Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
michael@0 | 2 | /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
michael@0 | 3 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 4 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 5 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 6 | |
michael@0 | 7 | /* Various predicates and operations on IEEE-754 floating point types. */ |
michael@0 | 8 | |
michael@0 | 9 | #ifndef mozilla_FloatingPoint_h |
michael@0 | 10 | #define mozilla_FloatingPoint_h |
michael@0 | 11 | |
michael@0 | 12 | #include "mozilla/Assertions.h" |
michael@0 | 13 | #include "mozilla/Attributes.h" |
michael@0 | 14 | #include "mozilla/Casting.h" |
michael@0 | 15 | #include "mozilla/MathAlgorithms.h" |
michael@0 | 16 | #include "mozilla/Types.h" |
michael@0 | 17 | |
michael@0 | 18 | #include <stdint.h> |
michael@0 | 19 | |
michael@0 | 20 | namespace mozilla { |
michael@0 | 21 | |
michael@0 | 22 | /* |
michael@0 | 23 | * It's reasonable to ask why we have this header at all. Don't isnan, |
michael@0 | 24 | * copysign, the built-in comparison operators, and the like solve these |
michael@0 | 25 | * problems? Unfortunately, they don't. We've found that various compilers |
michael@0 | 26 | * (MSVC, MSVC when compiling with PGO, and GCC on OS X, at least) miscompile |
michael@0 | 27 | * the standard methods in various situations, so we can't use them. Some of |
michael@0 | 28 | * these compilers even have problems compiling seemingly reasonable bitwise |
michael@0 | 29 | * algorithms! But with some care we've found algorithms that seem to not |
michael@0 | 30 | * trigger those compiler bugs. |
michael@0 | 31 | * |
michael@0 | 32 | * For the aforementioned reasons, be very wary of making changes to any of |
michael@0 | 33 | * these algorithms. If you must make changes, keep a careful eye out for |
michael@0 | 34 | * compiler bustage, particularly PGO-specific bustage. |
michael@0 | 35 | */ |
michael@0 | 36 | |
michael@0 | 37 | struct FloatTypeTraits |
michael@0 | 38 | { |
michael@0 | 39 | typedef uint32_t Bits; |
michael@0 | 40 | |
michael@0 | 41 | static const unsigned ExponentBias = 127; |
michael@0 | 42 | static const unsigned ExponentShift = 23; |
michael@0 | 43 | |
michael@0 | 44 | static const Bits SignBit = 0x80000000UL; |
michael@0 | 45 | static const Bits ExponentBits = 0x7F800000UL; |
michael@0 | 46 | static const Bits SignificandBits = 0x007FFFFFUL; |
michael@0 | 47 | }; |
michael@0 | 48 | |
michael@0 | 49 | struct DoubleTypeTraits |
michael@0 | 50 | { |
michael@0 | 51 | typedef uint64_t Bits; |
michael@0 | 52 | |
michael@0 | 53 | static const unsigned ExponentBias = 1023; |
michael@0 | 54 | static const unsigned ExponentShift = 52; |
michael@0 | 55 | |
michael@0 | 56 | static const Bits SignBit = 0x8000000000000000ULL; |
michael@0 | 57 | static const Bits ExponentBits = 0x7ff0000000000000ULL; |
michael@0 | 58 | static const Bits SignificandBits = 0x000fffffffffffffULL; |
michael@0 | 59 | }; |
michael@0 | 60 | |
michael@0 | 61 | template<typename T> struct SelectTrait; |
michael@0 | 62 | template<> struct SelectTrait<float> : public FloatTypeTraits {}; |
michael@0 | 63 | template<> struct SelectTrait<double> : public DoubleTypeTraits {}; |
michael@0 | 64 | |
michael@0 | 65 | /* |
michael@0 | 66 | * This struct contains details regarding the encoding of floating-point |
michael@0 | 67 | * numbers that can be useful for direct bit manipulation. As of now, the |
michael@0 | 68 | * template parameter has to be float or double. |
michael@0 | 69 | * |
michael@0 | 70 | * The nested typedef |Bits| is the unsigned integral type with the same size |
michael@0 | 71 | * as T: uint32_t for float and uint64_t for double (static assertions |
michael@0 | 72 | * double-check these assumptions). |
michael@0 | 73 | * |
michael@0 | 74 | * ExponentBias is the offset that is subtracted from the exponent when |
michael@0 | 75 | * computing the value, i.e. one plus the opposite of the mininum possible |
michael@0 | 76 | * exponent. |
michael@0 | 77 | * ExponentShift is the shift that one needs to apply to retrieve the exponent |
michael@0 | 78 | * component of the value. |
michael@0 | 79 | * |
michael@0 | 80 | * SignBit contains a bits mask. Bit-and-ing with this mask will result in |
michael@0 | 81 | * obtaining the sign bit. |
michael@0 | 82 | * ExponentBits contains the mask needed for obtaining the exponent bits and |
michael@0 | 83 | * SignificandBits contains the mask needed for obtaining the significand bits. |
michael@0 | 84 | * |
michael@0 | 85 | * Full details of how floating point number formats are encoded are beyond the |
michael@0 | 86 | * scope of this comment. For more information, see |
michael@0 | 87 | * http://en.wikipedia.org/wiki/IEEE_floating_point |
michael@0 | 88 | * http://en.wikipedia.org/wiki/Floating_point#IEEE_754:_floating_point_in_modern_computers |
michael@0 | 89 | */ |
michael@0 | 90 | template<typename T> |
michael@0 | 91 | struct FloatingPoint : public SelectTrait<T> |
michael@0 | 92 | { |
michael@0 | 93 | typedef SelectTrait<T> Base; |
michael@0 | 94 | typedef typename Base::Bits Bits; |
michael@0 | 95 | |
michael@0 | 96 | static_assert((Base::SignBit & Base::ExponentBits) == 0, |
michael@0 | 97 | "sign bit shouldn't overlap exponent bits"); |
michael@0 | 98 | static_assert((Base::SignBit & Base::SignificandBits) == 0, |
michael@0 | 99 | "sign bit shouldn't overlap significand bits"); |
michael@0 | 100 | static_assert((Base::ExponentBits & Base::SignificandBits) == 0, |
michael@0 | 101 | "exponent bits shouldn't overlap significand bits"); |
michael@0 | 102 | |
michael@0 | 103 | static_assert((Base::SignBit | Base::ExponentBits | Base::SignificandBits) == |
michael@0 | 104 | ~Bits(0), |
michael@0 | 105 | "all bits accounted for"); |
michael@0 | 106 | |
michael@0 | 107 | /* |
michael@0 | 108 | * These implementations assume float/double are 32/64-bit single/double format |
michael@0 | 109 | * number types compatible with the IEEE-754 standard. C++ don't require this |
michael@0 | 110 | * to be the case. But we required this in implementations of these algorithms |
michael@0 | 111 | * that preceded this header, so we shouldn't break anything if we keep doing so. |
michael@0 | 112 | */ |
michael@0 | 113 | static_assert(sizeof(T) == sizeof(Bits), "Bits must be same size as T"); |
michael@0 | 114 | }; |
michael@0 | 115 | |
michael@0 | 116 | /** Determines whether a double is NaN. */ |
michael@0 | 117 | template<typename T> |
michael@0 | 118 | static MOZ_ALWAYS_INLINE bool |
michael@0 | 119 | IsNaN(T t) |
michael@0 | 120 | { |
michael@0 | 121 | /* |
michael@0 | 122 | * A float/double is NaN if all exponent bits are 1 and the significand contains at |
michael@0 | 123 | * least one non-zero bit. |
michael@0 | 124 | */ |
michael@0 | 125 | typedef FloatingPoint<T> Traits; |
michael@0 | 126 | typedef typename Traits::Bits Bits; |
michael@0 | 127 | Bits bits = BitwiseCast<Bits>(t); |
michael@0 | 128 | return (bits & Traits::ExponentBits) == Traits::ExponentBits && |
michael@0 | 129 | (bits & Traits::SignificandBits) != 0; |
michael@0 | 130 | } |
michael@0 | 131 | |
michael@0 | 132 | /** Determines whether a float/double is +Infinity or -Infinity. */ |
michael@0 | 133 | template<typename T> |
michael@0 | 134 | static MOZ_ALWAYS_INLINE bool |
michael@0 | 135 | IsInfinite(T t) |
michael@0 | 136 | { |
michael@0 | 137 | /* Infinities have all exponent bits set to 1 and an all-0 significand. */ |
michael@0 | 138 | typedef FloatingPoint<T> Traits; |
michael@0 | 139 | typedef typename Traits::Bits Bits; |
michael@0 | 140 | Bits bits = BitwiseCast<Bits>(t); |
michael@0 | 141 | return (bits & ~Traits::SignBit) == Traits::ExponentBits; |
michael@0 | 142 | } |
michael@0 | 143 | |
michael@0 | 144 | /** Determines whether a float/double is not NaN or infinite. */ |
michael@0 | 145 | template<typename T> |
michael@0 | 146 | static MOZ_ALWAYS_INLINE bool |
michael@0 | 147 | IsFinite(T t) |
michael@0 | 148 | { |
michael@0 | 149 | /* |
michael@0 | 150 | * NaN and Infinities are the only non-finite floats/doubles, and both have all |
michael@0 | 151 | * exponent bits set to 1. |
michael@0 | 152 | */ |
michael@0 | 153 | typedef FloatingPoint<T> Traits; |
michael@0 | 154 | typedef typename Traits::Bits Bits; |
michael@0 | 155 | Bits bits = BitwiseCast<Bits>(t); |
michael@0 | 156 | return (bits & Traits::ExponentBits) != Traits::ExponentBits; |
michael@0 | 157 | } |
michael@0 | 158 | |
michael@0 | 159 | /** |
michael@0 | 160 | * Determines whether a float/double is negative. It is an error to call this method |
michael@0 | 161 | * on a float/double which is NaN. |
michael@0 | 162 | */ |
michael@0 | 163 | template<typename T> |
michael@0 | 164 | static MOZ_ALWAYS_INLINE bool |
michael@0 | 165 | IsNegative(T t) |
michael@0 | 166 | { |
michael@0 | 167 | MOZ_ASSERT(!IsNaN(t), "NaN does not have a sign"); |
michael@0 | 168 | |
michael@0 | 169 | /* The sign bit is set if the double is negative. */ |
michael@0 | 170 | typedef FloatingPoint<T> Traits; |
michael@0 | 171 | typedef typename Traits::Bits Bits; |
michael@0 | 172 | Bits bits = BitwiseCast<Bits>(t); |
michael@0 | 173 | return (bits & Traits::SignBit) != 0; |
michael@0 | 174 | } |
michael@0 | 175 | |
michael@0 | 176 | /** Determines whether a float/double represents -0. */ |
michael@0 | 177 | template<typename T> |
michael@0 | 178 | static MOZ_ALWAYS_INLINE bool |
michael@0 | 179 | IsNegativeZero(T t) |
michael@0 | 180 | { |
michael@0 | 181 | /* Only the sign bit is set if the value is -0. */ |
michael@0 | 182 | typedef FloatingPoint<T> Traits; |
michael@0 | 183 | typedef typename Traits::Bits Bits; |
michael@0 | 184 | Bits bits = BitwiseCast<Bits>(t); |
michael@0 | 185 | return bits == Traits::SignBit; |
michael@0 | 186 | } |
michael@0 | 187 | |
michael@0 | 188 | /** |
michael@0 | 189 | * Returns the exponent portion of the float/double. |
michael@0 | 190 | * |
michael@0 | 191 | * Zero is not special-cased, so ExponentComponent(0.0) is |
michael@0 | 192 | * -int_fast16_t(Traits::ExponentBias). |
michael@0 | 193 | */ |
michael@0 | 194 | template<typename T> |
michael@0 | 195 | static MOZ_ALWAYS_INLINE int_fast16_t |
michael@0 | 196 | ExponentComponent(T t) |
michael@0 | 197 | { |
michael@0 | 198 | /* |
michael@0 | 199 | * The exponent component of a float/double is an unsigned number, biased from its |
michael@0 | 200 | * actual value. Subtract the bias to retrieve the actual exponent. |
michael@0 | 201 | */ |
michael@0 | 202 | typedef FloatingPoint<T> Traits; |
michael@0 | 203 | typedef typename Traits::Bits Bits; |
michael@0 | 204 | Bits bits = BitwiseCast<Bits>(t); |
michael@0 | 205 | return int_fast16_t((bits & Traits::ExponentBits) >> Traits::ExponentShift) - |
michael@0 | 206 | int_fast16_t(Traits::ExponentBias); |
michael@0 | 207 | } |
michael@0 | 208 | |
michael@0 | 209 | /** Returns +Infinity. */ |
michael@0 | 210 | template<typename T> |
michael@0 | 211 | static MOZ_ALWAYS_INLINE T |
michael@0 | 212 | PositiveInfinity() |
michael@0 | 213 | { |
michael@0 | 214 | /* |
michael@0 | 215 | * Positive infinity has all exponent bits set, sign bit set to 0, and no |
michael@0 | 216 | * significand. |
michael@0 | 217 | */ |
michael@0 | 218 | typedef FloatingPoint<T> Traits; |
michael@0 | 219 | return BitwiseCast<T>(Traits::ExponentBits); |
michael@0 | 220 | } |
michael@0 | 221 | |
michael@0 | 222 | /** Returns -Infinity. */ |
michael@0 | 223 | template<typename T> |
michael@0 | 224 | static MOZ_ALWAYS_INLINE T |
michael@0 | 225 | NegativeInfinity() |
michael@0 | 226 | { |
michael@0 | 227 | /* |
michael@0 | 228 | * Negative infinity has all exponent bits set, sign bit set to 1, and no |
michael@0 | 229 | * significand. |
michael@0 | 230 | */ |
michael@0 | 231 | typedef FloatingPoint<T> Traits; |
michael@0 | 232 | return BitwiseCast<T>(Traits::SignBit | Traits::ExponentBits); |
michael@0 | 233 | } |
michael@0 | 234 | |
michael@0 | 235 | |
michael@0 | 236 | /** Constructs a NaN value with the specified sign bit and significand bits. */ |
michael@0 | 237 | template<typename T> |
michael@0 | 238 | static MOZ_ALWAYS_INLINE T |
michael@0 | 239 | SpecificNaN(int signbit, typename FloatingPoint<T>::Bits significand) |
michael@0 | 240 | { |
michael@0 | 241 | typedef FloatingPoint<T> Traits; |
michael@0 | 242 | MOZ_ASSERT(signbit == 0 || signbit == 1); |
michael@0 | 243 | MOZ_ASSERT((significand & ~Traits::SignificandBits) == 0); |
michael@0 | 244 | MOZ_ASSERT(significand & Traits::SignificandBits); |
michael@0 | 245 | |
michael@0 | 246 | T t = BitwiseCast<T>((signbit ? Traits::SignBit : 0) | |
michael@0 | 247 | Traits::ExponentBits | |
michael@0 | 248 | significand); |
michael@0 | 249 | MOZ_ASSERT(IsNaN(t)); |
michael@0 | 250 | return t; |
michael@0 | 251 | } |
michael@0 | 252 | |
michael@0 | 253 | /** Computes the smallest non-zero positive float/double value. */ |
michael@0 | 254 | template<typename T> |
michael@0 | 255 | static MOZ_ALWAYS_INLINE T |
michael@0 | 256 | MinNumberValue() |
michael@0 | 257 | { |
michael@0 | 258 | typedef FloatingPoint<T> Traits; |
michael@0 | 259 | typedef typename Traits::Bits Bits; |
michael@0 | 260 | return BitwiseCast<T>(Bits(1)); |
michael@0 | 261 | } |
michael@0 | 262 | |
michael@0 | 263 | /** |
michael@0 | 264 | * If t is equal to some int32_t value, set *i to that value and return true; |
michael@0 | 265 | * otherwise return false. |
michael@0 | 266 | * |
michael@0 | 267 | * Note that negative zero is "equal" to zero here. To test whether a value can |
michael@0 | 268 | * be losslessly converted to int32_t and back, use NumberIsInt32 instead. |
michael@0 | 269 | */ |
michael@0 | 270 | template<typename T> |
michael@0 | 271 | static MOZ_ALWAYS_INLINE bool |
michael@0 | 272 | NumberEqualsInt32(T t, int32_t* i) |
michael@0 | 273 | { |
michael@0 | 274 | /* |
michael@0 | 275 | * XXX Casting a floating-point value that doesn't truncate to int32_t, to |
michael@0 | 276 | * int32_t, induces undefined behavior. We should definitely fix this |
michael@0 | 277 | * (bug 744965), but as apparently it "works" in practice, it's not a |
michael@0 | 278 | * pressing concern now. |
michael@0 | 279 | */ |
michael@0 | 280 | return t == (*i = int32_t(t)); |
michael@0 | 281 | } |
michael@0 | 282 | |
michael@0 | 283 | /** |
michael@0 | 284 | * If d can be converted to int32_t and back to an identical double value, |
michael@0 | 285 | * set *i to that value and return true; otherwise return false. |
michael@0 | 286 | * |
michael@0 | 287 | * The difference between this and NumberEqualsInt32 is that this method returns |
michael@0 | 288 | * false for negative zero. |
michael@0 | 289 | */ |
michael@0 | 290 | template<typename T> |
michael@0 | 291 | static MOZ_ALWAYS_INLINE bool |
michael@0 | 292 | NumberIsInt32(T t, int32_t* i) |
michael@0 | 293 | { |
michael@0 | 294 | return !IsNegativeZero(t) && NumberEqualsInt32(t, i); |
michael@0 | 295 | } |
michael@0 | 296 | |
michael@0 | 297 | /** |
michael@0 | 298 | * Computes a NaN value. Do not use this method if you depend upon a particular |
michael@0 | 299 | * NaN value being returned. |
michael@0 | 300 | */ |
michael@0 | 301 | template<typename T> |
michael@0 | 302 | static MOZ_ALWAYS_INLINE T |
michael@0 | 303 | UnspecifiedNaN() |
michael@0 | 304 | { |
michael@0 | 305 | /* |
michael@0 | 306 | * If we can use any quiet NaN, we might as well use the all-ones NaN, |
michael@0 | 307 | * since it's cheap to materialize on common platforms (such as x64, where |
michael@0 | 308 | * this value can be represented in a 32-bit signed immediate field, allowing |
michael@0 | 309 | * it to be stored to memory in a single instruction). |
michael@0 | 310 | */ |
michael@0 | 311 | typedef FloatingPoint<T> Traits; |
michael@0 | 312 | return SpecificNaN<T>(1, Traits::SignificandBits); |
michael@0 | 313 | } |
michael@0 | 314 | |
michael@0 | 315 | /** |
michael@0 | 316 | * Compare two doubles for equality, *without* equating -0 to +0, and equating |
michael@0 | 317 | * any NaN value to any other NaN value. (The normal equality operators equate |
michael@0 | 318 | * -0 with +0, and they equate NaN to no other value.) |
michael@0 | 319 | */ |
michael@0 | 320 | template<typename T> |
michael@0 | 321 | static inline bool |
michael@0 | 322 | NumbersAreIdentical(T t1, T t2) |
michael@0 | 323 | { |
michael@0 | 324 | typedef FloatingPoint<T> Traits; |
michael@0 | 325 | typedef typename Traits::Bits Bits; |
michael@0 | 326 | if (IsNaN(t1)) |
michael@0 | 327 | return IsNaN(t2); |
michael@0 | 328 | return BitwiseCast<Bits>(t1) == BitwiseCast<Bits>(t2); |
michael@0 | 329 | } |
michael@0 | 330 | |
michael@0 | 331 | namespace detail { |
michael@0 | 332 | |
michael@0 | 333 | template<typename T> |
michael@0 | 334 | struct FuzzyEqualsEpsilon; |
michael@0 | 335 | |
michael@0 | 336 | template<> |
michael@0 | 337 | struct FuzzyEqualsEpsilon<float> |
michael@0 | 338 | { |
michael@0 | 339 | // A number near 1e-5 that is exactly representable in |
michael@0 | 340 | // floating point |
michael@0 | 341 | static const float value() { return 1.0f / (1 << 17); } |
michael@0 | 342 | }; |
michael@0 | 343 | |
michael@0 | 344 | template<> |
michael@0 | 345 | struct FuzzyEqualsEpsilon<double> |
michael@0 | 346 | { |
michael@0 | 347 | // A number near 1e-12 that is exactly representable in |
michael@0 | 348 | // a double |
michael@0 | 349 | static const double value() { return 1.0 / (1LL << 40); } |
michael@0 | 350 | }; |
michael@0 | 351 | |
michael@0 | 352 | } // namespace detail |
michael@0 | 353 | |
michael@0 | 354 | /** |
michael@0 | 355 | * Compare two floating point values for equality, modulo rounding error. That |
michael@0 | 356 | * is, the two values are considered equal if they are both not NaN and if they |
michael@0 | 357 | * are less than or equal to epsilon apart. The default value of epsilon is near |
michael@0 | 358 | * 1e-5. |
michael@0 | 359 | * |
michael@0 | 360 | * For most scenarios you will want to use FuzzyEqualsMultiplicative instead, |
michael@0 | 361 | * as it is more reasonable over the entire range of floating point numbers. |
michael@0 | 362 | * This additive version should only be used if you know the range of the numbers |
michael@0 | 363 | * you are dealing with is bounded and stays around the same order of magnitude. |
michael@0 | 364 | */ |
michael@0 | 365 | template<typename T> |
michael@0 | 366 | static MOZ_ALWAYS_INLINE bool |
michael@0 | 367 | FuzzyEqualsAdditive(T val1, T val2, T epsilon = detail::FuzzyEqualsEpsilon<T>::value()) |
michael@0 | 368 | { |
michael@0 | 369 | static_assert(IsFloatingPoint<T>::value, "floating point type required"); |
michael@0 | 370 | return Abs(val1 - val2) <= epsilon; |
michael@0 | 371 | } |
michael@0 | 372 | |
michael@0 | 373 | /** |
michael@0 | 374 | * Compare two floating point values for equality, allowing for rounding error |
michael@0 | 375 | * relative to the magnitude of the values. That is, the two values are |
michael@0 | 376 | * considered equal if they are both not NaN and they are less than or equal to |
michael@0 | 377 | * some epsilon apart, where the epsilon is scaled by the smaller of the two |
michael@0 | 378 | * argument values. |
michael@0 | 379 | * |
michael@0 | 380 | * In most cases you will want to use this rather than FuzzyEqualsAdditive, as |
michael@0 | 381 | * this function effectively masks out differences in the bottom few bits of |
michael@0 | 382 | * the floating point numbers being compared, regardless of what order of magnitude |
michael@0 | 383 | * those numbers are at. |
michael@0 | 384 | */ |
michael@0 | 385 | template<typename T> |
michael@0 | 386 | static MOZ_ALWAYS_INLINE bool |
michael@0 | 387 | FuzzyEqualsMultiplicative(T val1, T val2, T epsilon = detail::FuzzyEqualsEpsilon<T>::value()) |
michael@0 | 388 | { |
michael@0 | 389 | static_assert(IsFloatingPoint<T>::value, "floating point type required"); |
michael@0 | 390 | // can't use std::min because of bug 965340 |
michael@0 | 391 | T smaller = Abs(val1) < Abs(val2) ? Abs(val1) : Abs(val2); |
michael@0 | 392 | return Abs(val1 - val2) <= epsilon * smaller; |
michael@0 | 393 | } |
michael@0 | 394 | |
michael@0 | 395 | /** |
michael@0 | 396 | * Returns true if the given value can be losslessly represented as an IEEE-754 |
michael@0 | 397 | * single format number, false otherwise. All NaN values are considered |
michael@0 | 398 | * representable (notwithstanding that the exact bit pattern of a double format |
michael@0 | 399 | * NaN value can't be exactly represented in single format). |
michael@0 | 400 | * |
michael@0 | 401 | * This function isn't inlined to avoid buggy optimizations by MSVC. |
michael@0 | 402 | */ |
michael@0 | 403 | MOZ_WARN_UNUSED_RESULT |
michael@0 | 404 | extern MFBT_API bool |
michael@0 | 405 | IsFloat32Representable(double x); |
michael@0 | 406 | |
michael@0 | 407 | } /* namespace mozilla */ |
michael@0 | 408 | |
michael@0 | 409 | #endif /* mozilla_FloatingPoint_h */ |