Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
michael@0 | 1 | /* |
michael@0 | 2 | * jcarith.c |
michael@0 | 3 | * |
michael@0 | 4 | * Developed 1997-2009 by Guido Vollbeding. |
michael@0 | 5 | * This file is part of the Independent JPEG Group's software. |
michael@0 | 6 | * For conditions of distribution and use, see the accompanying README file. |
michael@0 | 7 | * |
michael@0 | 8 | * This file contains portable arithmetic entropy encoding routines for JPEG |
michael@0 | 9 | * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
michael@0 | 10 | * |
michael@0 | 11 | * Both sequential and progressive modes are supported in this single module. |
michael@0 | 12 | * |
michael@0 | 13 | * Suspension is not currently supported in this module. |
michael@0 | 14 | */ |
michael@0 | 15 | |
michael@0 | 16 | #define JPEG_INTERNALS |
michael@0 | 17 | #include "jinclude.h" |
michael@0 | 18 | #include "jpeglib.h" |
michael@0 | 19 | |
michael@0 | 20 | |
michael@0 | 21 | /* Expanded entropy encoder object for arithmetic encoding. */ |
michael@0 | 22 | |
michael@0 | 23 | typedef struct { |
michael@0 | 24 | struct jpeg_entropy_encoder pub; /* public fields */ |
michael@0 | 25 | |
michael@0 | 26 | INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ |
michael@0 | 27 | INT32 a; /* A register, normalized size of coding interval */ |
michael@0 | 28 | INT32 sc; /* counter for stacked 0xFF values which might overflow */ |
michael@0 | 29 | INT32 zc; /* counter for pending 0x00 output values which might * |
michael@0 | 30 | * be discarded at the end ("Pacman" termination) */ |
michael@0 | 31 | int ct; /* bit shift counter, determines when next byte will be written */ |
michael@0 | 32 | int buffer; /* buffer for most recent output byte != 0xFF */ |
michael@0 | 33 | |
michael@0 | 34 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
michael@0 | 35 | int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
michael@0 | 36 | |
michael@0 | 37 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
michael@0 | 38 | int next_restart_num; /* next restart number to write (0-7) */ |
michael@0 | 39 | |
michael@0 | 40 | /* Pointers to statistics areas (these workspaces have image lifespan) */ |
michael@0 | 41 | unsigned char * dc_stats[NUM_ARITH_TBLS]; |
michael@0 | 42 | unsigned char * ac_stats[NUM_ARITH_TBLS]; |
michael@0 | 43 | |
michael@0 | 44 | /* Statistics bin for coding with fixed probability 0.5 */ |
michael@0 | 45 | unsigned char fixed_bin[4]; |
michael@0 | 46 | } arith_entropy_encoder; |
michael@0 | 47 | |
michael@0 | 48 | typedef arith_entropy_encoder * arith_entropy_ptr; |
michael@0 | 49 | |
michael@0 | 50 | /* The following two definitions specify the allocation chunk size |
michael@0 | 51 | * for the statistics area. |
michael@0 | 52 | * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
michael@0 | 53 | * 49 statistics bins for DC, and 245 statistics bins for AC coding. |
michael@0 | 54 | * |
michael@0 | 55 | * We use a compact representation with 1 byte per statistics bin, |
michael@0 | 56 | * thus the numbers directly represent byte sizes. |
michael@0 | 57 | * This 1 byte per statistics bin contains the meaning of the MPS |
michael@0 | 58 | * (more probable symbol) in the highest bit (mask 0x80), and the |
michael@0 | 59 | * index into the probability estimation state machine table |
michael@0 | 60 | * in the lower bits (mask 0x7F). |
michael@0 | 61 | */ |
michael@0 | 62 | |
michael@0 | 63 | #define DC_STAT_BINS 64 |
michael@0 | 64 | #define AC_STAT_BINS 256 |
michael@0 | 65 | |
michael@0 | 66 | /* NOTE: Uncomment the following #define if you want to use the |
michael@0 | 67 | * given formula for calculating the AC conditioning parameter Kx |
michael@0 | 68 | * for spectral selection progressive coding in section G.1.3.2 |
michael@0 | 69 | * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). |
michael@0 | 70 | * Although the spec and P&M authors claim that this "has proven |
michael@0 | 71 | * to give good results for 8 bit precision samples", I'm not |
michael@0 | 72 | * convinced yet that this is really beneficial. |
michael@0 | 73 | * Early tests gave only very marginal compression enhancements |
michael@0 | 74 | * (a few - around 5 or so - bytes even for very large files), |
michael@0 | 75 | * which would turn out rather negative if we'd suppress the |
michael@0 | 76 | * DAC (Define Arithmetic Conditioning) marker segments for |
michael@0 | 77 | * the default parameters in the future. |
michael@0 | 78 | * Note that currently the marker writing module emits 12-byte |
michael@0 | 79 | * DAC segments for a full-component scan in a color image. |
michael@0 | 80 | * This is not worth worrying about IMHO. However, since the |
michael@0 | 81 | * spec defines the default values to be used if the tables |
michael@0 | 82 | * are omitted (unlike Huffman tables, which are required |
michael@0 | 83 | * anyway), one might optimize this behaviour in the future, |
michael@0 | 84 | * and then it would be disadvantageous to use custom tables if |
michael@0 | 85 | * they don't provide sufficient gain to exceed the DAC size. |
michael@0 | 86 | * |
michael@0 | 87 | * On the other hand, I'd consider it as a reasonable result |
michael@0 | 88 | * that the conditioning has no significant influence on the |
michael@0 | 89 | * compression performance. This means that the basic |
michael@0 | 90 | * statistical model is already rather stable. |
michael@0 | 91 | * |
michael@0 | 92 | * Thus, at the moment, we use the default conditioning values |
michael@0 | 93 | * anyway, and do not use the custom formula. |
michael@0 | 94 | * |
michael@0 | 95 | #define CALCULATE_SPECTRAL_CONDITIONING |
michael@0 | 96 | */ |
michael@0 | 97 | |
michael@0 | 98 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
michael@0 | 99 | * We assume that int right shift is unsigned if INT32 right shift is, |
michael@0 | 100 | * which should be safe. |
michael@0 | 101 | */ |
michael@0 | 102 | |
michael@0 | 103 | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
michael@0 | 104 | #define ISHIFT_TEMPS int ishift_temp; |
michael@0 | 105 | #define IRIGHT_SHIFT(x,shft) \ |
michael@0 | 106 | ((ishift_temp = (x)) < 0 ? \ |
michael@0 | 107 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
michael@0 | 108 | (ishift_temp >> (shft))) |
michael@0 | 109 | #else |
michael@0 | 110 | #define ISHIFT_TEMPS |
michael@0 | 111 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
michael@0 | 112 | #endif |
michael@0 | 113 | |
michael@0 | 114 | |
michael@0 | 115 | LOCAL(void) |
michael@0 | 116 | emit_byte (int val, j_compress_ptr cinfo) |
michael@0 | 117 | /* Write next output byte; we do not support suspension in this module. */ |
michael@0 | 118 | { |
michael@0 | 119 | struct jpeg_destination_mgr * dest = cinfo->dest; |
michael@0 | 120 | |
michael@0 | 121 | *dest->next_output_byte++ = (JOCTET) val; |
michael@0 | 122 | if (--dest->free_in_buffer == 0) |
michael@0 | 123 | if (! (*dest->empty_output_buffer) (cinfo)) |
michael@0 | 124 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
michael@0 | 125 | } |
michael@0 | 126 | |
michael@0 | 127 | |
michael@0 | 128 | /* |
michael@0 | 129 | * Finish up at the end of an arithmetic-compressed scan. |
michael@0 | 130 | */ |
michael@0 | 131 | |
michael@0 | 132 | METHODDEF(void) |
michael@0 | 133 | finish_pass (j_compress_ptr cinfo) |
michael@0 | 134 | { |
michael@0 | 135 | arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
michael@0 | 136 | INT32 temp; |
michael@0 | 137 | |
michael@0 | 138 | /* Section D.1.8: Termination of encoding */ |
michael@0 | 139 | |
michael@0 | 140 | /* Find the e->c in the coding interval with the largest |
michael@0 | 141 | * number of trailing zero bits */ |
michael@0 | 142 | if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) |
michael@0 | 143 | e->c = temp + 0x8000L; |
michael@0 | 144 | else |
michael@0 | 145 | e->c = temp; |
michael@0 | 146 | /* Send remaining bytes to output */ |
michael@0 | 147 | e->c <<= e->ct; |
michael@0 | 148 | if (e->c & 0xF8000000L) { |
michael@0 | 149 | /* One final overflow has to be handled */ |
michael@0 | 150 | if (e->buffer >= 0) { |
michael@0 | 151 | if (e->zc) |
michael@0 | 152 | do emit_byte(0x00, cinfo); |
michael@0 | 153 | while (--e->zc); |
michael@0 | 154 | emit_byte(e->buffer + 1, cinfo); |
michael@0 | 155 | if (e->buffer + 1 == 0xFF) |
michael@0 | 156 | emit_byte(0x00, cinfo); |
michael@0 | 157 | } |
michael@0 | 158 | e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
michael@0 | 159 | e->sc = 0; |
michael@0 | 160 | } else { |
michael@0 | 161 | if (e->buffer == 0) |
michael@0 | 162 | ++e->zc; |
michael@0 | 163 | else if (e->buffer >= 0) { |
michael@0 | 164 | if (e->zc) |
michael@0 | 165 | do emit_byte(0x00, cinfo); |
michael@0 | 166 | while (--e->zc); |
michael@0 | 167 | emit_byte(e->buffer, cinfo); |
michael@0 | 168 | } |
michael@0 | 169 | if (e->sc) { |
michael@0 | 170 | if (e->zc) |
michael@0 | 171 | do emit_byte(0x00, cinfo); |
michael@0 | 172 | while (--e->zc); |
michael@0 | 173 | do { |
michael@0 | 174 | emit_byte(0xFF, cinfo); |
michael@0 | 175 | emit_byte(0x00, cinfo); |
michael@0 | 176 | } while (--e->sc); |
michael@0 | 177 | } |
michael@0 | 178 | } |
michael@0 | 179 | /* Output final bytes only if they are not 0x00 */ |
michael@0 | 180 | if (e->c & 0x7FFF800L) { |
michael@0 | 181 | if (e->zc) /* output final pending zero bytes */ |
michael@0 | 182 | do emit_byte(0x00, cinfo); |
michael@0 | 183 | while (--e->zc); |
michael@0 | 184 | emit_byte((e->c >> 19) & 0xFF, cinfo); |
michael@0 | 185 | if (((e->c >> 19) & 0xFF) == 0xFF) |
michael@0 | 186 | emit_byte(0x00, cinfo); |
michael@0 | 187 | if (e->c & 0x7F800L) { |
michael@0 | 188 | emit_byte((e->c >> 11) & 0xFF, cinfo); |
michael@0 | 189 | if (((e->c >> 11) & 0xFF) == 0xFF) |
michael@0 | 190 | emit_byte(0x00, cinfo); |
michael@0 | 191 | } |
michael@0 | 192 | } |
michael@0 | 193 | } |
michael@0 | 194 | |
michael@0 | 195 | |
michael@0 | 196 | /* |
michael@0 | 197 | * The core arithmetic encoding routine (common in JPEG and JBIG). |
michael@0 | 198 | * This needs to go as fast as possible. |
michael@0 | 199 | * Machine-dependent optimization facilities |
michael@0 | 200 | * are not utilized in this portable implementation. |
michael@0 | 201 | * However, this code should be fairly efficient and |
michael@0 | 202 | * may be a good base for further optimizations anyway. |
michael@0 | 203 | * |
michael@0 | 204 | * Parameter 'val' to be encoded may be 0 or 1 (binary decision). |
michael@0 | 205 | * |
michael@0 | 206 | * Note: I've added full "Pacman" termination support to the |
michael@0 | 207 | * byte output routines, which is equivalent to the optional |
michael@0 | 208 | * Discard_final_zeros procedure (Figure D.15) in the spec. |
michael@0 | 209 | * Thus, we always produce the shortest possible output |
michael@0 | 210 | * stream compliant to the spec (no trailing zero bytes, |
michael@0 | 211 | * except for FF stuffing). |
michael@0 | 212 | * |
michael@0 | 213 | * I've also introduced a new scheme for accessing |
michael@0 | 214 | * the probability estimation state machine table, |
michael@0 | 215 | * derived from Markus Kuhn's JBIG implementation. |
michael@0 | 216 | */ |
michael@0 | 217 | |
michael@0 | 218 | LOCAL(void) |
michael@0 | 219 | arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) |
michael@0 | 220 | { |
michael@0 | 221 | register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
michael@0 | 222 | register unsigned char nl, nm; |
michael@0 | 223 | register INT32 qe, temp; |
michael@0 | 224 | register int sv; |
michael@0 | 225 | |
michael@0 | 226 | /* Fetch values from our compact representation of Table D.2: |
michael@0 | 227 | * Qe values and probability estimation state machine |
michael@0 | 228 | */ |
michael@0 | 229 | sv = *st; |
michael@0 | 230 | qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
michael@0 | 231 | nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
michael@0 | 232 | nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
michael@0 | 233 | |
michael@0 | 234 | /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ |
michael@0 | 235 | e->a -= qe; |
michael@0 | 236 | if (val != (sv >> 7)) { |
michael@0 | 237 | /* Encode the less probable symbol */ |
michael@0 | 238 | if (e->a >= qe) { |
michael@0 | 239 | /* If the interval size (qe) for the less probable symbol (LPS) |
michael@0 | 240 | * is larger than the interval size for the MPS, then exchange |
michael@0 | 241 | * the two symbols for coding efficiency, otherwise code the LPS |
michael@0 | 242 | * as usual: */ |
michael@0 | 243 | e->c += e->a; |
michael@0 | 244 | e->a = qe; |
michael@0 | 245 | } |
michael@0 | 246 | *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
michael@0 | 247 | } else { |
michael@0 | 248 | /* Encode the more probable symbol */ |
michael@0 | 249 | if (e->a >= 0x8000L) |
michael@0 | 250 | return; /* A >= 0x8000 -> ready, no renormalization required */ |
michael@0 | 251 | if (e->a < qe) { |
michael@0 | 252 | /* If the interval size (qe) for the less probable symbol (LPS) |
michael@0 | 253 | * is larger than the interval size for the MPS, then exchange |
michael@0 | 254 | * the two symbols for coding efficiency: */ |
michael@0 | 255 | e->c += e->a; |
michael@0 | 256 | e->a = qe; |
michael@0 | 257 | } |
michael@0 | 258 | *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
michael@0 | 259 | } |
michael@0 | 260 | |
michael@0 | 261 | /* Renormalization & data output per section D.1.6 */ |
michael@0 | 262 | do { |
michael@0 | 263 | e->a <<= 1; |
michael@0 | 264 | e->c <<= 1; |
michael@0 | 265 | if (--e->ct == 0) { |
michael@0 | 266 | /* Another byte is ready for output */ |
michael@0 | 267 | temp = e->c >> 19; |
michael@0 | 268 | if (temp > 0xFF) { |
michael@0 | 269 | /* Handle overflow over all stacked 0xFF bytes */ |
michael@0 | 270 | if (e->buffer >= 0) { |
michael@0 | 271 | if (e->zc) |
michael@0 | 272 | do emit_byte(0x00, cinfo); |
michael@0 | 273 | while (--e->zc); |
michael@0 | 274 | emit_byte(e->buffer + 1, cinfo); |
michael@0 | 275 | if (e->buffer + 1 == 0xFF) |
michael@0 | 276 | emit_byte(0x00, cinfo); |
michael@0 | 277 | } |
michael@0 | 278 | e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
michael@0 | 279 | e->sc = 0; |
michael@0 | 280 | /* Note: The 3 spacer bits in the C register guarantee |
michael@0 | 281 | * that the new buffer byte can't be 0xFF here |
michael@0 | 282 | * (see page 160 in the P&M JPEG book). */ |
michael@0 | 283 | e->buffer = temp & 0xFF; /* new output byte, might overflow later */ |
michael@0 | 284 | } else if (temp == 0xFF) { |
michael@0 | 285 | ++e->sc; /* stack 0xFF byte (which might overflow later) */ |
michael@0 | 286 | } else { |
michael@0 | 287 | /* Output all stacked 0xFF bytes, they will not overflow any more */ |
michael@0 | 288 | if (e->buffer == 0) |
michael@0 | 289 | ++e->zc; |
michael@0 | 290 | else if (e->buffer >= 0) { |
michael@0 | 291 | if (e->zc) |
michael@0 | 292 | do emit_byte(0x00, cinfo); |
michael@0 | 293 | while (--e->zc); |
michael@0 | 294 | emit_byte(e->buffer, cinfo); |
michael@0 | 295 | } |
michael@0 | 296 | if (e->sc) { |
michael@0 | 297 | if (e->zc) |
michael@0 | 298 | do emit_byte(0x00, cinfo); |
michael@0 | 299 | while (--e->zc); |
michael@0 | 300 | do { |
michael@0 | 301 | emit_byte(0xFF, cinfo); |
michael@0 | 302 | emit_byte(0x00, cinfo); |
michael@0 | 303 | } while (--e->sc); |
michael@0 | 304 | } |
michael@0 | 305 | e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ |
michael@0 | 306 | } |
michael@0 | 307 | e->c &= 0x7FFFFL; |
michael@0 | 308 | e->ct += 8; |
michael@0 | 309 | } |
michael@0 | 310 | } while (e->a < 0x8000L); |
michael@0 | 311 | } |
michael@0 | 312 | |
michael@0 | 313 | |
michael@0 | 314 | /* |
michael@0 | 315 | * Emit a restart marker & resynchronize predictions. |
michael@0 | 316 | */ |
michael@0 | 317 | |
michael@0 | 318 | LOCAL(void) |
michael@0 | 319 | emit_restart (j_compress_ptr cinfo, int restart_num) |
michael@0 | 320 | { |
michael@0 | 321 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
michael@0 | 322 | int ci; |
michael@0 | 323 | jpeg_component_info * compptr; |
michael@0 | 324 | |
michael@0 | 325 | finish_pass(cinfo); |
michael@0 | 326 | |
michael@0 | 327 | emit_byte(0xFF, cinfo); |
michael@0 | 328 | emit_byte(JPEG_RST0 + restart_num, cinfo); |
michael@0 | 329 | |
michael@0 | 330 | /* Re-initialize statistics areas */ |
michael@0 | 331 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
michael@0 | 332 | compptr = cinfo->cur_comp_info[ci]; |
michael@0 | 333 | /* DC needs no table for refinement scan */ |
michael@0 | 334 | if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
michael@0 | 335 | MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
michael@0 | 336 | /* Reset DC predictions to 0 */ |
michael@0 | 337 | entropy->last_dc_val[ci] = 0; |
michael@0 | 338 | entropy->dc_context[ci] = 0; |
michael@0 | 339 | } |
michael@0 | 340 | /* AC needs no table when not present */ |
michael@0 | 341 | if (cinfo->progressive_mode == 0 || cinfo->Se) { |
michael@0 | 342 | MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
michael@0 | 343 | } |
michael@0 | 344 | } |
michael@0 | 345 | |
michael@0 | 346 | /* Reset arithmetic encoding variables */ |
michael@0 | 347 | entropy->c = 0; |
michael@0 | 348 | entropy->a = 0x10000L; |
michael@0 | 349 | entropy->sc = 0; |
michael@0 | 350 | entropy->zc = 0; |
michael@0 | 351 | entropy->ct = 11; |
michael@0 | 352 | entropy->buffer = -1; /* empty */ |
michael@0 | 353 | } |
michael@0 | 354 | |
michael@0 | 355 | |
michael@0 | 356 | /* |
michael@0 | 357 | * MCU encoding for DC initial scan (either spectral selection, |
michael@0 | 358 | * or first pass of successive approximation). |
michael@0 | 359 | */ |
michael@0 | 360 | |
michael@0 | 361 | METHODDEF(boolean) |
michael@0 | 362 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
michael@0 | 363 | { |
michael@0 | 364 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
michael@0 | 365 | JBLOCKROW block; |
michael@0 | 366 | unsigned char *st; |
michael@0 | 367 | int blkn, ci, tbl; |
michael@0 | 368 | int v, v2, m; |
michael@0 | 369 | ISHIFT_TEMPS |
michael@0 | 370 | |
michael@0 | 371 | /* Emit restart marker if needed */ |
michael@0 | 372 | if (cinfo->restart_interval) { |
michael@0 | 373 | if (entropy->restarts_to_go == 0) { |
michael@0 | 374 | emit_restart(cinfo, entropy->next_restart_num); |
michael@0 | 375 | entropy->restarts_to_go = cinfo->restart_interval; |
michael@0 | 376 | entropy->next_restart_num++; |
michael@0 | 377 | entropy->next_restart_num &= 7; |
michael@0 | 378 | } |
michael@0 | 379 | entropy->restarts_to_go--; |
michael@0 | 380 | } |
michael@0 | 381 | |
michael@0 | 382 | /* Encode the MCU data blocks */ |
michael@0 | 383 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
michael@0 | 384 | block = MCU_data[blkn]; |
michael@0 | 385 | ci = cinfo->MCU_membership[blkn]; |
michael@0 | 386 | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
michael@0 | 387 | |
michael@0 | 388 | /* Compute the DC value after the required point transform by Al. |
michael@0 | 389 | * This is simply an arithmetic right shift. |
michael@0 | 390 | */ |
michael@0 | 391 | m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); |
michael@0 | 392 | |
michael@0 | 393 | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
michael@0 | 394 | |
michael@0 | 395 | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
michael@0 | 396 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
michael@0 | 397 | |
michael@0 | 398 | /* Figure F.4: Encode_DC_DIFF */ |
michael@0 | 399 | if ((v = m - entropy->last_dc_val[ci]) == 0) { |
michael@0 | 400 | arith_encode(cinfo, st, 0); |
michael@0 | 401 | entropy->dc_context[ci] = 0; /* zero diff category */ |
michael@0 | 402 | } else { |
michael@0 | 403 | entropy->last_dc_val[ci] = m; |
michael@0 | 404 | arith_encode(cinfo, st, 1); |
michael@0 | 405 | /* Figure F.6: Encoding nonzero value v */ |
michael@0 | 406 | /* Figure F.7: Encoding the sign of v */ |
michael@0 | 407 | if (v > 0) { |
michael@0 | 408 | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
michael@0 | 409 | st += 2; /* Table F.4: SP = S0 + 2 */ |
michael@0 | 410 | entropy->dc_context[ci] = 4; /* small positive diff category */ |
michael@0 | 411 | } else { |
michael@0 | 412 | v = -v; |
michael@0 | 413 | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
michael@0 | 414 | st += 3; /* Table F.4: SN = S0 + 3 */ |
michael@0 | 415 | entropy->dc_context[ci] = 8; /* small negative diff category */ |
michael@0 | 416 | } |
michael@0 | 417 | /* Figure F.8: Encoding the magnitude category of v */ |
michael@0 | 418 | m = 0; |
michael@0 | 419 | if (v -= 1) { |
michael@0 | 420 | arith_encode(cinfo, st, 1); |
michael@0 | 421 | m = 1; |
michael@0 | 422 | v2 = v; |
michael@0 | 423 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
michael@0 | 424 | while (v2 >>= 1) { |
michael@0 | 425 | arith_encode(cinfo, st, 1); |
michael@0 | 426 | m <<= 1; |
michael@0 | 427 | st += 1; |
michael@0 | 428 | } |
michael@0 | 429 | } |
michael@0 | 430 | arith_encode(cinfo, st, 0); |
michael@0 | 431 | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
michael@0 | 432 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
michael@0 | 433 | entropy->dc_context[ci] = 0; /* zero diff category */ |
michael@0 | 434 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
michael@0 | 435 | entropy->dc_context[ci] += 8; /* large diff category */ |
michael@0 | 436 | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
michael@0 | 437 | st += 14; |
michael@0 | 438 | while (m >>= 1) |
michael@0 | 439 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
michael@0 | 440 | } |
michael@0 | 441 | } |
michael@0 | 442 | |
michael@0 | 443 | return TRUE; |
michael@0 | 444 | } |
michael@0 | 445 | |
michael@0 | 446 | |
michael@0 | 447 | /* |
michael@0 | 448 | * MCU encoding for AC initial scan (either spectral selection, |
michael@0 | 449 | * or first pass of successive approximation). |
michael@0 | 450 | */ |
michael@0 | 451 | |
michael@0 | 452 | METHODDEF(boolean) |
michael@0 | 453 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
michael@0 | 454 | { |
michael@0 | 455 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
michael@0 | 456 | JBLOCKROW block; |
michael@0 | 457 | unsigned char *st; |
michael@0 | 458 | int tbl, k, ke; |
michael@0 | 459 | int v, v2, m; |
michael@0 | 460 | |
michael@0 | 461 | /* Emit restart marker if needed */ |
michael@0 | 462 | if (cinfo->restart_interval) { |
michael@0 | 463 | if (entropy->restarts_to_go == 0) { |
michael@0 | 464 | emit_restart(cinfo, entropy->next_restart_num); |
michael@0 | 465 | entropy->restarts_to_go = cinfo->restart_interval; |
michael@0 | 466 | entropy->next_restart_num++; |
michael@0 | 467 | entropy->next_restart_num &= 7; |
michael@0 | 468 | } |
michael@0 | 469 | entropy->restarts_to_go--; |
michael@0 | 470 | } |
michael@0 | 471 | |
michael@0 | 472 | /* Encode the MCU data block */ |
michael@0 | 473 | block = MCU_data[0]; |
michael@0 | 474 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
michael@0 | 475 | |
michael@0 | 476 | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
michael@0 | 477 | |
michael@0 | 478 | /* Establish EOB (end-of-block) index */ |
michael@0 | 479 | for (ke = cinfo->Se; ke > 0; ke--) |
michael@0 | 480 | /* We must apply the point transform by Al. For AC coefficients this |
michael@0 | 481 | * is an integer division with rounding towards 0. To do this portably |
michael@0 | 482 | * in C, we shift after obtaining the absolute value. |
michael@0 | 483 | */ |
michael@0 | 484 | if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { |
michael@0 | 485 | if (v >>= cinfo->Al) break; |
michael@0 | 486 | } else { |
michael@0 | 487 | v = -v; |
michael@0 | 488 | if (v >>= cinfo->Al) break; |
michael@0 | 489 | } |
michael@0 | 490 | |
michael@0 | 491 | /* Figure F.5: Encode_AC_Coefficients */ |
michael@0 | 492 | for (k = cinfo->Ss; k <= ke; k++) { |
michael@0 | 493 | st = entropy->ac_stats[tbl] + 3 * (k - 1); |
michael@0 | 494 | arith_encode(cinfo, st, 0); /* EOB decision */ |
michael@0 | 495 | for (;;) { |
michael@0 | 496 | if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { |
michael@0 | 497 | if (v >>= cinfo->Al) { |
michael@0 | 498 | arith_encode(cinfo, st + 1, 1); |
michael@0 | 499 | arith_encode(cinfo, entropy->fixed_bin, 0); |
michael@0 | 500 | break; |
michael@0 | 501 | } |
michael@0 | 502 | } else { |
michael@0 | 503 | v = -v; |
michael@0 | 504 | if (v >>= cinfo->Al) { |
michael@0 | 505 | arith_encode(cinfo, st + 1, 1); |
michael@0 | 506 | arith_encode(cinfo, entropy->fixed_bin, 1); |
michael@0 | 507 | break; |
michael@0 | 508 | } |
michael@0 | 509 | } |
michael@0 | 510 | arith_encode(cinfo, st + 1, 0); st += 3; k++; |
michael@0 | 511 | } |
michael@0 | 512 | st += 2; |
michael@0 | 513 | /* Figure F.8: Encoding the magnitude category of v */ |
michael@0 | 514 | m = 0; |
michael@0 | 515 | if (v -= 1) { |
michael@0 | 516 | arith_encode(cinfo, st, 1); |
michael@0 | 517 | m = 1; |
michael@0 | 518 | v2 = v; |
michael@0 | 519 | if (v2 >>= 1) { |
michael@0 | 520 | arith_encode(cinfo, st, 1); |
michael@0 | 521 | m <<= 1; |
michael@0 | 522 | st = entropy->ac_stats[tbl] + |
michael@0 | 523 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
michael@0 | 524 | while (v2 >>= 1) { |
michael@0 | 525 | arith_encode(cinfo, st, 1); |
michael@0 | 526 | m <<= 1; |
michael@0 | 527 | st += 1; |
michael@0 | 528 | } |
michael@0 | 529 | } |
michael@0 | 530 | } |
michael@0 | 531 | arith_encode(cinfo, st, 0); |
michael@0 | 532 | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
michael@0 | 533 | st += 14; |
michael@0 | 534 | while (m >>= 1) |
michael@0 | 535 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
michael@0 | 536 | } |
michael@0 | 537 | /* Encode EOB decision only if k <= cinfo->Se */ |
michael@0 | 538 | if (k <= cinfo->Se) { |
michael@0 | 539 | st = entropy->ac_stats[tbl] + 3 * (k - 1); |
michael@0 | 540 | arith_encode(cinfo, st, 1); |
michael@0 | 541 | } |
michael@0 | 542 | |
michael@0 | 543 | return TRUE; |
michael@0 | 544 | } |
michael@0 | 545 | |
michael@0 | 546 | |
michael@0 | 547 | /* |
michael@0 | 548 | * MCU encoding for DC successive approximation refinement scan. |
michael@0 | 549 | */ |
michael@0 | 550 | |
michael@0 | 551 | METHODDEF(boolean) |
michael@0 | 552 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
michael@0 | 553 | { |
michael@0 | 554 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
michael@0 | 555 | unsigned char *st; |
michael@0 | 556 | int Al, blkn; |
michael@0 | 557 | |
michael@0 | 558 | /* Emit restart marker if needed */ |
michael@0 | 559 | if (cinfo->restart_interval) { |
michael@0 | 560 | if (entropy->restarts_to_go == 0) { |
michael@0 | 561 | emit_restart(cinfo, entropy->next_restart_num); |
michael@0 | 562 | entropy->restarts_to_go = cinfo->restart_interval; |
michael@0 | 563 | entropy->next_restart_num++; |
michael@0 | 564 | entropy->next_restart_num &= 7; |
michael@0 | 565 | } |
michael@0 | 566 | entropy->restarts_to_go--; |
michael@0 | 567 | } |
michael@0 | 568 | |
michael@0 | 569 | st = entropy->fixed_bin; /* use fixed probability estimation */ |
michael@0 | 570 | Al = cinfo->Al; |
michael@0 | 571 | |
michael@0 | 572 | /* Encode the MCU data blocks */ |
michael@0 | 573 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
michael@0 | 574 | /* We simply emit the Al'th bit of the DC coefficient value. */ |
michael@0 | 575 | arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); |
michael@0 | 576 | } |
michael@0 | 577 | |
michael@0 | 578 | return TRUE; |
michael@0 | 579 | } |
michael@0 | 580 | |
michael@0 | 581 | |
michael@0 | 582 | /* |
michael@0 | 583 | * MCU encoding for AC successive approximation refinement scan. |
michael@0 | 584 | */ |
michael@0 | 585 | |
michael@0 | 586 | METHODDEF(boolean) |
michael@0 | 587 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
michael@0 | 588 | { |
michael@0 | 589 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
michael@0 | 590 | JBLOCKROW block; |
michael@0 | 591 | unsigned char *st; |
michael@0 | 592 | int tbl, k, ke, kex; |
michael@0 | 593 | int v; |
michael@0 | 594 | |
michael@0 | 595 | /* Emit restart marker if needed */ |
michael@0 | 596 | if (cinfo->restart_interval) { |
michael@0 | 597 | if (entropy->restarts_to_go == 0) { |
michael@0 | 598 | emit_restart(cinfo, entropy->next_restart_num); |
michael@0 | 599 | entropy->restarts_to_go = cinfo->restart_interval; |
michael@0 | 600 | entropy->next_restart_num++; |
michael@0 | 601 | entropy->next_restart_num &= 7; |
michael@0 | 602 | } |
michael@0 | 603 | entropy->restarts_to_go--; |
michael@0 | 604 | } |
michael@0 | 605 | |
michael@0 | 606 | /* Encode the MCU data block */ |
michael@0 | 607 | block = MCU_data[0]; |
michael@0 | 608 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
michael@0 | 609 | |
michael@0 | 610 | /* Section G.1.3.3: Encoding of AC coefficients */ |
michael@0 | 611 | |
michael@0 | 612 | /* Establish EOB (end-of-block) index */ |
michael@0 | 613 | for (ke = cinfo->Se; ke > 0; ke--) |
michael@0 | 614 | /* We must apply the point transform by Al. For AC coefficients this |
michael@0 | 615 | * is an integer division with rounding towards 0. To do this portably |
michael@0 | 616 | * in C, we shift after obtaining the absolute value. |
michael@0 | 617 | */ |
michael@0 | 618 | if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { |
michael@0 | 619 | if (v >>= cinfo->Al) break; |
michael@0 | 620 | } else { |
michael@0 | 621 | v = -v; |
michael@0 | 622 | if (v >>= cinfo->Al) break; |
michael@0 | 623 | } |
michael@0 | 624 | |
michael@0 | 625 | /* Establish EOBx (previous stage end-of-block) index */ |
michael@0 | 626 | for (kex = ke; kex > 0; kex--) |
michael@0 | 627 | if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) { |
michael@0 | 628 | if (v >>= cinfo->Ah) break; |
michael@0 | 629 | } else { |
michael@0 | 630 | v = -v; |
michael@0 | 631 | if (v >>= cinfo->Ah) break; |
michael@0 | 632 | } |
michael@0 | 633 | |
michael@0 | 634 | /* Figure G.10: Encode_AC_Coefficients_SA */ |
michael@0 | 635 | for (k = cinfo->Ss; k <= ke; k++) { |
michael@0 | 636 | st = entropy->ac_stats[tbl] + 3 * (k - 1); |
michael@0 | 637 | if (k > kex) |
michael@0 | 638 | arith_encode(cinfo, st, 0); /* EOB decision */ |
michael@0 | 639 | for (;;) { |
michael@0 | 640 | if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { |
michael@0 | 641 | if (v >>= cinfo->Al) { |
michael@0 | 642 | if (v >> 1) /* previously nonzero coef */ |
michael@0 | 643 | arith_encode(cinfo, st + 2, (v & 1)); |
michael@0 | 644 | else { /* newly nonzero coef */ |
michael@0 | 645 | arith_encode(cinfo, st + 1, 1); |
michael@0 | 646 | arith_encode(cinfo, entropy->fixed_bin, 0); |
michael@0 | 647 | } |
michael@0 | 648 | break; |
michael@0 | 649 | } |
michael@0 | 650 | } else { |
michael@0 | 651 | v = -v; |
michael@0 | 652 | if (v >>= cinfo->Al) { |
michael@0 | 653 | if (v >> 1) /* previously nonzero coef */ |
michael@0 | 654 | arith_encode(cinfo, st + 2, (v & 1)); |
michael@0 | 655 | else { /* newly nonzero coef */ |
michael@0 | 656 | arith_encode(cinfo, st + 1, 1); |
michael@0 | 657 | arith_encode(cinfo, entropy->fixed_bin, 1); |
michael@0 | 658 | } |
michael@0 | 659 | break; |
michael@0 | 660 | } |
michael@0 | 661 | } |
michael@0 | 662 | arith_encode(cinfo, st + 1, 0); st += 3; k++; |
michael@0 | 663 | } |
michael@0 | 664 | } |
michael@0 | 665 | /* Encode EOB decision only if k <= cinfo->Se */ |
michael@0 | 666 | if (k <= cinfo->Se) { |
michael@0 | 667 | st = entropy->ac_stats[tbl] + 3 * (k - 1); |
michael@0 | 668 | arith_encode(cinfo, st, 1); |
michael@0 | 669 | } |
michael@0 | 670 | |
michael@0 | 671 | return TRUE; |
michael@0 | 672 | } |
michael@0 | 673 | |
michael@0 | 674 | |
michael@0 | 675 | /* |
michael@0 | 676 | * Encode and output one MCU's worth of arithmetic-compressed coefficients. |
michael@0 | 677 | */ |
michael@0 | 678 | |
michael@0 | 679 | METHODDEF(boolean) |
michael@0 | 680 | encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
michael@0 | 681 | { |
michael@0 | 682 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
michael@0 | 683 | jpeg_component_info * compptr; |
michael@0 | 684 | JBLOCKROW block; |
michael@0 | 685 | unsigned char *st; |
michael@0 | 686 | int blkn, ci, tbl, k, ke; |
michael@0 | 687 | int v, v2, m; |
michael@0 | 688 | |
michael@0 | 689 | /* Emit restart marker if needed */ |
michael@0 | 690 | if (cinfo->restart_interval) { |
michael@0 | 691 | if (entropy->restarts_to_go == 0) { |
michael@0 | 692 | emit_restart(cinfo, entropy->next_restart_num); |
michael@0 | 693 | entropy->restarts_to_go = cinfo->restart_interval; |
michael@0 | 694 | entropy->next_restart_num++; |
michael@0 | 695 | entropy->next_restart_num &= 7; |
michael@0 | 696 | } |
michael@0 | 697 | entropy->restarts_to_go--; |
michael@0 | 698 | } |
michael@0 | 699 | |
michael@0 | 700 | /* Encode the MCU data blocks */ |
michael@0 | 701 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
michael@0 | 702 | block = MCU_data[blkn]; |
michael@0 | 703 | ci = cinfo->MCU_membership[blkn]; |
michael@0 | 704 | compptr = cinfo->cur_comp_info[ci]; |
michael@0 | 705 | |
michael@0 | 706 | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
michael@0 | 707 | |
michael@0 | 708 | tbl = compptr->dc_tbl_no; |
michael@0 | 709 | |
michael@0 | 710 | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
michael@0 | 711 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
michael@0 | 712 | |
michael@0 | 713 | /* Figure F.4: Encode_DC_DIFF */ |
michael@0 | 714 | if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { |
michael@0 | 715 | arith_encode(cinfo, st, 0); |
michael@0 | 716 | entropy->dc_context[ci] = 0; /* zero diff category */ |
michael@0 | 717 | } else { |
michael@0 | 718 | entropy->last_dc_val[ci] = (*block)[0]; |
michael@0 | 719 | arith_encode(cinfo, st, 1); |
michael@0 | 720 | /* Figure F.6: Encoding nonzero value v */ |
michael@0 | 721 | /* Figure F.7: Encoding the sign of v */ |
michael@0 | 722 | if (v > 0) { |
michael@0 | 723 | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
michael@0 | 724 | st += 2; /* Table F.4: SP = S0 + 2 */ |
michael@0 | 725 | entropy->dc_context[ci] = 4; /* small positive diff category */ |
michael@0 | 726 | } else { |
michael@0 | 727 | v = -v; |
michael@0 | 728 | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
michael@0 | 729 | st += 3; /* Table F.4: SN = S0 + 3 */ |
michael@0 | 730 | entropy->dc_context[ci] = 8; /* small negative diff category */ |
michael@0 | 731 | } |
michael@0 | 732 | /* Figure F.8: Encoding the magnitude category of v */ |
michael@0 | 733 | m = 0; |
michael@0 | 734 | if (v -= 1) { |
michael@0 | 735 | arith_encode(cinfo, st, 1); |
michael@0 | 736 | m = 1; |
michael@0 | 737 | v2 = v; |
michael@0 | 738 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
michael@0 | 739 | while (v2 >>= 1) { |
michael@0 | 740 | arith_encode(cinfo, st, 1); |
michael@0 | 741 | m <<= 1; |
michael@0 | 742 | st += 1; |
michael@0 | 743 | } |
michael@0 | 744 | } |
michael@0 | 745 | arith_encode(cinfo, st, 0); |
michael@0 | 746 | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
michael@0 | 747 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
michael@0 | 748 | entropy->dc_context[ci] = 0; /* zero diff category */ |
michael@0 | 749 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
michael@0 | 750 | entropy->dc_context[ci] += 8; /* large diff category */ |
michael@0 | 751 | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
michael@0 | 752 | st += 14; |
michael@0 | 753 | while (m >>= 1) |
michael@0 | 754 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
michael@0 | 755 | } |
michael@0 | 756 | |
michael@0 | 757 | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
michael@0 | 758 | |
michael@0 | 759 | tbl = compptr->ac_tbl_no; |
michael@0 | 760 | |
michael@0 | 761 | /* Establish EOB (end-of-block) index */ |
michael@0 | 762 | for (ke = DCTSIZE2 - 1; ke > 0; ke--) |
michael@0 | 763 | if ((*block)[jpeg_natural_order[ke]]) break; |
michael@0 | 764 | |
michael@0 | 765 | /* Figure F.5: Encode_AC_Coefficients */ |
michael@0 | 766 | for (k = 1; k <= ke; k++) { |
michael@0 | 767 | st = entropy->ac_stats[tbl] + 3 * (k - 1); |
michael@0 | 768 | arith_encode(cinfo, st, 0); /* EOB decision */ |
michael@0 | 769 | while ((v = (*block)[jpeg_natural_order[k]]) == 0) { |
michael@0 | 770 | arith_encode(cinfo, st + 1, 0); st += 3; k++; |
michael@0 | 771 | } |
michael@0 | 772 | arith_encode(cinfo, st + 1, 1); |
michael@0 | 773 | /* Figure F.6: Encoding nonzero value v */ |
michael@0 | 774 | /* Figure F.7: Encoding the sign of v */ |
michael@0 | 775 | if (v > 0) { |
michael@0 | 776 | arith_encode(cinfo, entropy->fixed_bin, 0); |
michael@0 | 777 | } else { |
michael@0 | 778 | v = -v; |
michael@0 | 779 | arith_encode(cinfo, entropy->fixed_bin, 1); |
michael@0 | 780 | } |
michael@0 | 781 | st += 2; |
michael@0 | 782 | /* Figure F.8: Encoding the magnitude category of v */ |
michael@0 | 783 | m = 0; |
michael@0 | 784 | if (v -= 1) { |
michael@0 | 785 | arith_encode(cinfo, st, 1); |
michael@0 | 786 | m = 1; |
michael@0 | 787 | v2 = v; |
michael@0 | 788 | if (v2 >>= 1) { |
michael@0 | 789 | arith_encode(cinfo, st, 1); |
michael@0 | 790 | m <<= 1; |
michael@0 | 791 | st = entropy->ac_stats[tbl] + |
michael@0 | 792 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
michael@0 | 793 | while (v2 >>= 1) { |
michael@0 | 794 | arith_encode(cinfo, st, 1); |
michael@0 | 795 | m <<= 1; |
michael@0 | 796 | st += 1; |
michael@0 | 797 | } |
michael@0 | 798 | } |
michael@0 | 799 | } |
michael@0 | 800 | arith_encode(cinfo, st, 0); |
michael@0 | 801 | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
michael@0 | 802 | st += 14; |
michael@0 | 803 | while (m >>= 1) |
michael@0 | 804 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
michael@0 | 805 | } |
michael@0 | 806 | /* Encode EOB decision only if k <= DCTSIZE2 - 1 */ |
michael@0 | 807 | if (k <= DCTSIZE2 - 1) { |
michael@0 | 808 | st = entropy->ac_stats[tbl] + 3 * (k - 1); |
michael@0 | 809 | arith_encode(cinfo, st, 1); |
michael@0 | 810 | } |
michael@0 | 811 | } |
michael@0 | 812 | |
michael@0 | 813 | return TRUE; |
michael@0 | 814 | } |
michael@0 | 815 | |
michael@0 | 816 | |
michael@0 | 817 | /* |
michael@0 | 818 | * Initialize for an arithmetic-compressed scan. |
michael@0 | 819 | */ |
michael@0 | 820 | |
michael@0 | 821 | METHODDEF(void) |
michael@0 | 822 | start_pass (j_compress_ptr cinfo, boolean gather_statistics) |
michael@0 | 823 | { |
michael@0 | 824 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
michael@0 | 825 | int ci, tbl; |
michael@0 | 826 | jpeg_component_info * compptr; |
michael@0 | 827 | |
michael@0 | 828 | if (gather_statistics) |
michael@0 | 829 | /* Make sure to avoid that in the master control logic! |
michael@0 | 830 | * We are fully adaptive here and need no extra |
michael@0 | 831 | * statistics gathering pass! |
michael@0 | 832 | */ |
michael@0 | 833 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
michael@0 | 834 | |
michael@0 | 835 | /* We assume jcmaster.c already validated the progressive scan parameters. */ |
michael@0 | 836 | |
michael@0 | 837 | /* Select execution routines */ |
michael@0 | 838 | if (cinfo->progressive_mode) { |
michael@0 | 839 | if (cinfo->Ah == 0) { |
michael@0 | 840 | if (cinfo->Ss == 0) |
michael@0 | 841 | entropy->pub.encode_mcu = encode_mcu_DC_first; |
michael@0 | 842 | else |
michael@0 | 843 | entropy->pub.encode_mcu = encode_mcu_AC_first; |
michael@0 | 844 | } else { |
michael@0 | 845 | if (cinfo->Ss == 0) |
michael@0 | 846 | entropy->pub.encode_mcu = encode_mcu_DC_refine; |
michael@0 | 847 | else |
michael@0 | 848 | entropy->pub.encode_mcu = encode_mcu_AC_refine; |
michael@0 | 849 | } |
michael@0 | 850 | } else |
michael@0 | 851 | entropy->pub.encode_mcu = encode_mcu; |
michael@0 | 852 | |
michael@0 | 853 | /* Allocate & initialize requested statistics areas */ |
michael@0 | 854 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
michael@0 | 855 | compptr = cinfo->cur_comp_info[ci]; |
michael@0 | 856 | /* DC needs no table for refinement scan */ |
michael@0 | 857 | if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
michael@0 | 858 | tbl = compptr->dc_tbl_no; |
michael@0 | 859 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
michael@0 | 860 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
michael@0 | 861 | if (entropy->dc_stats[tbl] == NULL) |
michael@0 | 862 | entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
michael@0 | 863 | ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
michael@0 | 864 | MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
michael@0 | 865 | /* Initialize DC predictions to 0 */ |
michael@0 | 866 | entropy->last_dc_val[ci] = 0; |
michael@0 | 867 | entropy->dc_context[ci] = 0; |
michael@0 | 868 | } |
michael@0 | 869 | /* AC needs no table when not present */ |
michael@0 | 870 | if (cinfo->progressive_mode == 0 || cinfo->Se) { |
michael@0 | 871 | tbl = compptr->ac_tbl_no; |
michael@0 | 872 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
michael@0 | 873 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
michael@0 | 874 | if (entropy->ac_stats[tbl] == NULL) |
michael@0 | 875 | entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
michael@0 | 876 | ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
michael@0 | 877 | MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
michael@0 | 878 | #ifdef CALCULATE_SPECTRAL_CONDITIONING |
michael@0 | 879 | if (cinfo->progressive_mode) |
michael@0 | 880 | /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ |
michael@0 | 881 | cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); |
michael@0 | 882 | #endif |
michael@0 | 883 | } |
michael@0 | 884 | } |
michael@0 | 885 | |
michael@0 | 886 | /* Initialize arithmetic encoding variables */ |
michael@0 | 887 | entropy->c = 0; |
michael@0 | 888 | entropy->a = 0x10000L; |
michael@0 | 889 | entropy->sc = 0; |
michael@0 | 890 | entropy->zc = 0; |
michael@0 | 891 | entropy->ct = 11; |
michael@0 | 892 | entropy->buffer = -1; /* empty */ |
michael@0 | 893 | |
michael@0 | 894 | /* Initialize restart stuff */ |
michael@0 | 895 | entropy->restarts_to_go = cinfo->restart_interval; |
michael@0 | 896 | entropy->next_restart_num = 0; |
michael@0 | 897 | } |
michael@0 | 898 | |
michael@0 | 899 | |
michael@0 | 900 | /* |
michael@0 | 901 | * Module initialization routine for arithmetic entropy encoding. |
michael@0 | 902 | */ |
michael@0 | 903 | |
michael@0 | 904 | GLOBAL(void) |
michael@0 | 905 | jinit_arith_encoder (j_compress_ptr cinfo) |
michael@0 | 906 | { |
michael@0 | 907 | arith_entropy_ptr entropy; |
michael@0 | 908 | int i; |
michael@0 | 909 | |
michael@0 | 910 | entropy = (arith_entropy_ptr) |
michael@0 | 911 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
michael@0 | 912 | SIZEOF(arith_entropy_encoder)); |
michael@0 | 913 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
michael@0 | 914 | entropy->pub.start_pass = start_pass; |
michael@0 | 915 | entropy->pub.finish_pass = finish_pass; |
michael@0 | 916 | |
michael@0 | 917 | /* Mark tables unallocated */ |
michael@0 | 918 | for (i = 0; i < NUM_ARITH_TBLS; i++) { |
michael@0 | 919 | entropy->dc_stats[i] = NULL; |
michael@0 | 920 | entropy->ac_stats[i] = NULL; |
michael@0 | 921 | } |
michael@0 | 922 | |
michael@0 | 923 | /* Initialize index for fixed probability estimation */ |
michael@0 | 924 | entropy->fixed_bin[0] = 113; |
michael@0 | 925 | } |