Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
michael@0 | 1 | /* |
michael@0 | 2 | * jidctflt.c |
michael@0 | 3 | * |
michael@0 | 4 | * Copyright (C) 1994-1998, Thomas G. Lane. |
michael@0 | 5 | * This file is part of the Independent JPEG Group's software. |
michael@0 | 6 | * For conditions of distribution and use, see the accompanying README file. |
michael@0 | 7 | * |
michael@0 | 8 | * This file contains a floating-point implementation of the |
michael@0 | 9 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
michael@0 | 10 | * must also perform dequantization of the input coefficients. |
michael@0 | 11 | * |
michael@0 | 12 | * This implementation should be more accurate than either of the integer |
michael@0 | 13 | * IDCT implementations. However, it may not give the same results on all |
michael@0 | 14 | * machines because of differences in roundoff behavior. Speed will depend |
michael@0 | 15 | * on the hardware's floating point capacity. |
michael@0 | 16 | * |
michael@0 | 17 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
michael@0 | 18 | * on each row (or vice versa, but it's more convenient to emit a row at |
michael@0 | 19 | * a time). Direct algorithms are also available, but they are much more |
michael@0 | 20 | * complex and seem not to be any faster when reduced to code. |
michael@0 | 21 | * |
michael@0 | 22 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
michael@0 | 23 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
michael@0 | 24 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
michael@0 | 25 | * JPEG textbook (see REFERENCES section in file README). The following code |
michael@0 | 26 | * is based directly on figure 4-8 in P&M. |
michael@0 | 27 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
michael@0 | 28 | * possible to arrange the computation so that many of the multiplies are |
michael@0 | 29 | * simple scalings of the final outputs. These multiplies can then be |
michael@0 | 30 | * folded into the multiplications or divisions by the JPEG quantization |
michael@0 | 31 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
michael@0 | 32 | * to be done in the DCT itself. |
michael@0 | 33 | * The primary disadvantage of this method is that with a fixed-point |
michael@0 | 34 | * implementation, accuracy is lost due to imprecise representation of the |
michael@0 | 35 | * scaled quantization values. However, that problem does not arise if |
michael@0 | 36 | * we use floating point arithmetic. |
michael@0 | 37 | */ |
michael@0 | 38 | |
michael@0 | 39 | #define JPEG_INTERNALS |
michael@0 | 40 | #include "jinclude.h" |
michael@0 | 41 | #include "jpeglib.h" |
michael@0 | 42 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
michael@0 | 43 | |
michael@0 | 44 | #ifdef DCT_FLOAT_SUPPORTED |
michael@0 | 45 | |
michael@0 | 46 | |
michael@0 | 47 | /* |
michael@0 | 48 | * This module is specialized to the case DCTSIZE = 8. |
michael@0 | 49 | */ |
michael@0 | 50 | |
michael@0 | 51 | #if DCTSIZE != 8 |
michael@0 | 52 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
michael@0 | 53 | #endif |
michael@0 | 54 | |
michael@0 | 55 | |
michael@0 | 56 | /* Dequantize a coefficient by multiplying it by the multiplier-table |
michael@0 | 57 | * entry; produce a float result. |
michael@0 | 58 | */ |
michael@0 | 59 | |
michael@0 | 60 | #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) |
michael@0 | 61 | |
michael@0 | 62 | |
michael@0 | 63 | /* |
michael@0 | 64 | * Perform dequantization and inverse DCT on one block of coefficients. |
michael@0 | 65 | */ |
michael@0 | 66 | |
michael@0 | 67 | GLOBAL(void) |
michael@0 | 68 | jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
michael@0 | 69 | JCOEFPTR coef_block, |
michael@0 | 70 | JSAMPARRAY output_buf, JDIMENSION output_col) |
michael@0 | 71 | { |
michael@0 | 72 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
michael@0 | 73 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
michael@0 | 74 | FAST_FLOAT z5, z10, z11, z12, z13; |
michael@0 | 75 | JCOEFPTR inptr; |
michael@0 | 76 | FLOAT_MULT_TYPE * quantptr; |
michael@0 | 77 | FAST_FLOAT * wsptr; |
michael@0 | 78 | JSAMPROW outptr; |
michael@0 | 79 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
michael@0 | 80 | int ctr; |
michael@0 | 81 | FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ |
michael@0 | 82 | SHIFT_TEMPS |
michael@0 | 83 | |
michael@0 | 84 | /* Pass 1: process columns from input, store into work array. */ |
michael@0 | 85 | |
michael@0 | 86 | inptr = coef_block; |
michael@0 | 87 | quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; |
michael@0 | 88 | wsptr = workspace; |
michael@0 | 89 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
michael@0 | 90 | /* Due to quantization, we will usually find that many of the input |
michael@0 | 91 | * coefficients are zero, especially the AC terms. We can exploit this |
michael@0 | 92 | * by short-circuiting the IDCT calculation for any column in which all |
michael@0 | 93 | * the AC terms are zero. In that case each output is equal to the |
michael@0 | 94 | * DC coefficient (with scale factor as needed). |
michael@0 | 95 | * With typical images and quantization tables, half or more of the |
michael@0 | 96 | * column DCT calculations can be simplified this way. |
michael@0 | 97 | */ |
michael@0 | 98 | |
michael@0 | 99 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
michael@0 | 100 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
michael@0 | 101 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
michael@0 | 102 | inptr[DCTSIZE*7] == 0) { |
michael@0 | 103 | /* AC terms all zero */ |
michael@0 | 104 | FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
michael@0 | 105 | |
michael@0 | 106 | wsptr[DCTSIZE*0] = dcval; |
michael@0 | 107 | wsptr[DCTSIZE*1] = dcval; |
michael@0 | 108 | wsptr[DCTSIZE*2] = dcval; |
michael@0 | 109 | wsptr[DCTSIZE*3] = dcval; |
michael@0 | 110 | wsptr[DCTSIZE*4] = dcval; |
michael@0 | 111 | wsptr[DCTSIZE*5] = dcval; |
michael@0 | 112 | wsptr[DCTSIZE*6] = dcval; |
michael@0 | 113 | wsptr[DCTSIZE*7] = dcval; |
michael@0 | 114 | |
michael@0 | 115 | inptr++; /* advance pointers to next column */ |
michael@0 | 116 | quantptr++; |
michael@0 | 117 | wsptr++; |
michael@0 | 118 | continue; |
michael@0 | 119 | } |
michael@0 | 120 | |
michael@0 | 121 | /* Even part */ |
michael@0 | 122 | |
michael@0 | 123 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
michael@0 | 124 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
michael@0 | 125 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
michael@0 | 126 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
michael@0 | 127 | |
michael@0 | 128 | tmp10 = tmp0 + tmp2; /* phase 3 */ |
michael@0 | 129 | tmp11 = tmp0 - tmp2; |
michael@0 | 130 | |
michael@0 | 131 | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
michael@0 | 132 | tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ |
michael@0 | 133 | |
michael@0 | 134 | tmp0 = tmp10 + tmp13; /* phase 2 */ |
michael@0 | 135 | tmp3 = tmp10 - tmp13; |
michael@0 | 136 | tmp1 = tmp11 + tmp12; |
michael@0 | 137 | tmp2 = tmp11 - tmp12; |
michael@0 | 138 | |
michael@0 | 139 | /* Odd part */ |
michael@0 | 140 | |
michael@0 | 141 | tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
michael@0 | 142 | tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
michael@0 | 143 | tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
michael@0 | 144 | tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
michael@0 | 145 | |
michael@0 | 146 | z13 = tmp6 + tmp5; /* phase 6 */ |
michael@0 | 147 | z10 = tmp6 - tmp5; |
michael@0 | 148 | z11 = tmp4 + tmp7; |
michael@0 | 149 | z12 = tmp4 - tmp7; |
michael@0 | 150 | |
michael@0 | 151 | tmp7 = z11 + z13; /* phase 5 */ |
michael@0 | 152 | tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ |
michael@0 | 153 | |
michael@0 | 154 | z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
michael@0 | 155 | tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
michael@0 | 156 | tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
michael@0 | 157 | |
michael@0 | 158 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
michael@0 | 159 | tmp5 = tmp11 - tmp6; |
michael@0 | 160 | tmp4 = tmp10 + tmp5; |
michael@0 | 161 | |
michael@0 | 162 | wsptr[DCTSIZE*0] = tmp0 + tmp7; |
michael@0 | 163 | wsptr[DCTSIZE*7] = tmp0 - tmp7; |
michael@0 | 164 | wsptr[DCTSIZE*1] = tmp1 + tmp6; |
michael@0 | 165 | wsptr[DCTSIZE*6] = tmp1 - tmp6; |
michael@0 | 166 | wsptr[DCTSIZE*2] = tmp2 + tmp5; |
michael@0 | 167 | wsptr[DCTSIZE*5] = tmp2 - tmp5; |
michael@0 | 168 | wsptr[DCTSIZE*4] = tmp3 + tmp4; |
michael@0 | 169 | wsptr[DCTSIZE*3] = tmp3 - tmp4; |
michael@0 | 170 | |
michael@0 | 171 | inptr++; /* advance pointers to next column */ |
michael@0 | 172 | quantptr++; |
michael@0 | 173 | wsptr++; |
michael@0 | 174 | } |
michael@0 | 175 | |
michael@0 | 176 | /* Pass 2: process rows from work array, store into output array. */ |
michael@0 | 177 | /* Note that we must descale the results by a factor of 8 == 2**3. */ |
michael@0 | 178 | |
michael@0 | 179 | wsptr = workspace; |
michael@0 | 180 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
michael@0 | 181 | outptr = output_buf[ctr] + output_col; |
michael@0 | 182 | /* Rows of zeroes can be exploited in the same way as we did with columns. |
michael@0 | 183 | * However, the column calculation has created many nonzero AC terms, so |
michael@0 | 184 | * the simplification applies less often (typically 5% to 10% of the time). |
michael@0 | 185 | * And testing floats for zero is relatively expensive, so we don't bother. |
michael@0 | 186 | */ |
michael@0 | 187 | |
michael@0 | 188 | /* Even part */ |
michael@0 | 189 | |
michael@0 | 190 | tmp10 = wsptr[0] + wsptr[4]; |
michael@0 | 191 | tmp11 = wsptr[0] - wsptr[4]; |
michael@0 | 192 | |
michael@0 | 193 | tmp13 = wsptr[2] + wsptr[6]; |
michael@0 | 194 | tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; |
michael@0 | 195 | |
michael@0 | 196 | tmp0 = tmp10 + tmp13; |
michael@0 | 197 | tmp3 = tmp10 - tmp13; |
michael@0 | 198 | tmp1 = tmp11 + tmp12; |
michael@0 | 199 | tmp2 = tmp11 - tmp12; |
michael@0 | 200 | |
michael@0 | 201 | /* Odd part */ |
michael@0 | 202 | |
michael@0 | 203 | z13 = wsptr[5] + wsptr[3]; |
michael@0 | 204 | z10 = wsptr[5] - wsptr[3]; |
michael@0 | 205 | z11 = wsptr[1] + wsptr[7]; |
michael@0 | 206 | z12 = wsptr[1] - wsptr[7]; |
michael@0 | 207 | |
michael@0 | 208 | tmp7 = z11 + z13; |
michael@0 | 209 | tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); |
michael@0 | 210 | |
michael@0 | 211 | z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
michael@0 | 212 | tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
michael@0 | 213 | tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
michael@0 | 214 | |
michael@0 | 215 | tmp6 = tmp12 - tmp7; |
michael@0 | 216 | tmp5 = tmp11 - tmp6; |
michael@0 | 217 | tmp4 = tmp10 + tmp5; |
michael@0 | 218 | |
michael@0 | 219 | /* Final output stage: scale down by a factor of 8 and range-limit */ |
michael@0 | 220 | |
michael@0 | 221 | outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) |
michael@0 | 222 | & RANGE_MASK]; |
michael@0 | 223 | outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) |
michael@0 | 224 | & RANGE_MASK]; |
michael@0 | 225 | outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) |
michael@0 | 226 | & RANGE_MASK]; |
michael@0 | 227 | outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) |
michael@0 | 228 | & RANGE_MASK]; |
michael@0 | 229 | outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) |
michael@0 | 230 | & RANGE_MASK]; |
michael@0 | 231 | outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) |
michael@0 | 232 | & RANGE_MASK]; |
michael@0 | 233 | outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) |
michael@0 | 234 | & RANGE_MASK]; |
michael@0 | 235 | outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) |
michael@0 | 236 | & RANGE_MASK]; |
michael@0 | 237 | |
michael@0 | 238 | wsptr += DCTSIZE; /* advance pointer to next row */ |
michael@0 | 239 | } |
michael@0 | 240 | } |
michael@0 | 241 | |
michael@0 | 242 | #endif /* DCT_FLOAT_SUPPORTED */ |