; |
michael@0 | 135 | } |
michael@0 | 136 | |
michael@0 | 137 | return false; |
michael@0 | 138 | } |
michael@0 | 139 | |
michael@0 | 140 | } // namespace gfx |
michael@0 | 141 | } // namespace mozilla |
michael@0 | 142 | |
michael@0 | 143 | #endif /* MOZILLA_GFX_PATHHELPERS_H_ */ |