Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
michael@0 | 2 | /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
michael@0 | 3 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 4 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 5 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 6 | |
michael@0 | 7 | /* |
michael@0 | 8 | * Implements (almost always) lock-free atomic operations. The operations here |
michael@0 | 9 | * are a subset of that which can be found in C++11's <atomic> header, with a |
michael@0 | 10 | * different API to enforce consistent memory ordering constraints. |
michael@0 | 11 | * |
michael@0 | 12 | * Anyone caught using |volatile| for inter-thread memory safety needs to be |
michael@0 | 13 | * sent a copy of this header and the C++11 standard. |
michael@0 | 14 | */ |
michael@0 | 15 | |
michael@0 | 16 | #ifndef mozilla_Atomics_h |
michael@0 | 17 | #define mozilla_Atomics_h |
michael@0 | 18 | |
michael@0 | 19 | #include "mozilla/Assertions.h" |
michael@0 | 20 | #include "mozilla/Attributes.h" |
michael@0 | 21 | #include "mozilla/Compiler.h" |
michael@0 | 22 | #include "mozilla/TypeTraits.h" |
michael@0 | 23 | |
michael@0 | 24 | #include <stdint.h> |
michael@0 | 25 | |
michael@0 | 26 | /* |
michael@0 | 27 | * Our minimum deployment target on clang/OS X is OS X 10.6, whose SDK |
michael@0 | 28 | * does not have <atomic>. So be sure to check for <atomic> support |
michael@0 | 29 | * along with C++0x support. |
michael@0 | 30 | */ |
michael@0 | 31 | #if defined(__clang__) || defined(__GNUC__) |
michael@0 | 32 | /* |
michael@0 | 33 | * Clang doesn't like <atomic> from libstdc++ before 4.7 due to the |
michael@0 | 34 | * loose typing of the atomic builtins. GCC 4.5 and 4.6 lacks inline |
michael@0 | 35 | * definitions for unspecialized std::atomic and causes linking errors. |
michael@0 | 36 | * Therefore, we require at least 4.7.0 for using libstdc++. |
michael@0 | 37 | */ |
michael@0 | 38 | # if MOZ_USING_LIBSTDCXX && MOZ_LIBSTDCXX_VERSION_AT_LEAST(4, 7, 0) |
michael@0 | 39 | # define MOZ_HAVE_CXX11_ATOMICS |
michael@0 | 40 | # elif MOZ_USING_LIBCXX |
michael@0 | 41 | # define MOZ_HAVE_CXX11_ATOMICS |
michael@0 | 42 | # endif |
michael@0 | 43 | #elif defined(_MSC_VER) && _MSC_VER >= 1700 |
michael@0 | 44 | # if defined(DEBUG) |
michael@0 | 45 | /* |
michael@0 | 46 | * Provide our own failure code since we're having trouble linking to |
michael@0 | 47 | * std::_Debug_message (bug 982310). |
michael@0 | 48 | */ |
michael@0 | 49 | # define _INVALID_MEMORY_ORDER MOZ_CRASH("Invalid memory order") |
michael@0 | 50 | # endif |
michael@0 | 51 | # define MOZ_HAVE_CXX11_ATOMICS |
michael@0 | 52 | #endif |
michael@0 | 53 | |
michael@0 | 54 | namespace mozilla { |
michael@0 | 55 | |
michael@0 | 56 | /** |
michael@0 | 57 | * An enum of memory ordering possibilities for atomics. |
michael@0 | 58 | * |
michael@0 | 59 | * Memory ordering is the observable state of distinct values in memory. |
michael@0 | 60 | * (It's a separate concept from atomicity, which concerns whether an |
michael@0 | 61 | * operation can ever be observed in an intermediate state. Don't |
michael@0 | 62 | * conflate the two!) Given a sequence of operations in source code on |
michael@0 | 63 | * memory, it is *not* always the case that, at all times and on all |
michael@0 | 64 | * cores, those operations will appear to have occurred in that exact |
michael@0 | 65 | * sequence. First, the compiler might reorder that sequence, if it |
michael@0 | 66 | * thinks another ordering will be more efficient. Second, the CPU may |
michael@0 | 67 | * not expose so consistent a view of memory. CPUs will often perform |
michael@0 | 68 | * their own instruction reordering, above and beyond that performed by |
michael@0 | 69 | * the compiler. And each core has its own memory caches, and accesses |
michael@0 | 70 | * (reads and writes both) to "memory" may only resolve to out-of-date |
michael@0 | 71 | * cache entries -- not to the "most recently" performed operation in |
michael@0 | 72 | * some global sense. Any access to a value that may be used by |
michael@0 | 73 | * multiple threads, potentially across multiple cores, must therefore |
michael@0 | 74 | * have a memory ordering imposed on it, for all code on all |
michael@0 | 75 | * threads/cores to have a sufficiently coherent worldview. |
michael@0 | 76 | * |
michael@0 | 77 | * http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync and |
michael@0 | 78 | * http://en.cppreference.com/w/cpp/atomic/memory_order go into more |
michael@0 | 79 | * detail on all this, including examples of how each mode works. |
michael@0 | 80 | * |
michael@0 | 81 | * Note that for simplicity and practicality, not all of the modes in |
michael@0 | 82 | * C++11 are supported. The missing C++11 modes are either subsumed by |
michael@0 | 83 | * the modes we provide below, or not relevant for the CPUs we support |
michael@0 | 84 | * in Gecko. These three modes are confusing enough as it is! |
michael@0 | 85 | */ |
michael@0 | 86 | enum MemoryOrdering { |
michael@0 | 87 | /* |
michael@0 | 88 | * Relaxed ordering is the simplest memory ordering: none at all. |
michael@0 | 89 | * When the result of a write is observed, nothing may be inferred |
michael@0 | 90 | * about other memory. Writes ostensibly performed "before" on the |
michael@0 | 91 | * writing thread may not yet be visible. Writes performed "after" on |
michael@0 | 92 | * the writing thread may already be visible, if the compiler or CPU |
michael@0 | 93 | * reordered them. (The latter can happen if reads and/or writes get |
michael@0 | 94 | * held up in per-processor caches.) Relaxed ordering means |
michael@0 | 95 | * operations can always use cached values (as long as the actual |
michael@0 | 96 | * updates to atomic values actually occur, correctly, eventually), so |
michael@0 | 97 | * it's usually the fastest sort of atomic access. For this reason, |
michael@0 | 98 | * *it's also the most dangerous kind of access*. |
michael@0 | 99 | * |
michael@0 | 100 | * Relaxed ordering is good for things like process-wide statistics |
michael@0 | 101 | * counters that don't need to be consistent with anything else, so |
michael@0 | 102 | * long as updates themselves are atomic. (And so long as any |
michael@0 | 103 | * observations of that value can tolerate being out-of-date -- if you |
michael@0 | 104 | * need some sort of up-to-date value, you need some sort of other |
michael@0 | 105 | * synchronizing operation.) It's *not* good for locks, mutexes, |
michael@0 | 106 | * reference counts, etc. that mediate access to other memory, or must |
michael@0 | 107 | * be observably consistent with other memory. |
michael@0 | 108 | * |
michael@0 | 109 | * x86 architectures don't take advantage of the optimization |
michael@0 | 110 | * opportunities that relaxed ordering permits. Thus it's possible |
michael@0 | 111 | * that using relaxed ordering will "work" on x86 but fail elsewhere |
michael@0 | 112 | * (ARM, say, which *does* implement non-sequentially-consistent |
michael@0 | 113 | * relaxed ordering semantics). Be extra-careful using relaxed |
michael@0 | 114 | * ordering if you can't easily test non-x86 architectures! |
michael@0 | 115 | */ |
michael@0 | 116 | Relaxed, |
michael@0 | 117 | /* |
michael@0 | 118 | * When an atomic value is updated with ReleaseAcquire ordering, and |
michael@0 | 119 | * that new value is observed with ReleaseAcquire ordering, prior |
michael@0 | 120 | * writes (atomic or not) are also observable. What ReleaseAcquire |
michael@0 | 121 | * *doesn't* give you is any observable ordering guarantees for |
michael@0 | 122 | * ReleaseAcquire-ordered operations on different objects. For |
michael@0 | 123 | * example, if there are two cores that each perform ReleaseAcquire |
michael@0 | 124 | * operations on separate objects, each core may or may not observe |
michael@0 | 125 | * the operations made by the other core. The only way the cores can |
michael@0 | 126 | * be synchronized with ReleaseAcquire is if they both |
michael@0 | 127 | * ReleaseAcquire-access the same object. This implies that you can't |
michael@0 | 128 | * necessarily describe some global total ordering of ReleaseAcquire |
michael@0 | 129 | * operations. |
michael@0 | 130 | * |
michael@0 | 131 | * ReleaseAcquire ordering is good for (as the name implies) atomic |
michael@0 | 132 | * operations on values controlling ownership of things: reference |
michael@0 | 133 | * counts, mutexes, and the like. However, if you are thinking about |
michael@0 | 134 | * using these to implement your own locks or mutexes, you should take |
michael@0 | 135 | * a good, hard look at actual lock or mutex primitives first. |
michael@0 | 136 | */ |
michael@0 | 137 | ReleaseAcquire, |
michael@0 | 138 | /* |
michael@0 | 139 | * When an atomic value is updated with SequentiallyConsistent |
michael@0 | 140 | * ordering, all writes observable when the update is observed, just |
michael@0 | 141 | * as with ReleaseAcquire ordering. But, furthermore, a global total |
michael@0 | 142 | * ordering of SequentiallyConsistent operations *can* be described. |
michael@0 | 143 | * For example, if two cores perform SequentiallyConsistent operations |
michael@0 | 144 | * on separate objects, one core will observably perform its update |
michael@0 | 145 | * (and all previous operations will have completed), then the other |
michael@0 | 146 | * core will observably perform its update (and all previous |
michael@0 | 147 | * operations will have completed). (Although those previous |
michael@0 | 148 | * operations aren't themselves ordered -- they could be intermixed, |
michael@0 | 149 | * or ordered if they occur on atomic values with ordering |
michael@0 | 150 | * requirements.) SequentiallyConsistent is the *simplest and safest* |
michael@0 | 151 | * ordering of atomic operations -- it's always as if one operation |
michael@0 | 152 | * happens, then another, then another, in some order -- and every |
michael@0 | 153 | * core observes updates to happen in that single order. Because it |
michael@0 | 154 | * has the most synchronization requirements, operations ordered this |
michael@0 | 155 | * way also tend to be slowest. |
michael@0 | 156 | * |
michael@0 | 157 | * SequentiallyConsistent ordering can be desirable when multiple |
michael@0 | 158 | * threads observe objects, and they all have to agree on the |
michael@0 | 159 | * observable order of changes to them. People expect |
michael@0 | 160 | * SequentiallyConsistent ordering, even if they shouldn't, when |
michael@0 | 161 | * writing code, atomic or otherwise. SequentiallyConsistent is also |
michael@0 | 162 | * the ordering of choice when designing lockless data structures. If |
michael@0 | 163 | * you don't know what order to use, use this one. |
michael@0 | 164 | */ |
michael@0 | 165 | SequentiallyConsistent, |
michael@0 | 166 | }; |
michael@0 | 167 | |
michael@0 | 168 | } // namespace mozilla |
michael@0 | 169 | |
michael@0 | 170 | // Build up the underlying intrinsics. |
michael@0 | 171 | #ifdef MOZ_HAVE_CXX11_ATOMICS |
michael@0 | 172 | |
michael@0 | 173 | # include <atomic> |
michael@0 | 174 | |
michael@0 | 175 | namespace mozilla { |
michael@0 | 176 | namespace detail { |
michael@0 | 177 | |
michael@0 | 178 | /* |
michael@0 | 179 | * We provide CompareExchangeFailureOrder to work around a bug in some |
michael@0 | 180 | * versions of GCC's <atomic> header. See bug 898491. |
michael@0 | 181 | */ |
michael@0 | 182 | template<MemoryOrdering Order> struct AtomicOrderConstraints; |
michael@0 | 183 | |
michael@0 | 184 | template<> |
michael@0 | 185 | struct AtomicOrderConstraints<Relaxed> |
michael@0 | 186 | { |
michael@0 | 187 | static const std::memory_order AtomicRMWOrder = std::memory_order_relaxed; |
michael@0 | 188 | static const std::memory_order LoadOrder = std::memory_order_relaxed; |
michael@0 | 189 | static const std::memory_order StoreOrder = std::memory_order_relaxed; |
michael@0 | 190 | static const std::memory_order CompareExchangeFailureOrder = |
michael@0 | 191 | std::memory_order_relaxed; |
michael@0 | 192 | }; |
michael@0 | 193 | |
michael@0 | 194 | template<> |
michael@0 | 195 | struct AtomicOrderConstraints<ReleaseAcquire> |
michael@0 | 196 | { |
michael@0 | 197 | static const std::memory_order AtomicRMWOrder = std::memory_order_acq_rel; |
michael@0 | 198 | static const std::memory_order LoadOrder = std::memory_order_acquire; |
michael@0 | 199 | static const std::memory_order StoreOrder = std::memory_order_release; |
michael@0 | 200 | static const std::memory_order CompareExchangeFailureOrder = |
michael@0 | 201 | std::memory_order_acquire; |
michael@0 | 202 | }; |
michael@0 | 203 | |
michael@0 | 204 | template<> |
michael@0 | 205 | struct AtomicOrderConstraints<SequentiallyConsistent> |
michael@0 | 206 | { |
michael@0 | 207 | static const std::memory_order AtomicRMWOrder = std::memory_order_seq_cst; |
michael@0 | 208 | static const std::memory_order LoadOrder = std::memory_order_seq_cst; |
michael@0 | 209 | static const std::memory_order StoreOrder = std::memory_order_seq_cst; |
michael@0 | 210 | static const std::memory_order CompareExchangeFailureOrder = |
michael@0 | 211 | std::memory_order_seq_cst; |
michael@0 | 212 | }; |
michael@0 | 213 | |
michael@0 | 214 | template<typename T, MemoryOrdering Order> |
michael@0 | 215 | struct IntrinsicBase |
michael@0 | 216 | { |
michael@0 | 217 | typedef std::atomic<T> ValueType; |
michael@0 | 218 | typedef AtomicOrderConstraints<Order> OrderedOp; |
michael@0 | 219 | }; |
michael@0 | 220 | |
michael@0 | 221 | template<typename T, MemoryOrdering Order> |
michael@0 | 222 | struct IntrinsicMemoryOps : public IntrinsicBase<T, Order> |
michael@0 | 223 | { |
michael@0 | 224 | typedef IntrinsicBase<T, Order> Base; |
michael@0 | 225 | static T load(const typename Base::ValueType& ptr) { |
michael@0 | 226 | return ptr.load(Base::OrderedOp::LoadOrder); |
michael@0 | 227 | } |
michael@0 | 228 | static void store(typename Base::ValueType& ptr, T val) { |
michael@0 | 229 | ptr.store(val, Base::OrderedOp::StoreOrder); |
michael@0 | 230 | } |
michael@0 | 231 | static T exchange(typename Base::ValueType& ptr, T val) { |
michael@0 | 232 | return ptr.exchange(val, Base::OrderedOp::AtomicRMWOrder); |
michael@0 | 233 | } |
michael@0 | 234 | static bool compareExchange(typename Base::ValueType& ptr, T oldVal, T newVal) { |
michael@0 | 235 | return ptr.compare_exchange_strong(oldVal, newVal, |
michael@0 | 236 | Base::OrderedOp::AtomicRMWOrder, |
michael@0 | 237 | Base::OrderedOp::CompareExchangeFailureOrder); |
michael@0 | 238 | } |
michael@0 | 239 | }; |
michael@0 | 240 | |
michael@0 | 241 | template<typename T, MemoryOrdering Order> |
michael@0 | 242 | struct IntrinsicAddSub : public IntrinsicBase<T, Order> |
michael@0 | 243 | { |
michael@0 | 244 | typedef IntrinsicBase<T, Order> Base; |
michael@0 | 245 | static T add(typename Base::ValueType& ptr, T val) { |
michael@0 | 246 | return ptr.fetch_add(val, Base::OrderedOp::AtomicRMWOrder); |
michael@0 | 247 | } |
michael@0 | 248 | static T sub(typename Base::ValueType& ptr, T val) { |
michael@0 | 249 | return ptr.fetch_sub(val, Base::OrderedOp::AtomicRMWOrder); |
michael@0 | 250 | } |
michael@0 | 251 | }; |
michael@0 | 252 | |
michael@0 | 253 | template<typename T, MemoryOrdering Order> |
michael@0 | 254 | struct IntrinsicAddSub<T*, Order> : public IntrinsicBase<T*, Order> |
michael@0 | 255 | { |
michael@0 | 256 | typedef IntrinsicBase<T*, Order> Base; |
michael@0 | 257 | static T* add(typename Base::ValueType& ptr, ptrdiff_t val) { |
michael@0 | 258 | return ptr.fetch_add(fixupAddend(val), Base::OrderedOp::AtomicRMWOrder); |
michael@0 | 259 | } |
michael@0 | 260 | static T* sub(typename Base::ValueType& ptr, ptrdiff_t val) { |
michael@0 | 261 | return ptr.fetch_sub(fixupAddend(val), Base::OrderedOp::AtomicRMWOrder); |
michael@0 | 262 | } |
michael@0 | 263 | private: |
michael@0 | 264 | /* |
michael@0 | 265 | * GCC 4.6's <atomic> header has a bug where adding X to an |
michael@0 | 266 | * atomic<T*> is not the same as adding X to a T*. Hence the need |
michael@0 | 267 | * for this function to provide the correct addend. |
michael@0 | 268 | */ |
michael@0 | 269 | static ptrdiff_t fixupAddend(ptrdiff_t val) { |
michael@0 | 270 | #if defined(__clang__) || defined(_MSC_VER) |
michael@0 | 271 | return val; |
michael@0 | 272 | #elif defined(__GNUC__) && MOZ_GCC_VERSION_AT_LEAST(4, 6, 0) && \ |
michael@0 | 273 | !MOZ_GCC_VERSION_AT_LEAST(4, 7, 0) |
michael@0 | 274 | return val * sizeof(T); |
michael@0 | 275 | #else |
michael@0 | 276 | return val; |
michael@0 | 277 | #endif |
michael@0 | 278 | } |
michael@0 | 279 | }; |
michael@0 | 280 | |
michael@0 | 281 | template<typename T, MemoryOrdering Order> |
michael@0 | 282 | struct IntrinsicIncDec : public IntrinsicAddSub<T, Order> |
michael@0 | 283 | { |
michael@0 | 284 | typedef IntrinsicBase<T, Order> Base; |
michael@0 | 285 | static T inc(typename Base::ValueType& ptr) { |
michael@0 | 286 | return IntrinsicAddSub<T, Order>::add(ptr, 1); |
michael@0 | 287 | } |
michael@0 | 288 | static T dec(typename Base::ValueType& ptr) { |
michael@0 | 289 | return IntrinsicAddSub<T, Order>::sub(ptr, 1); |
michael@0 | 290 | } |
michael@0 | 291 | }; |
michael@0 | 292 | |
michael@0 | 293 | template<typename T, MemoryOrdering Order> |
michael@0 | 294 | struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>, |
michael@0 | 295 | public IntrinsicIncDec<T, Order> |
michael@0 | 296 | { |
michael@0 | 297 | typedef IntrinsicBase<T, Order> Base; |
michael@0 | 298 | static T or_(typename Base::ValueType& ptr, T val) { |
michael@0 | 299 | return ptr.fetch_or(val, Base::OrderedOp::AtomicRMWOrder); |
michael@0 | 300 | } |
michael@0 | 301 | static T xor_(typename Base::ValueType& ptr, T val) { |
michael@0 | 302 | return ptr.fetch_xor(val, Base::OrderedOp::AtomicRMWOrder); |
michael@0 | 303 | } |
michael@0 | 304 | static T and_(typename Base::ValueType& ptr, T val) { |
michael@0 | 305 | return ptr.fetch_and(val, Base::OrderedOp::AtomicRMWOrder); |
michael@0 | 306 | } |
michael@0 | 307 | }; |
michael@0 | 308 | |
michael@0 | 309 | template<typename T, MemoryOrdering Order> |
michael@0 | 310 | struct AtomicIntrinsics<T*, Order> |
michael@0 | 311 | : public IntrinsicMemoryOps<T*, Order>, public IntrinsicIncDec<T*, Order> |
michael@0 | 312 | { |
michael@0 | 313 | }; |
michael@0 | 314 | |
michael@0 | 315 | } // namespace detail |
michael@0 | 316 | } // namespace mozilla |
michael@0 | 317 | |
michael@0 | 318 | #elif defined(__GNUC__) |
michael@0 | 319 | |
michael@0 | 320 | namespace mozilla { |
michael@0 | 321 | namespace detail { |
michael@0 | 322 | |
michael@0 | 323 | /* |
michael@0 | 324 | * The __sync_* family of intrinsics is documented here: |
michael@0 | 325 | * |
michael@0 | 326 | * http://gcc.gnu.org/onlinedocs/gcc-4.6.4/gcc/Atomic-Builtins.html |
michael@0 | 327 | * |
michael@0 | 328 | * While these intrinsics are deprecated in favor of the newer __atomic_* |
michael@0 | 329 | * family of intrincs: |
michael@0 | 330 | * |
michael@0 | 331 | * http://gcc.gnu.org/onlinedocs/gcc-4.7.3/gcc/_005f_005fatomic-Builtins.html |
michael@0 | 332 | * |
michael@0 | 333 | * any GCC version that supports the __atomic_* intrinsics will also support |
michael@0 | 334 | * the <atomic> header and so will be handled above. We provide a version of |
michael@0 | 335 | * atomics using the __sync_* intrinsics to support older versions of GCC. |
michael@0 | 336 | * |
michael@0 | 337 | * All __sync_* intrinsics that we use below act as full memory barriers, for |
michael@0 | 338 | * both compiler and hardware reordering, except for __sync_lock_test_and_set, |
michael@0 | 339 | * which is a only an acquire barrier. When we call __sync_lock_test_and_set, |
michael@0 | 340 | * we add a barrier above it as appropriate. |
michael@0 | 341 | */ |
michael@0 | 342 | |
michael@0 | 343 | template<MemoryOrdering Order> struct Barrier; |
michael@0 | 344 | |
michael@0 | 345 | /* |
michael@0 | 346 | * Some processors (in particular, x86) don't require quite so many calls to |
michael@0 | 347 | * __sync_sychronize as our specializations of Barrier produce. If |
michael@0 | 348 | * performance turns out to be an issue, defining these specializations |
michael@0 | 349 | * on a per-processor basis would be a good first tuning step. |
michael@0 | 350 | */ |
michael@0 | 351 | |
michael@0 | 352 | template<> |
michael@0 | 353 | struct Barrier<Relaxed> |
michael@0 | 354 | { |
michael@0 | 355 | static void beforeLoad() {} |
michael@0 | 356 | static void afterLoad() {} |
michael@0 | 357 | static void beforeStore() {} |
michael@0 | 358 | static void afterStore() {} |
michael@0 | 359 | }; |
michael@0 | 360 | |
michael@0 | 361 | template<> |
michael@0 | 362 | struct Barrier<ReleaseAcquire> |
michael@0 | 363 | { |
michael@0 | 364 | static void beforeLoad() {} |
michael@0 | 365 | static void afterLoad() { __sync_synchronize(); } |
michael@0 | 366 | static void beforeStore() { __sync_synchronize(); } |
michael@0 | 367 | static void afterStore() {} |
michael@0 | 368 | }; |
michael@0 | 369 | |
michael@0 | 370 | template<> |
michael@0 | 371 | struct Barrier<SequentiallyConsistent> |
michael@0 | 372 | { |
michael@0 | 373 | static void beforeLoad() { __sync_synchronize(); } |
michael@0 | 374 | static void afterLoad() { __sync_synchronize(); } |
michael@0 | 375 | static void beforeStore() { __sync_synchronize(); } |
michael@0 | 376 | static void afterStore() { __sync_synchronize(); } |
michael@0 | 377 | }; |
michael@0 | 378 | |
michael@0 | 379 | template<typename T, MemoryOrdering Order> |
michael@0 | 380 | struct IntrinsicMemoryOps |
michael@0 | 381 | { |
michael@0 | 382 | static T load(const T& ptr) { |
michael@0 | 383 | Barrier<Order>::beforeLoad(); |
michael@0 | 384 | T val = ptr; |
michael@0 | 385 | Barrier<Order>::afterLoad(); |
michael@0 | 386 | return val; |
michael@0 | 387 | } |
michael@0 | 388 | static void store(T& ptr, T val) { |
michael@0 | 389 | Barrier<Order>::beforeStore(); |
michael@0 | 390 | ptr = val; |
michael@0 | 391 | Barrier<Order>::afterStore(); |
michael@0 | 392 | } |
michael@0 | 393 | static T exchange(T& ptr, T val) { |
michael@0 | 394 | // __sync_lock_test_and_set is only an acquire barrier; loads and stores |
michael@0 | 395 | // can't be moved up from after to before it, but they can be moved down |
michael@0 | 396 | // from before to after it. We may want a stricter ordering, so we need |
michael@0 | 397 | // an explicit barrier. |
michael@0 | 398 | |
michael@0 | 399 | Barrier<Order>::beforeStore(); |
michael@0 | 400 | return __sync_lock_test_and_set(&ptr, val); |
michael@0 | 401 | } |
michael@0 | 402 | static bool compareExchange(T& ptr, T oldVal, T newVal) { |
michael@0 | 403 | return __sync_bool_compare_and_swap(&ptr, oldVal, newVal); |
michael@0 | 404 | } |
michael@0 | 405 | }; |
michael@0 | 406 | |
michael@0 | 407 | template<typename T> |
michael@0 | 408 | struct IntrinsicAddSub |
michael@0 | 409 | { |
michael@0 | 410 | typedef T ValueType; |
michael@0 | 411 | static T add(T& ptr, T val) { |
michael@0 | 412 | return __sync_fetch_and_add(&ptr, val); |
michael@0 | 413 | } |
michael@0 | 414 | static T sub(T& ptr, T val) { |
michael@0 | 415 | return __sync_fetch_and_sub(&ptr, val); |
michael@0 | 416 | } |
michael@0 | 417 | }; |
michael@0 | 418 | |
michael@0 | 419 | template<typename T> |
michael@0 | 420 | struct IntrinsicAddSub<T*> |
michael@0 | 421 | { |
michael@0 | 422 | typedef T* ValueType; |
michael@0 | 423 | /* |
michael@0 | 424 | * The reinterpret_casts are needed so that |
michael@0 | 425 | * __sync_fetch_and_{add,sub} will properly type-check. |
michael@0 | 426 | * |
michael@0 | 427 | * Also, these functions do not provide standard semantics for |
michael@0 | 428 | * pointer types, so we need to adjust the addend. |
michael@0 | 429 | */ |
michael@0 | 430 | static ValueType add(ValueType& ptr, ptrdiff_t val) { |
michael@0 | 431 | ValueType amount = reinterpret_cast<ValueType>(val * sizeof(T)); |
michael@0 | 432 | return __sync_fetch_and_add(&ptr, amount); |
michael@0 | 433 | } |
michael@0 | 434 | static ValueType sub(ValueType& ptr, ptrdiff_t val) { |
michael@0 | 435 | ValueType amount = reinterpret_cast<ValueType>(val * sizeof(T)); |
michael@0 | 436 | return __sync_fetch_and_sub(&ptr, amount); |
michael@0 | 437 | } |
michael@0 | 438 | }; |
michael@0 | 439 | |
michael@0 | 440 | template<typename T> |
michael@0 | 441 | struct IntrinsicIncDec : public IntrinsicAddSub<T> |
michael@0 | 442 | { |
michael@0 | 443 | static T inc(T& ptr) { return IntrinsicAddSub<T>::add(ptr, 1); } |
michael@0 | 444 | static T dec(T& ptr) { return IntrinsicAddSub<T>::sub(ptr, 1); } |
michael@0 | 445 | }; |
michael@0 | 446 | |
michael@0 | 447 | template<typename T, MemoryOrdering Order> |
michael@0 | 448 | struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>, |
michael@0 | 449 | public IntrinsicIncDec<T> |
michael@0 | 450 | { |
michael@0 | 451 | static T or_(T& ptr, T val) { |
michael@0 | 452 | return __sync_fetch_and_or(&ptr, val); |
michael@0 | 453 | } |
michael@0 | 454 | static T xor_(T& ptr, T val) { |
michael@0 | 455 | return __sync_fetch_and_xor(&ptr, val); |
michael@0 | 456 | } |
michael@0 | 457 | static T and_(T& ptr, T val) { |
michael@0 | 458 | return __sync_fetch_and_and(&ptr, val); |
michael@0 | 459 | } |
michael@0 | 460 | }; |
michael@0 | 461 | |
michael@0 | 462 | template<typename T, MemoryOrdering Order> |
michael@0 | 463 | struct AtomicIntrinsics<T*, Order> : public IntrinsicMemoryOps<T*, Order>, |
michael@0 | 464 | public IntrinsicIncDec<T*> |
michael@0 | 465 | { |
michael@0 | 466 | }; |
michael@0 | 467 | |
michael@0 | 468 | } // namespace detail |
michael@0 | 469 | } // namespace mozilla |
michael@0 | 470 | |
michael@0 | 471 | #elif defined(_MSC_VER) |
michael@0 | 472 | |
michael@0 | 473 | /* |
michael@0 | 474 | * Windows comes with a full complement of atomic operations. |
michael@0 | 475 | * Unfortunately, most of those aren't available for Windows XP (even if |
michael@0 | 476 | * the compiler supports intrinsics for them), which is the oldest |
michael@0 | 477 | * version of Windows we support. Therefore, we only provide operations |
michael@0 | 478 | * on 32-bit datatypes for 32-bit Windows versions; for 64-bit Windows |
michael@0 | 479 | * versions, we support 64-bit datatypes as well. |
michael@0 | 480 | * |
michael@0 | 481 | * To avoid namespace pollution issues, we declare whatever functions we |
michael@0 | 482 | * need ourselves. |
michael@0 | 483 | */ |
michael@0 | 484 | |
michael@0 | 485 | extern "C" { |
michael@0 | 486 | long __cdecl _InterlockedExchangeAdd(long volatile* dst, long value); |
michael@0 | 487 | long __cdecl _InterlockedOr(long volatile* dst, long value); |
michael@0 | 488 | long __cdecl _InterlockedXor(long volatile* dst, long value); |
michael@0 | 489 | long __cdecl _InterlockedAnd(long volatile* dst, long value); |
michael@0 | 490 | long __cdecl _InterlockedExchange(long volatile *dst, long value); |
michael@0 | 491 | long __cdecl _InterlockedCompareExchange(long volatile *dst, long newVal, long oldVal); |
michael@0 | 492 | } |
michael@0 | 493 | |
michael@0 | 494 | # pragma intrinsic(_InterlockedExchangeAdd) |
michael@0 | 495 | # pragma intrinsic(_InterlockedOr) |
michael@0 | 496 | # pragma intrinsic(_InterlockedXor) |
michael@0 | 497 | # pragma intrinsic(_InterlockedAnd) |
michael@0 | 498 | # pragma intrinsic(_InterlockedExchange) |
michael@0 | 499 | # pragma intrinsic(_InterlockedCompareExchange) |
michael@0 | 500 | |
michael@0 | 501 | namespace mozilla { |
michael@0 | 502 | namespace detail { |
michael@0 | 503 | |
michael@0 | 504 | # if !defined(_M_IX86) && !defined(_M_X64) |
michael@0 | 505 | /* |
michael@0 | 506 | * The implementations below are optimized for x86ish systems. You |
michael@0 | 507 | * will have to modify them if you are porting to Windows on a |
michael@0 | 508 | * different architecture. |
michael@0 | 509 | */ |
michael@0 | 510 | # error "Unknown CPU type" |
michael@0 | 511 | # endif |
michael@0 | 512 | |
michael@0 | 513 | /* |
michael@0 | 514 | * The PrimitiveIntrinsics template should define |Type|, the datatype of size |
michael@0 | 515 | * DataSize upon which we operate, and the following eight functions. |
michael@0 | 516 | * |
michael@0 | 517 | * static Type add(Type* ptr, Type val); |
michael@0 | 518 | * static Type sub(Type* ptr, Type val); |
michael@0 | 519 | * static Type or_(Type* ptr, Type val); |
michael@0 | 520 | * static Type xor_(Type* ptr, Type val); |
michael@0 | 521 | * static Type and_(Type* ptr, Type val); |
michael@0 | 522 | * |
michael@0 | 523 | * These functions perform the obvious operation on the value contained in |
michael@0 | 524 | * |*ptr| combined with |val| and return the value previously stored in |
michael@0 | 525 | * |*ptr|. |
michael@0 | 526 | * |
michael@0 | 527 | * static void store(Type* ptr, Type val); |
michael@0 | 528 | * |
michael@0 | 529 | * This function atomically stores |val| into |*ptr| and must provide a full |
michael@0 | 530 | * memory fence after the store to prevent compiler and hardware instruction |
michael@0 | 531 | * reordering. It should also act as a compiler barrier to prevent reads and |
michael@0 | 532 | * writes from moving to after the store. |
michael@0 | 533 | * |
michael@0 | 534 | * static Type exchange(Type* ptr, Type val); |
michael@0 | 535 | * |
michael@0 | 536 | * This function atomically stores |val| into |*ptr| and returns the previous |
michael@0 | 537 | * contents of *ptr; |
michael@0 | 538 | * |
michael@0 | 539 | * static bool compareExchange(Type* ptr, Type oldVal, Type newVal); |
michael@0 | 540 | * |
michael@0 | 541 | * This function atomically performs the following operation: |
michael@0 | 542 | * |
michael@0 | 543 | * if (*ptr == oldVal) { |
michael@0 | 544 | * *ptr = newVal; |
michael@0 | 545 | * return true; |
michael@0 | 546 | * } else { |
michael@0 | 547 | * return false; |
michael@0 | 548 | * } |
michael@0 | 549 | * |
michael@0 | 550 | */ |
michael@0 | 551 | template<size_t DataSize> struct PrimitiveIntrinsics; |
michael@0 | 552 | |
michael@0 | 553 | template<> |
michael@0 | 554 | struct PrimitiveIntrinsics<4> |
michael@0 | 555 | { |
michael@0 | 556 | typedef long Type; |
michael@0 | 557 | |
michael@0 | 558 | static Type add(Type* ptr, Type val) { |
michael@0 | 559 | return _InterlockedExchangeAdd(ptr, val); |
michael@0 | 560 | } |
michael@0 | 561 | static Type sub(Type* ptr, Type val) { |
michael@0 | 562 | /* |
michael@0 | 563 | * _InterlockedExchangeSubtract isn't available before Windows 7, |
michael@0 | 564 | * and we must support Windows XP. |
michael@0 | 565 | */ |
michael@0 | 566 | return _InterlockedExchangeAdd(ptr, -val); |
michael@0 | 567 | } |
michael@0 | 568 | static Type or_(Type* ptr, Type val) { |
michael@0 | 569 | return _InterlockedOr(ptr, val); |
michael@0 | 570 | } |
michael@0 | 571 | static Type xor_(Type* ptr, Type val) { |
michael@0 | 572 | return _InterlockedXor(ptr, val); |
michael@0 | 573 | } |
michael@0 | 574 | static Type and_(Type* ptr, Type val) { |
michael@0 | 575 | return _InterlockedAnd(ptr, val); |
michael@0 | 576 | } |
michael@0 | 577 | static void store(Type* ptr, Type val) { |
michael@0 | 578 | _InterlockedExchange(ptr, val); |
michael@0 | 579 | } |
michael@0 | 580 | static Type exchange(Type* ptr, Type val) { |
michael@0 | 581 | return _InterlockedExchange(ptr, val); |
michael@0 | 582 | } |
michael@0 | 583 | static bool compareExchange(Type* ptr, Type oldVal, Type newVal) { |
michael@0 | 584 | return _InterlockedCompareExchange(ptr, newVal, oldVal) == oldVal; |
michael@0 | 585 | } |
michael@0 | 586 | }; |
michael@0 | 587 | |
michael@0 | 588 | # if defined(_M_X64) |
michael@0 | 589 | |
michael@0 | 590 | extern "C" { |
michael@0 | 591 | long long __cdecl _InterlockedExchangeAdd64(long long volatile* dst, |
michael@0 | 592 | long long value); |
michael@0 | 593 | long long __cdecl _InterlockedOr64(long long volatile* dst, |
michael@0 | 594 | long long value); |
michael@0 | 595 | long long __cdecl _InterlockedXor64(long long volatile* dst, |
michael@0 | 596 | long long value); |
michael@0 | 597 | long long __cdecl _InterlockedAnd64(long long volatile* dst, |
michael@0 | 598 | long long value); |
michael@0 | 599 | long long __cdecl _InterlockedExchange64(long long volatile* dst, |
michael@0 | 600 | long long value); |
michael@0 | 601 | long long __cdecl _InterlockedCompareExchange64(long long volatile* dst, |
michael@0 | 602 | long long newVal, |
michael@0 | 603 | long long oldVal); |
michael@0 | 604 | } |
michael@0 | 605 | |
michael@0 | 606 | # pragma intrinsic(_InterlockedExchangeAdd64) |
michael@0 | 607 | # pragma intrinsic(_InterlockedOr64) |
michael@0 | 608 | # pragma intrinsic(_InterlockedXor64) |
michael@0 | 609 | # pragma intrinsic(_InterlockedAnd64) |
michael@0 | 610 | # pragma intrinsic(_InterlockedExchange64) |
michael@0 | 611 | # pragma intrinsic(_InterlockedCompareExchange64) |
michael@0 | 612 | |
michael@0 | 613 | template <> |
michael@0 | 614 | struct PrimitiveIntrinsics<8> |
michael@0 | 615 | { |
michael@0 | 616 | typedef __int64 Type; |
michael@0 | 617 | |
michael@0 | 618 | static Type add(Type* ptr, Type val) { |
michael@0 | 619 | return _InterlockedExchangeAdd64(ptr, val); |
michael@0 | 620 | } |
michael@0 | 621 | static Type sub(Type* ptr, Type val) { |
michael@0 | 622 | /* |
michael@0 | 623 | * There is no _InterlockedExchangeSubtract64. |
michael@0 | 624 | */ |
michael@0 | 625 | return _InterlockedExchangeAdd64(ptr, -val); |
michael@0 | 626 | } |
michael@0 | 627 | static Type or_(Type* ptr, Type val) { |
michael@0 | 628 | return _InterlockedOr64(ptr, val); |
michael@0 | 629 | } |
michael@0 | 630 | static Type xor_(Type* ptr, Type val) { |
michael@0 | 631 | return _InterlockedXor64(ptr, val); |
michael@0 | 632 | } |
michael@0 | 633 | static Type and_(Type* ptr, Type val) { |
michael@0 | 634 | return _InterlockedAnd64(ptr, val); |
michael@0 | 635 | } |
michael@0 | 636 | static void store(Type* ptr, Type val) { |
michael@0 | 637 | _InterlockedExchange64(ptr, val); |
michael@0 | 638 | } |
michael@0 | 639 | static Type exchange(Type* ptr, Type val) { |
michael@0 | 640 | return _InterlockedExchange64(ptr, val); |
michael@0 | 641 | } |
michael@0 | 642 | static bool compareExchange(Type* ptr, Type oldVal, Type newVal) { |
michael@0 | 643 | return _InterlockedCompareExchange64(ptr, newVal, oldVal) == oldVal; |
michael@0 | 644 | } |
michael@0 | 645 | }; |
michael@0 | 646 | |
michael@0 | 647 | # endif |
michael@0 | 648 | |
michael@0 | 649 | extern "C" { void _ReadWriteBarrier(); } |
michael@0 | 650 | |
michael@0 | 651 | # pragma intrinsic(_ReadWriteBarrier) |
michael@0 | 652 | |
michael@0 | 653 | template<MemoryOrdering Order> struct Barrier; |
michael@0 | 654 | |
michael@0 | 655 | /* |
michael@0 | 656 | * We do not provide an afterStore method in Barrier, as Relaxed and |
michael@0 | 657 | * ReleaseAcquire orderings do not require one, and the required barrier |
michael@0 | 658 | * for SequentiallyConsistent is handled by PrimitiveIntrinsics. |
michael@0 | 659 | */ |
michael@0 | 660 | |
michael@0 | 661 | template<> |
michael@0 | 662 | struct Barrier<Relaxed> |
michael@0 | 663 | { |
michael@0 | 664 | static void beforeLoad() {} |
michael@0 | 665 | static void afterLoad() {} |
michael@0 | 666 | static void beforeStore() {} |
michael@0 | 667 | }; |
michael@0 | 668 | |
michael@0 | 669 | template<> |
michael@0 | 670 | struct Barrier<ReleaseAcquire> |
michael@0 | 671 | { |
michael@0 | 672 | static void beforeLoad() {} |
michael@0 | 673 | static void afterLoad() { _ReadWriteBarrier(); } |
michael@0 | 674 | static void beforeStore() { _ReadWriteBarrier(); } |
michael@0 | 675 | }; |
michael@0 | 676 | |
michael@0 | 677 | template<> |
michael@0 | 678 | struct Barrier<SequentiallyConsistent> |
michael@0 | 679 | { |
michael@0 | 680 | static void beforeLoad() { _ReadWriteBarrier(); } |
michael@0 | 681 | static void afterLoad() { _ReadWriteBarrier(); } |
michael@0 | 682 | static void beforeStore() { _ReadWriteBarrier(); } |
michael@0 | 683 | }; |
michael@0 | 684 | |
michael@0 | 685 | template<typename PrimType, typename T> |
michael@0 | 686 | struct CastHelper |
michael@0 | 687 | { |
michael@0 | 688 | static PrimType toPrimType(T val) { return static_cast<PrimType>(val); } |
michael@0 | 689 | static T fromPrimType(PrimType val) { return static_cast<T>(val); } |
michael@0 | 690 | }; |
michael@0 | 691 | |
michael@0 | 692 | template<typename PrimType, typename T> |
michael@0 | 693 | struct CastHelper<PrimType, T*> |
michael@0 | 694 | { |
michael@0 | 695 | static PrimType toPrimType(T* val) { return reinterpret_cast<PrimType>(val); } |
michael@0 | 696 | static T* fromPrimType(PrimType val) { return reinterpret_cast<T*>(val); } |
michael@0 | 697 | }; |
michael@0 | 698 | |
michael@0 | 699 | template<typename T> |
michael@0 | 700 | struct IntrinsicBase |
michael@0 | 701 | { |
michael@0 | 702 | typedef T ValueType; |
michael@0 | 703 | typedef PrimitiveIntrinsics<sizeof(T)> Primitives; |
michael@0 | 704 | typedef typename Primitives::Type PrimType; |
michael@0 | 705 | static_assert(sizeof(PrimType) == sizeof(T), |
michael@0 | 706 | "Selection of PrimitiveIntrinsics was wrong"); |
michael@0 | 707 | typedef CastHelper<PrimType, T> Cast; |
michael@0 | 708 | }; |
michael@0 | 709 | |
michael@0 | 710 | template<typename T, MemoryOrdering Order> |
michael@0 | 711 | struct IntrinsicMemoryOps : public IntrinsicBase<T> |
michael@0 | 712 | { |
michael@0 | 713 | typedef typename IntrinsicBase<T>::ValueType ValueType; |
michael@0 | 714 | typedef typename IntrinsicBase<T>::Primitives Primitives; |
michael@0 | 715 | typedef typename IntrinsicBase<T>::PrimType PrimType; |
michael@0 | 716 | typedef typename IntrinsicBase<T>::Cast Cast; |
michael@0 | 717 | static ValueType load(const ValueType& ptr) { |
michael@0 | 718 | Barrier<Order>::beforeLoad(); |
michael@0 | 719 | ValueType val = ptr; |
michael@0 | 720 | Barrier<Order>::afterLoad(); |
michael@0 | 721 | return val; |
michael@0 | 722 | } |
michael@0 | 723 | static void store(ValueType& ptr, ValueType val) { |
michael@0 | 724 | // For SequentiallyConsistent, Primitives::store() will generate the |
michael@0 | 725 | // proper memory fence. Everything else just needs a barrier before |
michael@0 | 726 | // the store. |
michael@0 | 727 | if (Order == SequentiallyConsistent) { |
michael@0 | 728 | Primitives::store(reinterpret_cast<PrimType*>(&ptr), |
michael@0 | 729 | Cast::toPrimType(val)); |
michael@0 | 730 | } else { |
michael@0 | 731 | Barrier<Order>::beforeStore(); |
michael@0 | 732 | ptr = val; |
michael@0 | 733 | } |
michael@0 | 734 | } |
michael@0 | 735 | static ValueType exchange(ValueType& ptr, ValueType val) { |
michael@0 | 736 | PrimType oldval = |
michael@0 | 737 | Primitives::exchange(reinterpret_cast<PrimType*>(&ptr), |
michael@0 | 738 | Cast::toPrimType(val)); |
michael@0 | 739 | return Cast::fromPrimType(oldval); |
michael@0 | 740 | } |
michael@0 | 741 | static bool compareExchange(ValueType& ptr, ValueType oldVal, ValueType newVal) { |
michael@0 | 742 | return Primitives::compareExchange(reinterpret_cast<PrimType*>(&ptr), |
michael@0 | 743 | Cast::toPrimType(oldVal), |
michael@0 | 744 | Cast::toPrimType(newVal)); |
michael@0 | 745 | } |
michael@0 | 746 | }; |
michael@0 | 747 | |
michael@0 | 748 | template<typename T> |
michael@0 | 749 | struct IntrinsicApplyHelper : public IntrinsicBase<T> |
michael@0 | 750 | { |
michael@0 | 751 | typedef typename IntrinsicBase<T>::ValueType ValueType; |
michael@0 | 752 | typedef typename IntrinsicBase<T>::PrimType PrimType; |
michael@0 | 753 | typedef typename IntrinsicBase<T>::Cast Cast; |
michael@0 | 754 | typedef PrimType (*BinaryOp)(PrimType*, PrimType); |
michael@0 | 755 | typedef PrimType (*UnaryOp)(PrimType*); |
michael@0 | 756 | |
michael@0 | 757 | static ValueType applyBinaryFunction(BinaryOp op, ValueType& ptr, |
michael@0 | 758 | ValueType val) { |
michael@0 | 759 | PrimType* primTypePtr = reinterpret_cast<PrimType*>(&ptr); |
michael@0 | 760 | PrimType primTypeVal = Cast::toPrimType(val); |
michael@0 | 761 | return Cast::fromPrimType(op(primTypePtr, primTypeVal)); |
michael@0 | 762 | } |
michael@0 | 763 | |
michael@0 | 764 | static ValueType applyUnaryFunction(UnaryOp op, ValueType& ptr) { |
michael@0 | 765 | PrimType* primTypePtr = reinterpret_cast<PrimType*>(&ptr); |
michael@0 | 766 | return Cast::fromPrimType(op(primTypePtr)); |
michael@0 | 767 | } |
michael@0 | 768 | }; |
michael@0 | 769 | |
michael@0 | 770 | template<typename T> |
michael@0 | 771 | struct IntrinsicAddSub : public IntrinsicApplyHelper<T> |
michael@0 | 772 | { |
michael@0 | 773 | typedef typename IntrinsicApplyHelper<T>::ValueType ValueType; |
michael@0 | 774 | typedef typename IntrinsicBase<T>::Primitives Primitives; |
michael@0 | 775 | static ValueType add(ValueType& ptr, ValueType val) { |
michael@0 | 776 | return applyBinaryFunction(&Primitives::add, ptr, val); |
michael@0 | 777 | } |
michael@0 | 778 | static ValueType sub(ValueType& ptr, ValueType val) { |
michael@0 | 779 | return applyBinaryFunction(&Primitives::sub, ptr, val); |
michael@0 | 780 | } |
michael@0 | 781 | }; |
michael@0 | 782 | |
michael@0 | 783 | template<typename T> |
michael@0 | 784 | struct IntrinsicAddSub<T*> : public IntrinsicApplyHelper<T*> |
michael@0 | 785 | { |
michael@0 | 786 | typedef typename IntrinsicApplyHelper<T*>::ValueType ValueType; |
michael@0 | 787 | static ValueType add(ValueType& ptr, ptrdiff_t amount) { |
michael@0 | 788 | return applyBinaryFunction(&Primitives::add, ptr, |
michael@0 | 789 | (ValueType)(amount * sizeof(ValueType))); |
michael@0 | 790 | } |
michael@0 | 791 | static ValueType sub(ValueType& ptr, ptrdiff_t amount) { |
michael@0 | 792 | return applyBinaryFunction(&Primitives::sub, ptr, |
michael@0 | 793 | (ValueType)(amount * sizeof(ValueType))); |
michael@0 | 794 | } |
michael@0 | 795 | }; |
michael@0 | 796 | |
michael@0 | 797 | template<typename T> |
michael@0 | 798 | struct IntrinsicIncDec : public IntrinsicAddSub<T> |
michael@0 | 799 | { |
michael@0 | 800 | typedef typename IntrinsicAddSub<T>::ValueType ValueType; |
michael@0 | 801 | static ValueType inc(ValueType& ptr) { return add(ptr, 1); } |
michael@0 | 802 | static ValueType dec(ValueType& ptr) { return sub(ptr, 1); } |
michael@0 | 803 | }; |
michael@0 | 804 | |
michael@0 | 805 | template<typename T, MemoryOrdering Order> |
michael@0 | 806 | struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>, |
michael@0 | 807 | public IntrinsicIncDec<T> |
michael@0 | 808 | { |
michael@0 | 809 | typedef typename IntrinsicIncDec<T>::ValueType ValueType; |
michael@0 | 810 | static ValueType or_(ValueType& ptr, T val) { |
michael@0 | 811 | return applyBinaryFunction(&Primitives::or_, ptr, val); |
michael@0 | 812 | } |
michael@0 | 813 | static ValueType xor_(ValueType& ptr, T val) { |
michael@0 | 814 | return applyBinaryFunction(&Primitives::xor_, ptr, val); |
michael@0 | 815 | } |
michael@0 | 816 | static ValueType and_(ValueType& ptr, T val) { |
michael@0 | 817 | return applyBinaryFunction(&Primitives::and_, ptr, val); |
michael@0 | 818 | } |
michael@0 | 819 | }; |
michael@0 | 820 | |
michael@0 | 821 | template<typename T, MemoryOrdering Order> |
michael@0 | 822 | struct AtomicIntrinsics<T*, Order> : public IntrinsicMemoryOps<T*, Order>, |
michael@0 | 823 | public IntrinsicIncDec<T*> |
michael@0 | 824 | { |
michael@0 | 825 | typedef typename IntrinsicMemoryOps<T*, Order>::ValueType ValueType; |
michael@0 | 826 | }; |
michael@0 | 827 | |
michael@0 | 828 | } // namespace detail |
michael@0 | 829 | } // namespace mozilla |
michael@0 | 830 | |
michael@0 | 831 | #else |
michael@0 | 832 | # error "Atomic compiler intrinsics are not supported on your platform" |
michael@0 | 833 | #endif |
michael@0 | 834 | |
michael@0 | 835 | namespace mozilla { |
michael@0 | 836 | |
michael@0 | 837 | namespace detail { |
michael@0 | 838 | |
michael@0 | 839 | template<typename T, MemoryOrdering Order> |
michael@0 | 840 | class AtomicBase |
michael@0 | 841 | { |
michael@0 | 842 | // We only support 32-bit types on 32-bit Windows, which constrains our |
michael@0 | 843 | // implementation elsewhere. But we support pointer-sized types everywhere. |
michael@0 | 844 | static_assert(sizeof(T) == 4 || (sizeof(uintptr_t) == 8 && sizeof(T) == 8), |
michael@0 | 845 | "mozilla/Atomics.h only supports 32-bit and pointer-sized types"); |
michael@0 | 846 | |
michael@0 | 847 | protected: |
michael@0 | 848 | typedef typename detail::AtomicIntrinsics<T, Order> Intrinsics; |
michael@0 | 849 | typename Intrinsics::ValueType mValue; |
michael@0 | 850 | |
michael@0 | 851 | public: |
michael@0 | 852 | MOZ_CONSTEXPR AtomicBase() : mValue() {} |
michael@0 | 853 | MOZ_CONSTEXPR AtomicBase(T aInit) : mValue(aInit) {} |
michael@0 | 854 | |
michael@0 | 855 | // Note: we can't provide operator T() here because Atomic<bool> inherits |
michael@0 | 856 | // from AtomcBase with T=uint32_t and not T=bool. If we implemented |
michael@0 | 857 | // operator T() here, it would cause errors when comparing Atomic<bool> with |
michael@0 | 858 | // a regular bool. |
michael@0 | 859 | |
michael@0 | 860 | T operator=(T aValue) { |
michael@0 | 861 | Intrinsics::store(mValue, aValue); |
michael@0 | 862 | return aValue; |
michael@0 | 863 | } |
michael@0 | 864 | |
michael@0 | 865 | /** |
michael@0 | 866 | * Performs an atomic swap operation. aValue is stored and the previous |
michael@0 | 867 | * value of this variable is returned. |
michael@0 | 868 | */ |
michael@0 | 869 | T exchange(T aValue) { |
michael@0 | 870 | return Intrinsics::exchange(mValue, aValue); |
michael@0 | 871 | } |
michael@0 | 872 | |
michael@0 | 873 | /** |
michael@0 | 874 | * Performs an atomic compare-and-swap operation and returns true if it |
michael@0 | 875 | * succeeded. This is equivalent to atomically doing |
michael@0 | 876 | * |
michael@0 | 877 | * if (mValue == aOldValue) { |
michael@0 | 878 | * mValue = aNewValue; |
michael@0 | 879 | * return true; |
michael@0 | 880 | * } else { |
michael@0 | 881 | * return false; |
michael@0 | 882 | * } |
michael@0 | 883 | */ |
michael@0 | 884 | bool compareExchange(T aOldValue, T aNewValue) { |
michael@0 | 885 | return Intrinsics::compareExchange(mValue, aOldValue, aNewValue); |
michael@0 | 886 | } |
michael@0 | 887 | |
michael@0 | 888 | private: |
michael@0 | 889 | template<MemoryOrdering AnyOrder> |
michael@0 | 890 | AtomicBase(const AtomicBase<T, AnyOrder>& aCopy) MOZ_DELETE; |
michael@0 | 891 | }; |
michael@0 | 892 | |
michael@0 | 893 | template<typename T, MemoryOrdering Order> |
michael@0 | 894 | class AtomicBaseIncDec : public AtomicBase<T, Order> |
michael@0 | 895 | { |
michael@0 | 896 | typedef typename detail::AtomicBase<T, Order> Base; |
michael@0 | 897 | |
michael@0 | 898 | public: |
michael@0 | 899 | MOZ_CONSTEXPR AtomicBaseIncDec() : Base() {} |
michael@0 | 900 | MOZ_CONSTEXPR AtomicBaseIncDec(T aInit) : Base(aInit) {} |
michael@0 | 901 | |
michael@0 | 902 | using Base::operator=; |
michael@0 | 903 | |
michael@0 | 904 | operator T() const { return Base::Intrinsics::load(Base::mValue); } |
michael@0 | 905 | T operator++(int) { return Base::Intrinsics::inc(Base::mValue); } |
michael@0 | 906 | T operator--(int) { return Base::Intrinsics::dec(Base::mValue); } |
michael@0 | 907 | T operator++() { return Base::Intrinsics::inc(Base::mValue) + 1; } |
michael@0 | 908 | T operator--() { return Base::Intrinsics::dec(Base::mValue) - 1; } |
michael@0 | 909 | |
michael@0 | 910 | private: |
michael@0 | 911 | template<MemoryOrdering AnyOrder> |
michael@0 | 912 | AtomicBaseIncDec(const AtomicBaseIncDec<T, AnyOrder>& aCopy) MOZ_DELETE; |
michael@0 | 913 | }; |
michael@0 | 914 | |
michael@0 | 915 | } // namespace detail |
michael@0 | 916 | |
michael@0 | 917 | /** |
michael@0 | 918 | * A wrapper for a type that enforces that all memory accesses are atomic. |
michael@0 | 919 | * |
michael@0 | 920 | * In general, where a variable |T foo| exists, |Atomic<T> foo| can be used in |
michael@0 | 921 | * its place. Implementations for integral and pointer types are provided |
michael@0 | 922 | * below. |
michael@0 | 923 | * |
michael@0 | 924 | * Atomic accesses are sequentially consistent by default. You should |
michael@0 | 925 | * use the default unless you are tall enough to ride the |
michael@0 | 926 | * memory-ordering roller coaster (if you're not sure, you aren't) and |
michael@0 | 927 | * you have a compelling reason to do otherwise. |
michael@0 | 928 | * |
michael@0 | 929 | * There is one exception to the case of atomic memory accesses: providing an |
michael@0 | 930 | * initial value of the atomic value is not guaranteed to be atomic. This is a |
michael@0 | 931 | * deliberate design choice that enables static atomic variables to be declared |
michael@0 | 932 | * without introducing extra static constructors. |
michael@0 | 933 | */ |
michael@0 | 934 | template<typename T, |
michael@0 | 935 | MemoryOrdering Order = SequentiallyConsistent, |
michael@0 | 936 | typename Enable = void> |
michael@0 | 937 | class Atomic; |
michael@0 | 938 | |
michael@0 | 939 | /** |
michael@0 | 940 | * Atomic<T> implementation for integral types. |
michael@0 | 941 | * |
michael@0 | 942 | * In addition to atomic store and load operations, compound assignment and |
michael@0 | 943 | * increment/decrement operators are implemented which perform the |
michael@0 | 944 | * corresponding read-modify-write operation atomically. Finally, an atomic |
michael@0 | 945 | * swap method is provided. |
michael@0 | 946 | */ |
michael@0 | 947 | template<typename T, MemoryOrdering Order> |
michael@0 | 948 | class Atomic<T, Order, typename EnableIf<IsIntegral<T>::value && !IsSame<T, bool>::value>::Type> |
michael@0 | 949 | : public detail::AtomicBaseIncDec<T, Order> |
michael@0 | 950 | { |
michael@0 | 951 | typedef typename detail::AtomicBaseIncDec<T, Order> Base; |
michael@0 | 952 | |
michael@0 | 953 | public: |
michael@0 | 954 | MOZ_CONSTEXPR Atomic() : Base() {} |
michael@0 | 955 | MOZ_CONSTEXPR Atomic(T aInit) : Base(aInit) {} |
michael@0 | 956 | |
michael@0 | 957 | using Base::operator=; |
michael@0 | 958 | |
michael@0 | 959 | T operator+=(T delta) { return Base::Intrinsics::add(Base::mValue, delta) + delta; } |
michael@0 | 960 | T operator-=(T delta) { return Base::Intrinsics::sub(Base::mValue, delta) - delta; } |
michael@0 | 961 | T operator|=(T val) { return Base::Intrinsics::or_(Base::mValue, val) | val; } |
michael@0 | 962 | T operator^=(T val) { return Base::Intrinsics::xor_(Base::mValue, val) ^ val; } |
michael@0 | 963 | T operator&=(T val) { return Base::Intrinsics::and_(Base::mValue, val) & val; } |
michael@0 | 964 | |
michael@0 | 965 | private: |
michael@0 | 966 | Atomic(Atomic<T, Order>& aOther) MOZ_DELETE; |
michael@0 | 967 | }; |
michael@0 | 968 | |
michael@0 | 969 | /** |
michael@0 | 970 | * Atomic<T> implementation for pointer types. |
michael@0 | 971 | * |
michael@0 | 972 | * An atomic compare-and-swap primitive for pointer variables is provided, as |
michael@0 | 973 | * are atomic increment and decement operators. Also provided are the compound |
michael@0 | 974 | * assignment operators for addition and subtraction. Atomic swap (via |
michael@0 | 975 | * exchange()) is included as well. |
michael@0 | 976 | */ |
michael@0 | 977 | template<typename T, MemoryOrdering Order> |
michael@0 | 978 | class Atomic<T*, Order> : public detail::AtomicBaseIncDec<T*, Order> |
michael@0 | 979 | { |
michael@0 | 980 | typedef typename detail::AtomicBaseIncDec<T*, Order> Base; |
michael@0 | 981 | |
michael@0 | 982 | public: |
michael@0 | 983 | MOZ_CONSTEXPR Atomic() : Base() {} |
michael@0 | 984 | MOZ_CONSTEXPR Atomic(T* aInit) : Base(aInit) {} |
michael@0 | 985 | |
michael@0 | 986 | using Base::operator=; |
michael@0 | 987 | |
michael@0 | 988 | T* operator+=(ptrdiff_t delta) { |
michael@0 | 989 | return Base::Intrinsics::add(Base::mValue, delta) + delta; |
michael@0 | 990 | } |
michael@0 | 991 | T* operator-=(ptrdiff_t delta) { |
michael@0 | 992 | return Base::Intrinsics::sub(Base::mValue, delta) - delta; |
michael@0 | 993 | } |
michael@0 | 994 | |
michael@0 | 995 | private: |
michael@0 | 996 | Atomic(Atomic<T*, Order>& aOther) MOZ_DELETE; |
michael@0 | 997 | }; |
michael@0 | 998 | |
michael@0 | 999 | /** |
michael@0 | 1000 | * Atomic<T> implementation for enum types. |
michael@0 | 1001 | * |
michael@0 | 1002 | * The atomic store and load operations and the atomic swap method is provided. |
michael@0 | 1003 | */ |
michael@0 | 1004 | template<typename T, MemoryOrdering Order> |
michael@0 | 1005 | class Atomic<T, Order, typename EnableIf<IsEnum<T>::value>::Type> |
michael@0 | 1006 | : public detail::AtomicBase<T, Order> |
michael@0 | 1007 | { |
michael@0 | 1008 | typedef typename detail::AtomicBase<T, Order> Base; |
michael@0 | 1009 | |
michael@0 | 1010 | public: |
michael@0 | 1011 | MOZ_CONSTEXPR Atomic() : Base() {} |
michael@0 | 1012 | MOZ_CONSTEXPR Atomic(T aInit) : Base(aInit) {} |
michael@0 | 1013 | |
michael@0 | 1014 | operator T() const { return Base::Intrinsics::load(Base::mValue); } |
michael@0 | 1015 | |
michael@0 | 1016 | using Base::operator=; |
michael@0 | 1017 | |
michael@0 | 1018 | private: |
michael@0 | 1019 | Atomic(Atomic<T, Order>& aOther) MOZ_DELETE; |
michael@0 | 1020 | }; |
michael@0 | 1021 | |
michael@0 | 1022 | /** |
michael@0 | 1023 | * Atomic<T> implementation for boolean types. |
michael@0 | 1024 | * |
michael@0 | 1025 | * The atomic store and load operations and the atomic swap method is provided. |
michael@0 | 1026 | * |
michael@0 | 1027 | * Note: |
michael@0 | 1028 | * |
michael@0 | 1029 | * - sizeof(Atomic<bool>) != sizeof(bool) for some implementations of |
michael@0 | 1030 | * bool and/or some implementations of std::atomic. This is allowed in |
michael@0 | 1031 | * [atomic.types.generic]p9. |
michael@0 | 1032 | * |
michael@0 | 1033 | * - It's not obvious whether the 8-bit atomic functions on Windows are always |
michael@0 | 1034 | * inlined or not. If they are not inlined, the corresponding functions in the |
michael@0 | 1035 | * runtime library are not available on Windows XP. This is why we implement |
michael@0 | 1036 | * Atomic<bool> with an underlying type of uint32_t. |
michael@0 | 1037 | */ |
michael@0 | 1038 | template<MemoryOrdering Order> |
michael@0 | 1039 | class Atomic<bool, Order> |
michael@0 | 1040 | : protected detail::AtomicBase<uint32_t, Order> |
michael@0 | 1041 | { |
michael@0 | 1042 | typedef typename detail::AtomicBase<uint32_t, Order> Base; |
michael@0 | 1043 | |
michael@0 | 1044 | public: |
michael@0 | 1045 | MOZ_CONSTEXPR Atomic() : Base() {} |
michael@0 | 1046 | MOZ_CONSTEXPR Atomic(bool aInit) : Base(aInit) {} |
michael@0 | 1047 | |
michael@0 | 1048 | // We provide boolean wrappers for the underlying AtomicBase methods. |
michael@0 | 1049 | operator bool() const { return Base::Intrinsics::load(Base::mValue); } |
michael@0 | 1050 | bool operator=(bool aValue) { return Base::operator=(aValue); } |
michael@0 | 1051 | bool exchange(bool aValue) { return Base::exchange(aValue); } |
michael@0 | 1052 | bool compareExchange(bool aOldValue, bool aNewValue) { |
michael@0 | 1053 | return Base::compareExchange(aOldValue, aNewValue); |
michael@0 | 1054 | } |
michael@0 | 1055 | |
michael@0 | 1056 | private: |
michael@0 | 1057 | Atomic(Atomic<bool, Order>& aOther) MOZ_DELETE; |
michael@0 | 1058 | }; |
michael@0 | 1059 | |
michael@0 | 1060 | } // namespace mozilla |
michael@0 | 1061 | |
michael@0 | 1062 | #endif /* mozilla_Atomics_h */ |