Tue, 06 Jan 2015 21:39:09 +0100
Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
michael@0 | 2 | /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
michael@0 | 3 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 4 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 5 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 6 | |
michael@0 | 7 | #ifndef LulMain_h |
michael@0 | 8 | #define LulMain_h |
michael@0 | 9 | |
michael@0 | 10 | #include <pthread.h> // pthread_t |
michael@0 | 11 | |
michael@0 | 12 | #include <map> |
michael@0 | 13 | |
michael@0 | 14 | #include "LulPlatformMacros.h" |
michael@0 | 15 | #include "LulRWLock.h" |
michael@0 | 16 | |
michael@0 | 17 | // LUL: A Lightweight Unwind Library. |
michael@0 | 18 | // This file provides the end-user (external) interface for LUL. |
michael@0 | 19 | |
michael@0 | 20 | // Some comments about naming in the implementation. These are safe |
michael@0 | 21 | // to ignore if you are merely using LUL, but are important if you |
michael@0 | 22 | // hack on its internals. |
michael@0 | 23 | // |
michael@0 | 24 | // Debuginfo readers in general have tended to use the word "address" |
michael@0 | 25 | // to mean several different things. This sometimes makes them |
michael@0 | 26 | // difficult to understand and maintain. LUL tries hard to avoid |
michael@0 | 27 | // using the word "address" and instead uses the following more |
michael@0 | 28 | // precise terms: |
michael@0 | 29 | // |
michael@0 | 30 | // * SVMA ("Stated Virtual Memory Address"): this is an address of a |
michael@0 | 31 | // symbol (etc) as it is stated in the symbol table, or other |
michael@0 | 32 | // metadata, of an object. Such values are typically small and |
michael@0 | 33 | // start from zero or thereabouts, unless the object has been |
michael@0 | 34 | // prelinked. |
michael@0 | 35 | // |
michael@0 | 36 | // * AVMA ("Actual Virtual Memory Address"): this is the address of a |
michael@0 | 37 | // symbol (etc) in a running process, that is, once the associated |
michael@0 | 38 | // object has been mapped into a process. Such values are typically |
michael@0 | 39 | // much larger than SVMAs, since objects can get mapped arbitrarily |
michael@0 | 40 | // far along the address space. |
michael@0 | 41 | // |
michael@0 | 42 | // * "Bias": the difference between AVMA and SVMA for a given symbol |
michael@0 | 43 | // (specifically, AVMA - SVMA). The bias is always an integral |
michael@0 | 44 | // number of pages. Once we know the bias for a given object's |
michael@0 | 45 | // text section (for example), we can compute the AVMAs of all of |
michael@0 | 46 | // its text symbols by adding the bias to their SVMAs. |
michael@0 | 47 | // |
michael@0 | 48 | // * "Image address": typically, to read debuginfo from an object we |
michael@0 | 49 | // will temporarily mmap in the file so as to read symbol tables |
michael@0 | 50 | // etc. Addresses in this temporary mapping are called "Image |
michael@0 | 51 | // addresses". Note that the temporary mapping is entirely |
michael@0 | 52 | // unrelated to the mappings of the file that the dynamic linker |
michael@0 | 53 | // must perform merely in order to get the program to run. Hence |
michael@0 | 54 | // image addresses are unrelated to either SVMAs or AVMAs. |
michael@0 | 55 | |
michael@0 | 56 | |
michael@0 | 57 | namespace lul { |
michael@0 | 58 | |
michael@0 | 59 | // A machine word plus validity tag. |
michael@0 | 60 | class TaggedUWord { |
michael@0 | 61 | public: |
michael@0 | 62 | // Construct a valid one. |
michael@0 | 63 | TaggedUWord(uintptr_t w) |
michael@0 | 64 | : mValue(w) |
michael@0 | 65 | , mValid(true) |
michael@0 | 66 | {} |
michael@0 | 67 | |
michael@0 | 68 | // Construct an invalid one. |
michael@0 | 69 | TaggedUWord() |
michael@0 | 70 | : mValue(0) |
michael@0 | 71 | , mValid(false) |
michael@0 | 72 | {} |
michael@0 | 73 | |
michael@0 | 74 | // Add in a second one. |
michael@0 | 75 | void Add(TaggedUWord other) { |
michael@0 | 76 | if (mValid && other.Valid()) { |
michael@0 | 77 | mValue += other.Value(); |
michael@0 | 78 | } else { |
michael@0 | 79 | mValue = 0; |
michael@0 | 80 | mValid = false; |
michael@0 | 81 | } |
michael@0 | 82 | } |
michael@0 | 83 | |
michael@0 | 84 | // Is it word-aligned? |
michael@0 | 85 | bool IsAligned() const { |
michael@0 | 86 | return mValid && (mValue & (sizeof(uintptr_t)-1)) == 0; |
michael@0 | 87 | } |
michael@0 | 88 | |
michael@0 | 89 | uintptr_t Value() const { return mValue; } |
michael@0 | 90 | bool Valid() const { return mValid; } |
michael@0 | 91 | |
michael@0 | 92 | private: |
michael@0 | 93 | uintptr_t mValue; |
michael@0 | 94 | bool mValid; |
michael@0 | 95 | }; |
michael@0 | 96 | |
michael@0 | 97 | |
michael@0 | 98 | // The registers, with validity tags, that will be unwound. |
michael@0 | 99 | |
michael@0 | 100 | struct UnwindRegs { |
michael@0 | 101 | #if defined(LUL_ARCH_arm) |
michael@0 | 102 | TaggedUWord r7; |
michael@0 | 103 | TaggedUWord r11; |
michael@0 | 104 | TaggedUWord r12; |
michael@0 | 105 | TaggedUWord r13; |
michael@0 | 106 | TaggedUWord r14; |
michael@0 | 107 | TaggedUWord r15; |
michael@0 | 108 | #elif defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) |
michael@0 | 109 | TaggedUWord xbp; |
michael@0 | 110 | TaggedUWord xsp; |
michael@0 | 111 | TaggedUWord xip; |
michael@0 | 112 | #else |
michael@0 | 113 | # error "Unknown plat" |
michael@0 | 114 | #endif |
michael@0 | 115 | }; |
michael@0 | 116 | |
michael@0 | 117 | |
michael@0 | 118 | // The maximum number of bytes in a stack snapshot. This can be |
michael@0 | 119 | // increased if necessary, but larger values cost performance, since a |
michael@0 | 120 | // stack snapshot needs to be copied between sampling and worker |
michael@0 | 121 | // threads for each snapshot. In practice 32k seems to be enough |
michael@0 | 122 | // to get good backtraces. |
michael@0 | 123 | static const size_t N_STACK_BYTES = 32768; |
michael@0 | 124 | |
michael@0 | 125 | // The stack chunk image that will be unwound. |
michael@0 | 126 | struct StackImage { |
michael@0 | 127 | // [start_avma, +len) specify the address range in the buffer. |
michael@0 | 128 | // Obviously we require 0 <= len <= N_STACK_BYTES. |
michael@0 | 129 | uintptr_t mStartAvma; |
michael@0 | 130 | size_t mLen; |
michael@0 | 131 | uint8_t mContents[N_STACK_BYTES]; |
michael@0 | 132 | }; |
michael@0 | 133 | |
michael@0 | 134 | |
michael@0 | 135 | // The core unwinder library class. Just one of these is needed, and |
michael@0 | 136 | // it can be shared by multiple unwinder threads. |
michael@0 | 137 | // |
michael@0 | 138 | // Access to the library is mediated by a single reader-writer lock. |
michael@0 | 139 | // All attempts to change the library's internal shared state -- that |
michael@0 | 140 | // is, loading or unloading unwind info -- are forced single-threaded |
michael@0 | 141 | // by causing the called routine to acquire a write-lock. Unwind |
michael@0 | 142 | // requests do not change the library's internal shared state and |
michael@0 | 143 | // therefore require only a read-lock. Hence multiple threads can |
michael@0 | 144 | // unwind in parallel. |
michael@0 | 145 | // |
michael@0 | 146 | // The library needs to maintain state which is private to each |
michael@0 | 147 | // unwinder thread -- the CFI (Dwarf Call Frame Information) fast |
michael@0 | 148 | // cache. Hence unwinder threads first need to register with the |
michael@0 | 149 | // library, so their identities are known. Also, for maximum |
michael@0 | 150 | // effectiveness of the CFI caching, it is preferable to have a small |
michael@0 | 151 | // number of very-busy unwinder threads rather than a large number of |
michael@0 | 152 | // mostly-idle unwinder threads. |
michael@0 | 153 | // |
michael@0 | 154 | // None of the methods may be safely called from within a signal |
michael@0 | 155 | // handler, since this risks deadlock. In particular this means |
michael@0 | 156 | // a thread may not unwind itself from within a signal handler |
michael@0 | 157 | // frame. It might be safe to call Unwind() on its own stack |
michael@0 | 158 | // from not-inside a signal frame, although even that cannot be |
michael@0 | 159 | // guaranteed deadlock free. |
michael@0 | 160 | |
michael@0 | 161 | class PriMap; |
michael@0 | 162 | class SegArray; |
michael@0 | 163 | class CFICache; |
michael@0 | 164 | |
michael@0 | 165 | class LUL { |
michael@0 | 166 | public: |
michael@0 | 167 | // Create; supply a logging sink. Initialises the rw-lock. |
michael@0 | 168 | LUL(void (*aLog)(const char*)); |
michael@0 | 169 | |
michael@0 | 170 | // Destroy. This acquires mRWlock for writing. By doing that, waits |
michael@0 | 171 | // for all unwinder threads to finish any Unwind() calls they may be |
michael@0 | 172 | // in. All resources are freed and all registered unwinder threads |
michael@0 | 173 | // are deregistered. |
michael@0 | 174 | ~LUL(); |
michael@0 | 175 | |
michael@0 | 176 | // Notify of a new r-x mapping, and load the associated unwind info. |
michael@0 | 177 | // The filename is strdup'd and used for debug printing. If |
michael@0 | 178 | // aMappedImage is NULL, this function will mmap/munmap the file |
michael@0 | 179 | // itself, so as to be able to read the unwind info. If |
michael@0 | 180 | // aMappedImage is non-NULL then it is assumed to point to a |
michael@0 | 181 | // called-supplied and caller-managed mapped image of the file. |
michael@0 | 182 | // |
michael@0 | 183 | // Acquires mRWlock for writing. This must be called only after the |
michael@0 | 184 | // code area in question really has been mapped. |
michael@0 | 185 | void NotifyAfterMap(uintptr_t aRXavma, size_t aSize, |
michael@0 | 186 | const char* aFileName, const void* aMappedImage); |
michael@0 | 187 | |
michael@0 | 188 | // In rare cases we know an executable area exists but don't know |
michael@0 | 189 | // what the associated file is. This call notifies LUL of such |
michael@0 | 190 | // areas. This is important for correct functioning of stack |
michael@0 | 191 | // scanning and of the x86-{linux,android} special-case |
michael@0 | 192 | // __kernel_syscall function handling. Acquires mRWlock for |
michael@0 | 193 | // writing. This must be called only after the code area in |
michael@0 | 194 | // question really has been mapped. |
michael@0 | 195 | void NotifyExecutableArea(uintptr_t aRXavma, size_t aSize); |
michael@0 | 196 | |
michael@0 | 197 | // Notify that a mapped area has been unmapped; discard any |
michael@0 | 198 | // associated unwind info. Acquires mRWlock for writing. Note that |
michael@0 | 199 | // to avoid segfaulting the stack-scan unwinder, which inspects code |
michael@0 | 200 | // areas, this must be called before the code area in question is |
michael@0 | 201 | // really unmapped. Note that, unlike NotifyAfterMap(), this |
michael@0 | 202 | // function takes the start and end addresses of the range to be |
michael@0 | 203 | // unmapped, rather than a start and a length parameter. This is so |
michael@0 | 204 | // as to make it possible to notify an unmap for the entire address |
michael@0 | 205 | // space using a single call. |
michael@0 | 206 | void NotifyBeforeUnmap(uintptr_t aAvmaMin, uintptr_t aAvmaMax); |
michael@0 | 207 | |
michael@0 | 208 | // Apply NotifyBeforeUnmap to the entire address space. This causes |
michael@0 | 209 | // LUL to discard all unwind and executable-area information for the |
michael@0 | 210 | // entire address space. |
michael@0 | 211 | void NotifyBeforeUnmapAll() { |
michael@0 | 212 | NotifyBeforeUnmap(0, UINTPTR_MAX); |
michael@0 | 213 | } |
michael@0 | 214 | |
michael@0 | 215 | // Returns the number of mappings currently registered. Acquires |
michael@0 | 216 | // mRWlock for writing. |
michael@0 | 217 | size_t CountMappings(); |
michael@0 | 218 | |
michael@0 | 219 | // Register the calling thread for unwinding. Acquires mRWlock for |
michael@0 | 220 | // writing. |
michael@0 | 221 | void RegisterUnwinderThread(); |
michael@0 | 222 | |
michael@0 | 223 | // Unwind |aStackImg| starting with the context in |aStartRegs|. |
michael@0 | 224 | // Write the number of frames recovered in *aFramesUsed. Put |
michael@0 | 225 | // the PC values in aFramePCs[0 .. *aFramesUsed-1] and |
michael@0 | 226 | // the SP values in aFrameSPs[0 .. *aFramesUsed-1]. |
michael@0 | 227 | // |aFramesAvail| is the size of the two output arrays and hence the |
michael@0 | 228 | // largest possible value of *aFramesUsed. PC values are always |
michael@0 | 229 | // valid, and the unwind will stop when the PC becomes invalid, but |
michael@0 | 230 | // the SP values might be invalid, in which case the value zero will |
michael@0 | 231 | // be written in the relevant frameSPs[] slot. |
michael@0 | 232 | // |
michael@0 | 233 | // Unwinding may optionally use stack scanning. The maximum number |
michael@0 | 234 | // of frames that may be recovered by stack scanning is |
michael@0 | 235 | // |aScannedFramesAllowed| and the actual number recovered is |
michael@0 | 236 | // written into *aScannedFramesAcquired. |aScannedFramesAllowed| |
michael@0 | 237 | // must be less than or equal to |aFramesAvail|. |
michael@0 | 238 | // |
michael@0 | 239 | // This function assumes that the SP values increase as it unwinds |
michael@0 | 240 | // away from the innermost frame -- that is, that the stack grows |
michael@0 | 241 | // down. It monitors SP values as it unwinds to check they |
michael@0 | 242 | // decrease, so as to avoid looping on corrupted stacks. |
michael@0 | 243 | // |
michael@0 | 244 | // Acquires mRWlock for reading. Hence multiple threads may unwind |
michael@0 | 245 | // at once, but no thread may be unwinding whilst the library loads |
michael@0 | 246 | // or discards unwind information. Returns false if the calling |
michael@0 | 247 | // thread is not registered for unwinding. |
michael@0 | 248 | // |
michael@0 | 249 | // Up to aScannedFramesAllowed stack-scanned frames may be recovered. |
michael@0 | 250 | // |
michael@0 | 251 | // The calling thread must previously have registered itself via |
michael@0 | 252 | // RegisterUnwinderThread. |
michael@0 | 253 | void Unwind(/*OUT*/uintptr_t* aFramePCs, |
michael@0 | 254 | /*OUT*/uintptr_t* aFrameSPs, |
michael@0 | 255 | /*OUT*/size_t* aFramesUsed, |
michael@0 | 256 | /*OUT*/size_t* aScannedFramesAcquired, |
michael@0 | 257 | size_t aFramesAvail, |
michael@0 | 258 | size_t aScannedFramesAllowed, |
michael@0 | 259 | UnwindRegs* aStartRegs, StackImage* aStackImg); |
michael@0 | 260 | |
michael@0 | 261 | // The logging sink. Call to send debug strings to the caller- |
michael@0 | 262 | // specified destination. |
michael@0 | 263 | void (*mLog)(const char*); |
michael@0 | 264 | |
michael@0 | 265 | private: |
michael@0 | 266 | // Invalidate the caches. Requires mRWlock to be held for writing; |
michael@0 | 267 | // does not acquire it itself. |
michael@0 | 268 | void InvalidateCFICaches(); |
michael@0 | 269 | |
michael@0 | 270 | // The one-and-only lock, a reader-writer lock, for the library. |
michael@0 | 271 | LulRWLock* mRWlock; |
michael@0 | 272 | |
michael@0 | 273 | // The top level mapping from code address ranges to postprocessed |
michael@0 | 274 | // unwind info. Basically a sorted array of (addr, len, info) |
michael@0 | 275 | // records. Threads wishing to query this field must hold mRWlock |
michael@0 | 276 | // for reading. Threads wishing to modify this field must hold |
michael@0 | 277 | // mRWlock for writing. This field is updated by NotifyAfterMap and |
michael@0 | 278 | // NotifyBeforeUnmap. |
michael@0 | 279 | PriMap* mPriMap; |
michael@0 | 280 | |
michael@0 | 281 | // An auxiliary structure that records which address ranges are |
michael@0 | 282 | // mapped r-x, for the benefit of the stack scanner. Threads |
michael@0 | 283 | // wishing to query this field must hold mRWlock for reading. |
michael@0 | 284 | // Threads wishing to modify this field must hold mRWlock for |
michael@0 | 285 | // writing. |
michael@0 | 286 | SegArray* mSegArray; |
michael@0 | 287 | |
michael@0 | 288 | // The thread-local data: a mapping from threads to CFI-fast-caches. |
michael@0 | 289 | // Threads wishing to query this field must hold mRWlock for |
michael@0 | 290 | // reading. Threads wishing to modify this field must hold mRWlock |
michael@0 | 291 | // for writing. |
michael@0 | 292 | // |
michael@0 | 293 | // The CFICaches themselves are thread-local and can be both read |
michael@0 | 294 | // and written when mRWlock is held for reading. It would probably |
michael@0 | 295 | // be faster to use the pthread_{set,get}specific functions, but |
michael@0 | 296 | // also more difficult. This map is queried once per unwind, in |
michael@0 | 297 | // order to get hold of the CFI cache for a given thread. |
michael@0 | 298 | std::map<pthread_t, CFICache*> mCaches; |
michael@0 | 299 | }; |
michael@0 | 300 | |
michael@0 | 301 | |
michael@0 | 302 | // Run unit tests on an initialised, loaded-up LUL instance, and print |
michael@0 | 303 | // summary results on |aLUL|'s logging sink. Also return the number |
michael@0 | 304 | // of tests run in *aNTests and the number that passed in |
michael@0 | 305 | // *aNTestsPassed. |
michael@0 | 306 | void |
michael@0 | 307 | RunLulUnitTests(/*OUT*/int* aNTests, /*OUT*/int*aNTestsPassed, LUL* aLUL); |
michael@0 | 308 | |
michael@0 | 309 | } // namespace lul |
michael@0 | 310 | |
michael@0 | 311 | #endif // LulMain_h |