Thu, 15 Jan 2015 15:59:08 +0100
Implement a real Private Browsing Mode condition by changing the API/ABI;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.
michael@0 | 1 | /*********************************************************************** |
michael@0 | 2 | Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
michael@0 | 3 | Redistribution and use in source and binary forms, with or without |
michael@0 | 4 | modification, are permitted provided that the following conditions |
michael@0 | 5 | are met: |
michael@0 | 6 | - Redistributions of source code must retain the above copyright notice, |
michael@0 | 7 | this list of conditions and the following disclaimer. |
michael@0 | 8 | - Redistributions in binary form must reproduce the above copyright |
michael@0 | 9 | notice, this list of conditions and the following disclaimer in the |
michael@0 | 10 | documentation and/or other materials provided with the distribution. |
michael@0 | 11 | - Neither the name of Internet Society, IETF or IETF Trust, nor the |
michael@0 | 12 | names of specific contributors, may be used to endorse or promote |
michael@0 | 13 | products derived from this software without specific prior written |
michael@0 | 14 | permission. |
michael@0 | 15 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
michael@0 | 16 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
michael@0 | 17 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
michael@0 | 18 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
michael@0 | 19 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
michael@0 | 20 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
michael@0 | 21 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
michael@0 | 22 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
michael@0 | 23 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
michael@0 | 24 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
michael@0 | 25 | POSSIBILITY OF SUCH DAMAGE. |
michael@0 | 26 | ***********************************************************************/ |
michael@0 | 27 | |
michael@0 | 28 | #ifdef HAVE_CONFIG_H |
michael@0 | 29 | #include "config.h" |
michael@0 | 30 | #endif |
michael@0 | 31 | |
michael@0 | 32 | #include "main_FLP.h" |
michael@0 | 33 | #include "tuning_parameters.h" |
michael@0 | 34 | |
michael@0 | 35 | /********************************************************************** |
michael@0 | 36 | * LDL Factorisation. Finds the upper triangular matrix L and the diagonal |
michael@0 | 37 | * Matrix D (only the diagonal elements returned in a vector)such that |
michael@0 | 38 | * the symmetric matric A is given by A = L*D*L'. |
michael@0 | 39 | **********************************************************************/ |
michael@0 | 40 | static OPUS_INLINE void silk_LDL_FLP( |
michael@0 | 41 | silk_float *A, /* I/O Pointer to Symetric Square Matrix */ |
michael@0 | 42 | opus_int M, /* I Size of Matrix */ |
michael@0 | 43 | silk_float *L, /* I/O Pointer to Square Upper triangular Matrix */ |
michael@0 | 44 | silk_float *Dinv /* I/O Pointer to vector holding the inverse diagonal elements of D */ |
michael@0 | 45 | ); |
michael@0 | 46 | |
michael@0 | 47 | /********************************************************************** |
michael@0 | 48 | * Function to solve linear equation Ax = b, when A is a MxM lower |
michael@0 | 49 | * triangular matrix, with ones on the diagonal. |
michael@0 | 50 | **********************************************************************/ |
michael@0 | 51 | static OPUS_INLINE void silk_SolveWithLowerTriangularWdiagOnes_FLP( |
michael@0 | 52 | const silk_float *L, /* I Pointer to Lower Triangular Matrix */ |
michael@0 | 53 | opus_int M, /* I Dim of Matrix equation */ |
michael@0 | 54 | const silk_float *b, /* I b Vector */ |
michael@0 | 55 | silk_float *x /* O x Vector */ |
michael@0 | 56 | ); |
michael@0 | 57 | |
michael@0 | 58 | /********************************************************************** |
michael@0 | 59 | * Function to solve linear equation (A^T)x = b, when A is a MxM lower |
michael@0 | 60 | * triangular, with ones on the diagonal. (ie then A^T is upper triangular) |
michael@0 | 61 | **********************************************************************/ |
michael@0 | 62 | static OPUS_INLINE void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP( |
michael@0 | 63 | const silk_float *L, /* I Pointer to Lower Triangular Matrix */ |
michael@0 | 64 | opus_int M, /* I Dim of Matrix equation */ |
michael@0 | 65 | const silk_float *b, /* I b Vector */ |
michael@0 | 66 | silk_float *x /* O x Vector */ |
michael@0 | 67 | ); |
michael@0 | 68 | |
michael@0 | 69 | /********************************************************************** |
michael@0 | 70 | * Function to solve linear equation Ax = b, when A is a MxM |
michael@0 | 71 | * symmetric square matrix - using LDL factorisation |
michael@0 | 72 | **********************************************************************/ |
michael@0 | 73 | void silk_solve_LDL_FLP( |
michael@0 | 74 | silk_float *A, /* I/O Symmetric square matrix, out: reg. */ |
michael@0 | 75 | const opus_int M, /* I Size of matrix */ |
michael@0 | 76 | const silk_float *b, /* I Pointer to b vector */ |
michael@0 | 77 | silk_float *x /* O Pointer to x solution vector */ |
michael@0 | 78 | ) |
michael@0 | 79 | { |
michael@0 | 80 | opus_int i; |
michael@0 | 81 | silk_float L[ MAX_MATRIX_SIZE ][ MAX_MATRIX_SIZE ]; |
michael@0 | 82 | silk_float T[ MAX_MATRIX_SIZE ]; |
michael@0 | 83 | silk_float Dinv[ MAX_MATRIX_SIZE ]; /* inverse diagonal elements of D*/ |
michael@0 | 84 | |
michael@0 | 85 | silk_assert( M <= MAX_MATRIX_SIZE ); |
michael@0 | 86 | |
michael@0 | 87 | /*************************************************** |
michael@0 | 88 | Factorize A by LDL such that A = L*D*(L^T), |
michael@0 | 89 | where L is lower triangular with ones on diagonal |
michael@0 | 90 | ****************************************************/ |
michael@0 | 91 | silk_LDL_FLP( A, M, &L[ 0 ][ 0 ], Dinv ); |
michael@0 | 92 | |
michael@0 | 93 | /**************************************************** |
michael@0 | 94 | * substitute D*(L^T) = T. ie: |
michael@0 | 95 | L*D*(L^T)*x = b => L*T = b <=> T = inv(L)*b |
michael@0 | 96 | ******************************************************/ |
michael@0 | 97 | silk_SolveWithLowerTriangularWdiagOnes_FLP( &L[ 0 ][ 0 ], M, b, T ); |
michael@0 | 98 | |
michael@0 | 99 | /**************************************************** |
michael@0 | 100 | D*(L^T)*x = T <=> (L^T)*x = inv(D)*T, because D is |
michael@0 | 101 | diagonal just multiply with 1/d_i |
michael@0 | 102 | ****************************************************/ |
michael@0 | 103 | for( i = 0; i < M; i++ ) { |
michael@0 | 104 | T[ i ] = T[ i ] * Dinv[ i ]; |
michael@0 | 105 | } |
michael@0 | 106 | /**************************************************** |
michael@0 | 107 | x = inv(L') * inv(D) * T |
michael@0 | 108 | *****************************************************/ |
michael@0 | 109 | silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP( &L[ 0 ][ 0 ], M, T, x ); |
michael@0 | 110 | } |
michael@0 | 111 | |
michael@0 | 112 | static OPUS_INLINE void silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP( |
michael@0 | 113 | const silk_float *L, /* I Pointer to Lower Triangular Matrix */ |
michael@0 | 114 | opus_int M, /* I Dim of Matrix equation */ |
michael@0 | 115 | const silk_float *b, /* I b Vector */ |
michael@0 | 116 | silk_float *x /* O x Vector */ |
michael@0 | 117 | ) |
michael@0 | 118 | { |
michael@0 | 119 | opus_int i, j; |
michael@0 | 120 | silk_float temp; |
michael@0 | 121 | const silk_float *ptr1; |
michael@0 | 122 | |
michael@0 | 123 | for( i = M - 1; i >= 0; i-- ) { |
michael@0 | 124 | ptr1 = matrix_adr( L, 0, i, M ); |
michael@0 | 125 | temp = 0; |
michael@0 | 126 | for( j = M - 1; j > i ; j-- ) { |
michael@0 | 127 | temp += ptr1[ j * M ] * x[ j ]; |
michael@0 | 128 | } |
michael@0 | 129 | temp = b[ i ] - temp; |
michael@0 | 130 | x[ i ] = temp; |
michael@0 | 131 | } |
michael@0 | 132 | } |
michael@0 | 133 | |
michael@0 | 134 | static OPUS_INLINE void silk_SolveWithLowerTriangularWdiagOnes_FLP( |
michael@0 | 135 | const silk_float *L, /* I Pointer to Lower Triangular Matrix */ |
michael@0 | 136 | opus_int M, /* I Dim of Matrix equation */ |
michael@0 | 137 | const silk_float *b, /* I b Vector */ |
michael@0 | 138 | silk_float *x /* O x Vector */ |
michael@0 | 139 | ) |
michael@0 | 140 | { |
michael@0 | 141 | opus_int i, j; |
michael@0 | 142 | silk_float temp; |
michael@0 | 143 | const silk_float *ptr1; |
michael@0 | 144 | |
michael@0 | 145 | for( i = 0; i < M; i++ ) { |
michael@0 | 146 | ptr1 = matrix_adr( L, i, 0, M ); |
michael@0 | 147 | temp = 0; |
michael@0 | 148 | for( j = 0; j < i; j++ ) { |
michael@0 | 149 | temp += ptr1[ j ] * x[ j ]; |
michael@0 | 150 | } |
michael@0 | 151 | temp = b[ i ] - temp; |
michael@0 | 152 | x[ i ] = temp; |
michael@0 | 153 | } |
michael@0 | 154 | } |
michael@0 | 155 | |
michael@0 | 156 | static OPUS_INLINE void silk_LDL_FLP( |
michael@0 | 157 | silk_float *A, /* I/O Pointer to Symetric Square Matrix */ |
michael@0 | 158 | opus_int M, /* I Size of Matrix */ |
michael@0 | 159 | silk_float *L, /* I/O Pointer to Square Upper triangular Matrix */ |
michael@0 | 160 | silk_float *Dinv /* I/O Pointer to vector holding the inverse diagonal elements of D */ |
michael@0 | 161 | ) |
michael@0 | 162 | { |
michael@0 | 163 | opus_int i, j, k, loop_count, err = 1; |
michael@0 | 164 | silk_float *ptr1, *ptr2; |
michael@0 | 165 | double temp, diag_min_value; |
michael@0 | 166 | silk_float v[ MAX_MATRIX_SIZE ], D[ MAX_MATRIX_SIZE ]; /* temp arrays*/ |
michael@0 | 167 | |
michael@0 | 168 | silk_assert( M <= MAX_MATRIX_SIZE ); |
michael@0 | 169 | |
michael@0 | 170 | diag_min_value = FIND_LTP_COND_FAC * 0.5f * ( A[ 0 ] + A[ M * M - 1 ] ); |
michael@0 | 171 | for( loop_count = 0; loop_count < M && err == 1; loop_count++ ) { |
michael@0 | 172 | err = 0; |
michael@0 | 173 | for( j = 0; j < M; j++ ) { |
michael@0 | 174 | ptr1 = matrix_adr( L, j, 0, M ); |
michael@0 | 175 | temp = matrix_ptr( A, j, j, M ); /* element in row j column j*/ |
michael@0 | 176 | for( i = 0; i < j; i++ ) { |
michael@0 | 177 | v[ i ] = ptr1[ i ] * D[ i ]; |
michael@0 | 178 | temp -= ptr1[ i ] * v[ i ]; |
michael@0 | 179 | } |
michael@0 | 180 | if( temp < diag_min_value ) { |
michael@0 | 181 | /* Badly conditioned matrix: add white noise and run again */ |
michael@0 | 182 | temp = ( loop_count + 1 ) * diag_min_value - temp; |
michael@0 | 183 | for( i = 0; i < M; i++ ) { |
michael@0 | 184 | matrix_ptr( A, i, i, M ) += ( silk_float )temp; |
michael@0 | 185 | } |
michael@0 | 186 | err = 1; |
michael@0 | 187 | break; |
michael@0 | 188 | } |
michael@0 | 189 | D[ j ] = ( silk_float )temp; |
michael@0 | 190 | Dinv[ j ] = ( silk_float )( 1.0f / temp ); |
michael@0 | 191 | matrix_ptr( L, j, j, M ) = 1.0f; |
michael@0 | 192 | |
michael@0 | 193 | ptr1 = matrix_adr( A, j, 0, M ); |
michael@0 | 194 | ptr2 = matrix_adr( L, j + 1, 0, M); |
michael@0 | 195 | for( i = j + 1; i < M; i++ ) { |
michael@0 | 196 | temp = 0.0; |
michael@0 | 197 | for( k = 0; k < j; k++ ) { |
michael@0 | 198 | temp += ptr2[ k ] * v[ k ]; |
michael@0 | 199 | } |
michael@0 | 200 | matrix_ptr( L, i, j, M ) = ( silk_float )( ( ptr1[ i ] - temp ) * Dinv[ j ] ); |
michael@0 | 201 | ptr2 += M; /* go to next column*/ |
michael@0 | 202 | } |
michael@0 | 203 | } |
michael@0 | 204 | } |
michael@0 | 205 | silk_assert( err == 0 ); |
michael@0 | 206 | } |
michael@0 | 207 |