Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | // Copyright 2010 the V8 project authors. All rights reserved. |
michael@0 | 2 | // Redistribution and use in source and binary forms, with or without |
michael@0 | 3 | // modification, are permitted provided that the following conditions are |
michael@0 | 4 | // met: |
michael@0 | 5 | // |
michael@0 | 6 | // * Redistributions of source code must retain the above copyright |
michael@0 | 7 | // notice, this list of conditions and the following disclaimer. |
michael@0 | 8 | // * Redistributions in binary form must reproduce the above |
michael@0 | 9 | // copyright notice, this list of conditions and the following |
michael@0 | 10 | // disclaimer in the documentation and/or other materials provided |
michael@0 | 11 | // with the distribution. |
michael@0 | 12 | // * Neither the name of Google Inc. nor the names of its |
michael@0 | 13 | // contributors may be used to endorse or promote products derived |
michael@0 | 14 | // from this software without specific prior written permission. |
michael@0 | 15 | // |
michael@0 | 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
michael@0 | 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
michael@0 | 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
michael@0 | 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
michael@0 | 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
michael@0 | 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
michael@0 | 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
michael@0 | 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
michael@0 | 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
michael@0 | 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
michael@0 | 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
michael@0 | 27 | |
michael@0 | 28 | #ifndef DOUBLE_CONVERSION_UTILS_H_ |
michael@0 | 29 | #define DOUBLE_CONVERSION_UTILS_H_ |
michael@0 | 30 | |
michael@0 | 31 | #include <stdlib.h> |
michael@0 | 32 | #include <string.h> |
michael@0 | 33 | |
michael@0 | 34 | #include "mozilla/Assertions.h" |
michael@0 | 35 | #ifndef ASSERT |
michael@0 | 36 | #define ASSERT(condition) MOZ_ASSERT(condition) |
michael@0 | 37 | #endif |
michael@0 | 38 | #ifndef UNIMPLEMENTED |
michael@0 | 39 | #define UNIMPLEMENTED() MOZ_CRASH() |
michael@0 | 40 | #endif |
michael@0 | 41 | #ifndef UNREACHABLE |
michael@0 | 42 | #define UNREACHABLE() MOZ_CRASH() |
michael@0 | 43 | #endif |
michael@0 | 44 | |
michael@0 | 45 | // Double operations detection based on target architecture. |
michael@0 | 46 | // Linux uses a 80bit wide floating point stack on x86. This induces double |
michael@0 | 47 | // rounding, which in turn leads to wrong results. |
michael@0 | 48 | // An easy way to test if the floating-point operations are correct is to |
michael@0 | 49 | // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then |
michael@0 | 50 | // the result is equal to 89255e-22. |
michael@0 | 51 | // The best way to test this, is to create a division-function and to compare |
michael@0 | 52 | // the output of the division with the expected result. (Inlining must be |
michael@0 | 53 | // disabled.) |
michael@0 | 54 | // On Linux,x86 89255e-22 != Div_double(89255.0/1e22) |
michael@0 | 55 | #if defined(_M_X64) || defined(__x86_64__) || \ |
michael@0 | 56 | defined(__ARMEL__) || defined(__avr32__) || \ |
michael@0 | 57 | defined(__hppa__) || defined(__ia64__) || \ |
michael@0 | 58 | defined(__mips__) || \ |
michael@0 | 59 | defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \ |
michael@0 | 60 | defined(__sparc__) || defined(__sparc) || defined(__s390__) || \ |
michael@0 | 61 | defined(__SH4__) || defined(__alpha__) || \ |
michael@0 | 62 | defined(_MIPS_ARCH_MIPS32R2) || \ |
michael@0 | 63 | defined(__AARCH64EL__) |
michael@0 | 64 | #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
michael@0 | 65 | #elif defined(_M_IX86) || defined(__i386__) || defined(__i386) |
michael@0 | 66 | #if defined(_WIN32) |
michael@0 | 67 | // Windows uses a 64bit wide floating point stack. |
michael@0 | 68 | #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
michael@0 | 69 | #else |
michael@0 | 70 | #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS |
michael@0 | 71 | #endif // _WIN32 |
michael@0 | 72 | #else |
michael@0 | 73 | #error Target architecture was not detected as supported by Double-Conversion. |
michael@0 | 74 | #endif |
michael@0 | 75 | |
michael@0 | 76 | |
michael@0 | 77 | #include <stdint.h> |
michael@0 | 78 | |
michael@0 | 79 | // The following macro works on both 32 and 64-bit platforms. |
michael@0 | 80 | // Usage: instead of writing 0x1234567890123456 |
michael@0 | 81 | // write UINT64_2PART_C(0x12345678,90123456); |
michael@0 | 82 | #define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) |
michael@0 | 83 | |
michael@0 | 84 | |
michael@0 | 85 | // The expression ARRAY_SIZE(a) is a compile-time constant of type |
michael@0 | 86 | // size_t which represents the number of elements of the given |
michael@0 | 87 | // array. You should only use ARRAY_SIZE on statically allocated |
michael@0 | 88 | // arrays. |
michael@0 | 89 | #ifndef ARRAY_SIZE |
michael@0 | 90 | #define ARRAY_SIZE(a) \ |
michael@0 | 91 | ((sizeof(a) / sizeof(*(a))) / \ |
michael@0 | 92 | static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) |
michael@0 | 93 | #endif |
michael@0 | 94 | |
michael@0 | 95 | // A macro to disallow the evil copy constructor and operator= functions |
michael@0 | 96 | // This should be used in the private: declarations for a class |
michael@0 | 97 | #ifndef DISALLOW_COPY_AND_ASSIGN |
michael@0 | 98 | #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ |
michael@0 | 99 | TypeName(const TypeName&); \ |
michael@0 | 100 | void operator=(const TypeName&) |
michael@0 | 101 | #endif |
michael@0 | 102 | |
michael@0 | 103 | // A macro to disallow all the implicit constructors, namely the |
michael@0 | 104 | // default constructor, copy constructor and operator= functions. |
michael@0 | 105 | // |
michael@0 | 106 | // This should be used in the private: declarations for a class |
michael@0 | 107 | // that wants to prevent anyone from instantiating it. This is |
michael@0 | 108 | // especially useful for classes containing only static methods. |
michael@0 | 109 | #ifndef DISALLOW_IMPLICIT_CONSTRUCTORS |
michael@0 | 110 | #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ |
michael@0 | 111 | TypeName(); \ |
michael@0 | 112 | DISALLOW_COPY_AND_ASSIGN(TypeName) |
michael@0 | 113 | #endif |
michael@0 | 114 | |
michael@0 | 115 | namespace double_conversion { |
michael@0 | 116 | |
michael@0 | 117 | static const int kCharSize = sizeof(char); |
michael@0 | 118 | |
michael@0 | 119 | // Returns the maximum of the two parameters. |
michael@0 | 120 | template <typename T> |
michael@0 | 121 | static T Max(T a, T b) { |
michael@0 | 122 | return a < b ? b : a; |
michael@0 | 123 | } |
michael@0 | 124 | |
michael@0 | 125 | |
michael@0 | 126 | // Returns the minimum of the two parameters. |
michael@0 | 127 | template <typename T> |
michael@0 | 128 | static T Min(T a, T b) { |
michael@0 | 129 | return a < b ? a : b; |
michael@0 | 130 | } |
michael@0 | 131 | |
michael@0 | 132 | |
michael@0 | 133 | inline int StrLength(const char* string) { |
michael@0 | 134 | size_t length = strlen(string); |
michael@0 | 135 | ASSERT(length == static_cast<size_t>(static_cast<int>(length))); |
michael@0 | 136 | return static_cast<int>(length); |
michael@0 | 137 | } |
michael@0 | 138 | |
michael@0 | 139 | // This is a simplified version of V8's Vector class. |
michael@0 | 140 | template <typename T> |
michael@0 | 141 | class Vector { |
michael@0 | 142 | public: |
michael@0 | 143 | Vector() : start_(NULL), length_(0) {} |
michael@0 | 144 | Vector(T* data, int length) : start_(data), length_(length) { |
michael@0 | 145 | ASSERT(length == 0 || (length > 0 && data != NULL)); |
michael@0 | 146 | } |
michael@0 | 147 | |
michael@0 | 148 | // Returns a vector using the same backing storage as this one, |
michael@0 | 149 | // spanning from and including 'from', to but not including 'to'. |
michael@0 | 150 | Vector<T> SubVector(int from, int to) { |
michael@0 | 151 | ASSERT(to <= length_); |
michael@0 | 152 | ASSERT(from < to); |
michael@0 | 153 | ASSERT(0 <= from); |
michael@0 | 154 | return Vector<T>(start() + from, to - from); |
michael@0 | 155 | } |
michael@0 | 156 | |
michael@0 | 157 | // Returns the length of the vector. |
michael@0 | 158 | int length() const { return length_; } |
michael@0 | 159 | |
michael@0 | 160 | // Returns whether or not the vector is empty. |
michael@0 | 161 | bool is_empty() const { return length_ == 0; } |
michael@0 | 162 | |
michael@0 | 163 | // Returns the pointer to the start of the data in the vector. |
michael@0 | 164 | T* start() const { return start_; } |
michael@0 | 165 | |
michael@0 | 166 | // Access individual vector elements - checks bounds in debug mode. |
michael@0 | 167 | T& operator[](int index) const { |
michael@0 | 168 | ASSERT(0 <= index && index < length_); |
michael@0 | 169 | return start_[index]; |
michael@0 | 170 | } |
michael@0 | 171 | |
michael@0 | 172 | T& first() { return start_[0]; } |
michael@0 | 173 | |
michael@0 | 174 | T& last() { return start_[length_ - 1]; } |
michael@0 | 175 | |
michael@0 | 176 | private: |
michael@0 | 177 | T* start_; |
michael@0 | 178 | int length_; |
michael@0 | 179 | }; |
michael@0 | 180 | |
michael@0 | 181 | |
michael@0 | 182 | // Helper class for building result strings in a character buffer. The |
michael@0 | 183 | // purpose of the class is to use safe operations that checks the |
michael@0 | 184 | // buffer bounds on all operations in debug mode. |
michael@0 | 185 | class StringBuilder { |
michael@0 | 186 | public: |
michael@0 | 187 | StringBuilder(char* buffer, int size) |
michael@0 | 188 | : buffer_(buffer, size), position_(0) { } |
michael@0 | 189 | |
michael@0 | 190 | ~StringBuilder() { if (!is_finalized()) Finalize(); } |
michael@0 | 191 | |
michael@0 | 192 | int size() const { return buffer_.length(); } |
michael@0 | 193 | |
michael@0 | 194 | // Get the current position in the builder. |
michael@0 | 195 | int position() const { |
michael@0 | 196 | ASSERT(!is_finalized()); |
michael@0 | 197 | return position_; |
michael@0 | 198 | } |
michael@0 | 199 | |
michael@0 | 200 | // Reset the position. |
michael@0 | 201 | void Reset() { position_ = 0; } |
michael@0 | 202 | |
michael@0 | 203 | // Add a single character to the builder. It is not allowed to add |
michael@0 | 204 | // 0-characters; use the Finalize() method to terminate the string |
michael@0 | 205 | // instead. |
michael@0 | 206 | void AddCharacter(char c) { |
michael@0 | 207 | ASSERT(c != '\0'); |
michael@0 | 208 | ASSERT(!is_finalized() && position_ < buffer_.length()); |
michael@0 | 209 | buffer_[position_++] = c; |
michael@0 | 210 | } |
michael@0 | 211 | |
michael@0 | 212 | // Add an entire string to the builder. Uses strlen() internally to |
michael@0 | 213 | // compute the length of the input string. |
michael@0 | 214 | void AddString(const char* s) { |
michael@0 | 215 | AddSubstring(s, StrLength(s)); |
michael@0 | 216 | } |
michael@0 | 217 | |
michael@0 | 218 | // Add the first 'n' characters of the given string 's' to the |
michael@0 | 219 | // builder. The input string must have enough characters. |
michael@0 | 220 | void AddSubstring(const char* s, int n) { |
michael@0 | 221 | ASSERT(!is_finalized() && position_ + n < buffer_.length()); |
michael@0 | 222 | ASSERT(static_cast<size_t>(n) <= strlen(s)); |
michael@0 | 223 | memmove(&buffer_[position_], s, n * kCharSize); |
michael@0 | 224 | position_ += n; |
michael@0 | 225 | } |
michael@0 | 226 | |
michael@0 | 227 | |
michael@0 | 228 | // Add character padding to the builder. If count is non-positive, |
michael@0 | 229 | // nothing is added to the builder. |
michael@0 | 230 | void AddPadding(char c, int count) { |
michael@0 | 231 | for (int i = 0; i < count; i++) { |
michael@0 | 232 | AddCharacter(c); |
michael@0 | 233 | } |
michael@0 | 234 | } |
michael@0 | 235 | |
michael@0 | 236 | // Finalize the string by 0-terminating it and returning the buffer. |
michael@0 | 237 | char* Finalize() { |
michael@0 | 238 | ASSERT(!is_finalized() && position_ < buffer_.length()); |
michael@0 | 239 | buffer_[position_] = '\0'; |
michael@0 | 240 | // Make sure nobody managed to add a 0-character to the |
michael@0 | 241 | // buffer while building the string. |
michael@0 | 242 | ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_)); |
michael@0 | 243 | position_ = -1; |
michael@0 | 244 | ASSERT(is_finalized()); |
michael@0 | 245 | return buffer_.start(); |
michael@0 | 246 | } |
michael@0 | 247 | |
michael@0 | 248 | private: |
michael@0 | 249 | Vector<char> buffer_; |
michael@0 | 250 | int position_; |
michael@0 | 251 | |
michael@0 | 252 | bool is_finalized() const { return position_ < 0; } |
michael@0 | 253 | |
michael@0 | 254 | DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); |
michael@0 | 255 | }; |
michael@0 | 256 | |
michael@0 | 257 | // The type-based aliasing rule allows the compiler to assume that pointers of |
michael@0 | 258 | // different types (for some definition of different) never alias each other. |
michael@0 | 259 | // Thus the following code does not work: |
michael@0 | 260 | // |
michael@0 | 261 | // float f = foo(); |
michael@0 | 262 | // int fbits = *(int*)(&f); |
michael@0 | 263 | // |
michael@0 | 264 | // The compiler 'knows' that the int pointer can't refer to f since the types |
michael@0 | 265 | // don't match, so the compiler may cache f in a register, leaving random data |
michael@0 | 266 | // in fbits. Using C++ style casts makes no difference, however a pointer to |
michael@0 | 267 | // char data is assumed to alias any other pointer. This is the 'memcpy |
michael@0 | 268 | // exception'. |
michael@0 | 269 | // |
michael@0 | 270 | // Bit_cast uses the memcpy exception to move the bits from a variable of one |
michael@0 | 271 | // type of a variable of another type. Of course the end result is likely to |
michael@0 | 272 | // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) |
michael@0 | 273 | // will completely optimize BitCast away. |
michael@0 | 274 | // |
michael@0 | 275 | // There is an additional use for BitCast. |
michael@0 | 276 | // Recent gccs will warn when they see casts that may result in breakage due to |
michael@0 | 277 | // the type-based aliasing rule. If you have checked that there is no breakage |
michael@0 | 278 | // you can use BitCast to cast one pointer type to another. This confuses gcc |
michael@0 | 279 | // enough that it can no longer see that you have cast one pointer type to |
michael@0 | 280 | // another thus avoiding the warning. |
michael@0 | 281 | template <class Dest, class Source> |
michael@0 | 282 | inline Dest BitCast(const Source& source) { |
michael@0 | 283 | static_assert(sizeof(Dest) == sizeof(Source), |
michael@0 | 284 | "BitCast's source and destination types must be the same size"); |
michael@0 | 285 | |
michael@0 | 286 | Dest dest; |
michael@0 | 287 | memmove(&dest, &source, sizeof(dest)); |
michael@0 | 288 | return dest; |
michael@0 | 289 | } |
michael@0 | 290 | |
michael@0 | 291 | template <class Dest, class Source> |
michael@0 | 292 | inline Dest BitCast(Source* source) { |
michael@0 | 293 | return BitCast<Dest>(reinterpret_cast<uintptr_t>(source)); |
michael@0 | 294 | } |
michael@0 | 295 | |
michael@0 | 296 | } // namespace double_conversion |
michael@0 | 297 | |
michael@0 | 298 | #endif // DOUBLE_CONVERSION_UTILS_H_ |