media/libjpeg/jidctflt.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /*
michael@0 2 * jidctflt.c
michael@0 3 *
michael@0 4 * Copyright (C) 1994-1998, Thomas G. Lane.
michael@0 5 * This file is part of the Independent JPEG Group's software.
michael@0 6 * For conditions of distribution and use, see the accompanying README file.
michael@0 7 *
michael@0 8 * This file contains a floating-point implementation of the
michael@0 9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
michael@0 10 * must also perform dequantization of the input coefficients.
michael@0 11 *
michael@0 12 * This implementation should be more accurate than either of the integer
michael@0 13 * IDCT implementations. However, it may not give the same results on all
michael@0 14 * machines because of differences in roundoff behavior. Speed will depend
michael@0 15 * on the hardware's floating point capacity.
michael@0 16 *
michael@0 17 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
michael@0 18 * on each row (or vice versa, but it's more convenient to emit a row at
michael@0 19 * a time). Direct algorithms are also available, but they are much more
michael@0 20 * complex and seem not to be any faster when reduced to code.
michael@0 21 *
michael@0 22 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
michael@0 23 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
michael@0 24 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
michael@0 25 * JPEG textbook (see REFERENCES section in file README). The following code
michael@0 26 * is based directly on figure 4-8 in P&M.
michael@0 27 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
michael@0 28 * possible to arrange the computation so that many of the multiplies are
michael@0 29 * simple scalings of the final outputs. These multiplies can then be
michael@0 30 * folded into the multiplications or divisions by the JPEG quantization
michael@0 31 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
michael@0 32 * to be done in the DCT itself.
michael@0 33 * The primary disadvantage of this method is that with a fixed-point
michael@0 34 * implementation, accuracy is lost due to imprecise representation of the
michael@0 35 * scaled quantization values. However, that problem does not arise if
michael@0 36 * we use floating point arithmetic.
michael@0 37 */
michael@0 38
michael@0 39 #define JPEG_INTERNALS
michael@0 40 #include "jinclude.h"
michael@0 41 #include "jpeglib.h"
michael@0 42 #include "jdct.h" /* Private declarations for DCT subsystem */
michael@0 43
michael@0 44 #ifdef DCT_FLOAT_SUPPORTED
michael@0 45
michael@0 46
michael@0 47 /*
michael@0 48 * This module is specialized to the case DCTSIZE = 8.
michael@0 49 */
michael@0 50
michael@0 51 #if DCTSIZE != 8
michael@0 52 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
michael@0 53 #endif
michael@0 54
michael@0 55
michael@0 56 /* Dequantize a coefficient by multiplying it by the multiplier-table
michael@0 57 * entry; produce a float result.
michael@0 58 */
michael@0 59
michael@0 60 #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
michael@0 61
michael@0 62
michael@0 63 /*
michael@0 64 * Perform dequantization and inverse DCT on one block of coefficients.
michael@0 65 */
michael@0 66
michael@0 67 GLOBAL(void)
michael@0 68 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
michael@0 69 JCOEFPTR coef_block,
michael@0 70 JSAMPARRAY output_buf, JDIMENSION output_col)
michael@0 71 {
michael@0 72 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
michael@0 73 FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
michael@0 74 FAST_FLOAT z5, z10, z11, z12, z13;
michael@0 75 JCOEFPTR inptr;
michael@0 76 FLOAT_MULT_TYPE * quantptr;
michael@0 77 FAST_FLOAT * wsptr;
michael@0 78 JSAMPROW outptr;
michael@0 79 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
michael@0 80 int ctr;
michael@0 81 FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
michael@0 82 SHIFT_TEMPS
michael@0 83
michael@0 84 /* Pass 1: process columns from input, store into work array. */
michael@0 85
michael@0 86 inptr = coef_block;
michael@0 87 quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
michael@0 88 wsptr = workspace;
michael@0 89 for (ctr = DCTSIZE; ctr > 0; ctr--) {
michael@0 90 /* Due to quantization, we will usually find that many of the input
michael@0 91 * coefficients are zero, especially the AC terms. We can exploit this
michael@0 92 * by short-circuiting the IDCT calculation for any column in which all
michael@0 93 * the AC terms are zero. In that case each output is equal to the
michael@0 94 * DC coefficient (with scale factor as needed).
michael@0 95 * With typical images and quantization tables, half or more of the
michael@0 96 * column DCT calculations can be simplified this way.
michael@0 97 */
michael@0 98
michael@0 99 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
michael@0 100 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
michael@0 101 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
michael@0 102 inptr[DCTSIZE*7] == 0) {
michael@0 103 /* AC terms all zero */
michael@0 104 FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
michael@0 105
michael@0 106 wsptr[DCTSIZE*0] = dcval;
michael@0 107 wsptr[DCTSIZE*1] = dcval;
michael@0 108 wsptr[DCTSIZE*2] = dcval;
michael@0 109 wsptr[DCTSIZE*3] = dcval;
michael@0 110 wsptr[DCTSIZE*4] = dcval;
michael@0 111 wsptr[DCTSIZE*5] = dcval;
michael@0 112 wsptr[DCTSIZE*6] = dcval;
michael@0 113 wsptr[DCTSIZE*7] = dcval;
michael@0 114
michael@0 115 inptr++; /* advance pointers to next column */
michael@0 116 quantptr++;
michael@0 117 wsptr++;
michael@0 118 continue;
michael@0 119 }
michael@0 120
michael@0 121 /* Even part */
michael@0 122
michael@0 123 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
michael@0 124 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
michael@0 125 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
michael@0 126 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
michael@0 127
michael@0 128 tmp10 = tmp0 + tmp2; /* phase 3 */
michael@0 129 tmp11 = tmp0 - tmp2;
michael@0 130
michael@0 131 tmp13 = tmp1 + tmp3; /* phases 5-3 */
michael@0 132 tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
michael@0 133
michael@0 134 tmp0 = tmp10 + tmp13; /* phase 2 */
michael@0 135 tmp3 = tmp10 - tmp13;
michael@0 136 tmp1 = tmp11 + tmp12;
michael@0 137 tmp2 = tmp11 - tmp12;
michael@0 138
michael@0 139 /* Odd part */
michael@0 140
michael@0 141 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
michael@0 142 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
michael@0 143 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
michael@0 144 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
michael@0 145
michael@0 146 z13 = tmp6 + tmp5; /* phase 6 */
michael@0 147 z10 = tmp6 - tmp5;
michael@0 148 z11 = tmp4 + tmp7;
michael@0 149 z12 = tmp4 - tmp7;
michael@0 150
michael@0 151 tmp7 = z11 + z13; /* phase 5 */
michael@0 152 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
michael@0 153
michael@0 154 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
michael@0 155 tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
michael@0 156 tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
michael@0 157
michael@0 158 tmp6 = tmp12 - tmp7; /* phase 2 */
michael@0 159 tmp5 = tmp11 - tmp6;
michael@0 160 tmp4 = tmp10 + tmp5;
michael@0 161
michael@0 162 wsptr[DCTSIZE*0] = tmp0 + tmp7;
michael@0 163 wsptr[DCTSIZE*7] = tmp0 - tmp7;
michael@0 164 wsptr[DCTSIZE*1] = tmp1 + tmp6;
michael@0 165 wsptr[DCTSIZE*6] = tmp1 - tmp6;
michael@0 166 wsptr[DCTSIZE*2] = tmp2 + tmp5;
michael@0 167 wsptr[DCTSIZE*5] = tmp2 - tmp5;
michael@0 168 wsptr[DCTSIZE*4] = tmp3 + tmp4;
michael@0 169 wsptr[DCTSIZE*3] = tmp3 - tmp4;
michael@0 170
michael@0 171 inptr++; /* advance pointers to next column */
michael@0 172 quantptr++;
michael@0 173 wsptr++;
michael@0 174 }
michael@0 175
michael@0 176 /* Pass 2: process rows from work array, store into output array. */
michael@0 177 /* Note that we must descale the results by a factor of 8 == 2**3. */
michael@0 178
michael@0 179 wsptr = workspace;
michael@0 180 for (ctr = 0; ctr < DCTSIZE; ctr++) {
michael@0 181 outptr = output_buf[ctr] + output_col;
michael@0 182 /* Rows of zeroes can be exploited in the same way as we did with columns.
michael@0 183 * However, the column calculation has created many nonzero AC terms, so
michael@0 184 * the simplification applies less often (typically 5% to 10% of the time).
michael@0 185 * And testing floats for zero is relatively expensive, so we don't bother.
michael@0 186 */
michael@0 187
michael@0 188 /* Even part */
michael@0 189
michael@0 190 tmp10 = wsptr[0] + wsptr[4];
michael@0 191 tmp11 = wsptr[0] - wsptr[4];
michael@0 192
michael@0 193 tmp13 = wsptr[2] + wsptr[6];
michael@0 194 tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
michael@0 195
michael@0 196 tmp0 = tmp10 + tmp13;
michael@0 197 tmp3 = tmp10 - tmp13;
michael@0 198 tmp1 = tmp11 + tmp12;
michael@0 199 tmp2 = tmp11 - tmp12;
michael@0 200
michael@0 201 /* Odd part */
michael@0 202
michael@0 203 z13 = wsptr[5] + wsptr[3];
michael@0 204 z10 = wsptr[5] - wsptr[3];
michael@0 205 z11 = wsptr[1] + wsptr[7];
michael@0 206 z12 = wsptr[1] - wsptr[7];
michael@0 207
michael@0 208 tmp7 = z11 + z13;
michael@0 209 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
michael@0 210
michael@0 211 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
michael@0 212 tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
michael@0 213 tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
michael@0 214
michael@0 215 tmp6 = tmp12 - tmp7;
michael@0 216 tmp5 = tmp11 - tmp6;
michael@0 217 tmp4 = tmp10 + tmp5;
michael@0 218
michael@0 219 /* Final output stage: scale down by a factor of 8 and range-limit */
michael@0 220
michael@0 221 outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
michael@0 222 & RANGE_MASK];
michael@0 223 outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
michael@0 224 & RANGE_MASK];
michael@0 225 outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
michael@0 226 & RANGE_MASK];
michael@0 227 outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
michael@0 228 & RANGE_MASK];
michael@0 229 outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
michael@0 230 & RANGE_MASK];
michael@0 231 outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
michael@0 232 & RANGE_MASK];
michael@0 233 outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
michael@0 234 & RANGE_MASK];
michael@0 235 outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
michael@0 236 & RANGE_MASK];
michael@0 237
michael@0 238 wsptr += DCTSIZE; /* advance pointer to next row */
michael@0 239 }
michael@0 240 }
michael@0 241
michael@0 242 #endif /* DCT_FLOAT_SUPPORTED */

mercurial