media/libjpeg/jidctfst.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /*
michael@0 2 * jidctfst.c
michael@0 3 *
michael@0 4 * Copyright (C) 1994-1998, Thomas G. Lane.
michael@0 5 * This file is part of the Independent JPEG Group's software.
michael@0 6 * For conditions of distribution and use, see the accompanying README file.
michael@0 7 *
michael@0 8 * This file contains a fast, not so accurate integer implementation of the
michael@0 9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
michael@0 10 * must also perform dequantization of the input coefficients.
michael@0 11 *
michael@0 12 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
michael@0 13 * on each row (or vice versa, but it's more convenient to emit a row at
michael@0 14 * a time). Direct algorithms are also available, but they are much more
michael@0 15 * complex and seem not to be any faster when reduced to code.
michael@0 16 *
michael@0 17 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
michael@0 18 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
michael@0 19 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
michael@0 20 * JPEG textbook (see REFERENCES section in file README). The following code
michael@0 21 * is based directly on figure 4-8 in P&M.
michael@0 22 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
michael@0 23 * possible to arrange the computation so that many of the multiplies are
michael@0 24 * simple scalings of the final outputs. These multiplies can then be
michael@0 25 * folded into the multiplications or divisions by the JPEG quantization
michael@0 26 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
michael@0 27 * to be done in the DCT itself.
michael@0 28 * The primary disadvantage of this method is that with fixed-point math,
michael@0 29 * accuracy is lost due to imprecise representation of the scaled
michael@0 30 * quantization values. The smaller the quantization table entry, the less
michael@0 31 * precise the scaled value, so this implementation does worse with high-
michael@0 32 * quality-setting files than with low-quality ones.
michael@0 33 */
michael@0 34
michael@0 35 #define JPEG_INTERNALS
michael@0 36 #include "jinclude.h"
michael@0 37 #include "jpeglib.h"
michael@0 38 #include "jdct.h" /* Private declarations for DCT subsystem */
michael@0 39
michael@0 40 #ifdef DCT_IFAST_SUPPORTED
michael@0 41
michael@0 42
michael@0 43 /*
michael@0 44 * This module is specialized to the case DCTSIZE = 8.
michael@0 45 */
michael@0 46
michael@0 47 #if DCTSIZE != 8
michael@0 48 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
michael@0 49 #endif
michael@0 50
michael@0 51
michael@0 52 /* Scaling decisions are generally the same as in the LL&M algorithm;
michael@0 53 * see jidctint.c for more details. However, we choose to descale
michael@0 54 * (right shift) multiplication products as soon as they are formed,
michael@0 55 * rather than carrying additional fractional bits into subsequent additions.
michael@0 56 * This compromises accuracy slightly, but it lets us save a few shifts.
michael@0 57 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
michael@0 58 * everywhere except in the multiplications proper; this saves a good deal
michael@0 59 * of work on 16-bit-int machines.
michael@0 60 *
michael@0 61 * The dequantized coefficients are not integers because the AA&N scaling
michael@0 62 * factors have been incorporated. We represent them scaled up by PASS1_BITS,
michael@0 63 * so that the first and second IDCT rounds have the same input scaling.
michael@0 64 * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
michael@0 65 * avoid a descaling shift; this compromises accuracy rather drastically
michael@0 66 * for small quantization table entries, but it saves a lot of shifts.
michael@0 67 * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
michael@0 68 * so we use a much larger scaling factor to preserve accuracy.
michael@0 69 *
michael@0 70 * A final compromise is to represent the multiplicative constants to only
michael@0 71 * 8 fractional bits, rather than 13. This saves some shifting work on some
michael@0 72 * machines, and may also reduce the cost of multiplication (since there
michael@0 73 * are fewer one-bits in the constants).
michael@0 74 */
michael@0 75
michael@0 76 #if BITS_IN_JSAMPLE == 8
michael@0 77 #define CONST_BITS 8
michael@0 78 #define PASS1_BITS 2
michael@0 79 #else
michael@0 80 #define CONST_BITS 8
michael@0 81 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
michael@0 82 #endif
michael@0 83
michael@0 84 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
michael@0 85 * causing a lot of useless floating-point operations at run time.
michael@0 86 * To get around this we use the following pre-calculated constants.
michael@0 87 * If you change CONST_BITS you may want to add appropriate values.
michael@0 88 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
michael@0 89 */
michael@0 90
michael@0 91 #if CONST_BITS == 8
michael@0 92 #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
michael@0 93 #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
michael@0 94 #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
michael@0 95 #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
michael@0 96 #else
michael@0 97 #define FIX_1_082392200 FIX(1.082392200)
michael@0 98 #define FIX_1_414213562 FIX(1.414213562)
michael@0 99 #define FIX_1_847759065 FIX(1.847759065)
michael@0 100 #define FIX_2_613125930 FIX(2.613125930)
michael@0 101 #endif
michael@0 102
michael@0 103
michael@0 104 /* We can gain a little more speed, with a further compromise in accuracy,
michael@0 105 * by omitting the addition in a descaling shift. This yields an incorrectly
michael@0 106 * rounded result half the time...
michael@0 107 */
michael@0 108
michael@0 109 #ifndef USE_ACCURATE_ROUNDING
michael@0 110 #undef DESCALE
michael@0 111 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
michael@0 112 #endif
michael@0 113
michael@0 114
michael@0 115 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
michael@0 116 * descale to yield a DCTELEM result.
michael@0 117 */
michael@0 118
michael@0 119 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
michael@0 120
michael@0 121
michael@0 122 /* Dequantize a coefficient by multiplying it by the multiplier-table
michael@0 123 * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
michael@0 124 * multiplication will do. For 12-bit data, the multiplier table is
michael@0 125 * declared INT32, so a 32-bit multiply will be used.
michael@0 126 */
michael@0 127
michael@0 128 #if BITS_IN_JSAMPLE == 8
michael@0 129 #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
michael@0 130 #else
michael@0 131 #define DEQUANTIZE(coef,quantval) \
michael@0 132 DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
michael@0 133 #endif
michael@0 134
michael@0 135
michael@0 136 /* Like DESCALE, but applies to a DCTELEM and produces an int.
michael@0 137 * We assume that int right shift is unsigned if INT32 right shift is.
michael@0 138 */
michael@0 139
michael@0 140 #ifdef RIGHT_SHIFT_IS_UNSIGNED
michael@0 141 #define ISHIFT_TEMPS DCTELEM ishift_temp;
michael@0 142 #if BITS_IN_JSAMPLE == 8
michael@0 143 #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
michael@0 144 #else
michael@0 145 #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
michael@0 146 #endif
michael@0 147 #define IRIGHT_SHIFT(x,shft) \
michael@0 148 ((ishift_temp = (x)) < 0 ? \
michael@0 149 (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
michael@0 150 (ishift_temp >> (shft)))
michael@0 151 #else
michael@0 152 #define ISHIFT_TEMPS
michael@0 153 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
michael@0 154 #endif
michael@0 155
michael@0 156 #ifdef USE_ACCURATE_ROUNDING
michael@0 157 #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
michael@0 158 #else
michael@0 159 #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
michael@0 160 #endif
michael@0 161
michael@0 162
michael@0 163 /*
michael@0 164 * Perform dequantization and inverse DCT on one block of coefficients.
michael@0 165 */
michael@0 166
michael@0 167 GLOBAL(void)
michael@0 168 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
michael@0 169 JCOEFPTR coef_block,
michael@0 170 JSAMPARRAY output_buf, JDIMENSION output_col)
michael@0 171 {
michael@0 172 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
michael@0 173 DCTELEM tmp10, tmp11, tmp12, tmp13;
michael@0 174 DCTELEM z5, z10, z11, z12, z13;
michael@0 175 JCOEFPTR inptr;
michael@0 176 IFAST_MULT_TYPE * quantptr;
michael@0 177 int * wsptr;
michael@0 178 JSAMPROW outptr;
michael@0 179 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
michael@0 180 int ctr;
michael@0 181 int workspace[DCTSIZE2]; /* buffers data between passes */
michael@0 182 SHIFT_TEMPS /* for DESCALE */
michael@0 183 ISHIFT_TEMPS /* for IDESCALE */
michael@0 184
michael@0 185 /* Pass 1: process columns from input, store into work array. */
michael@0 186
michael@0 187 inptr = coef_block;
michael@0 188 quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
michael@0 189 wsptr = workspace;
michael@0 190 for (ctr = DCTSIZE; ctr > 0; ctr--) {
michael@0 191 /* Due to quantization, we will usually find that many of the input
michael@0 192 * coefficients are zero, especially the AC terms. We can exploit this
michael@0 193 * by short-circuiting the IDCT calculation for any column in which all
michael@0 194 * the AC terms are zero. In that case each output is equal to the
michael@0 195 * DC coefficient (with scale factor as needed).
michael@0 196 * With typical images and quantization tables, half or more of the
michael@0 197 * column DCT calculations can be simplified this way.
michael@0 198 */
michael@0 199
michael@0 200 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
michael@0 201 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
michael@0 202 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
michael@0 203 inptr[DCTSIZE*7] == 0) {
michael@0 204 /* AC terms all zero */
michael@0 205 int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
michael@0 206
michael@0 207 wsptr[DCTSIZE*0] = dcval;
michael@0 208 wsptr[DCTSIZE*1] = dcval;
michael@0 209 wsptr[DCTSIZE*2] = dcval;
michael@0 210 wsptr[DCTSIZE*3] = dcval;
michael@0 211 wsptr[DCTSIZE*4] = dcval;
michael@0 212 wsptr[DCTSIZE*5] = dcval;
michael@0 213 wsptr[DCTSIZE*6] = dcval;
michael@0 214 wsptr[DCTSIZE*7] = dcval;
michael@0 215
michael@0 216 inptr++; /* advance pointers to next column */
michael@0 217 quantptr++;
michael@0 218 wsptr++;
michael@0 219 continue;
michael@0 220 }
michael@0 221
michael@0 222 /* Even part */
michael@0 223
michael@0 224 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
michael@0 225 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
michael@0 226 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
michael@0 227 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
michael@0 228
michael@0 229 tmp10 = tmp0 + tmp2; /* phase 3 */
michael@0 230 tmp11 = tmp0 - tmp2;
michael@0 231
michael@0 232 tmp13 = tmp1 + tmp3; /* phases 5-3 */
michael@0 233 tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
michael@0 234
michael@0 235 tmp0 = tmp10 + tmp13; /* phase 2 */
michael@0 236 tmp3 = tmp10 - tmp13;
michael@0 237 tmp1 = tmp11 + tmp12;
michael@0 238 tmp2 = tmp11 - tmp12;
michael@0 239
michael@0 240 /* Odd part */
michael@0 241
michael@0 242 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
michael@0 243 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
michael@0 244 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
michael@0 245 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
michael@0 246
michael@0 247 z13 = tmp6 + tmp5; /* phase 6 */
michael@0 248 z10 = tmp6 - tmp5;
michael@0 249 z11 = tmp4 + tmp7;
michael@0 250 z12 = tmp4 - tmp7;
michael@0 251
michael@0 252 tmp7 = z11 + z13; /* phase 5 */
michael@0 253 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
michael@0 254
michael@0 255 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
michael@0 256 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
michael@0 257 tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
michael@0 258
michael@0 259 tmp6 = tmp12 - tmp7; /* phase 2 */
michael@0 260 tmp5 = tmp11 - tmp6;
michael@0 261 tmp4 = tmp10 + tmp5;
michael@0 262
michael@0 263 wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
michael@0 264 wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
michael@0 265 wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
michael@0 266 wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
michael@0 267 wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
michael@0 268 wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
michael@0 269 wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
michael@0 270 wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
michael@0 271
michael@0 272 inptr++; /* advance pointers to next column */
michael@0 273 quantptr++;
michael@0 274 wsptr++;
michael@0 275 }
michael@0 276
michael@0 277 /* Pass 2: process rows from work array, store into output array. */
michael@0 278 /* Note that we must descale the results by a factor of 8 == 2**3, */
michael@0 279 /* and also undo the PASS1_BITS scaling. */
michael@0 280
michael@0 281 wsptr = workspace;
michael@0 282 for (ctr = 0; ctr < DCTSIZE; ctr++) {
michael@0 283 outptr = output_buf[ctr] + output_col;
michael@0 284 /* Rows of zeroes can be exploited in the same way as we did with columns.
michael@0 285 * However, the column calculation has created many nonzero AC terms, so
michael@0 286 * the simplification applies less often (typically 5% to 10% of the time).
michael@0 287 * On machines with very fast multiplication, it's possible that the
michael@0 288 * test takes more time than it's worth. In that case this section
michael@0 289 * may be commented out.
michael@0 290 */
michael@0 291
michael@0 292 #ifndef NO_ZERO_ROW_TEST
michael@0 293 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
michael@0 294 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
michael@0 295 /* AC terms all zero */
michael@0 296 JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
michael@0 297 & RANGE_MASK];
michael@0 298
michael@0 299 outptr[0] = dcval;
michael@0 300 outptr[1] = dcval;
michael@0 301 outptr[2] = dcval;
michael@0 302 outptr[3] = dcval;
michael@0 303 outptr[4] = dcval;
michael@0 304 outptr[5] = dcval;
michael@0 305 outptr[6] = dcval;
michael@0 306 outptr[7] = dcval;
michael@0 307
michael@0 308 wsptr += DCTSIZE; /* advance pointer to next row */
michael@0 309 continue;
michael@0 310 }
michael@0 311 #endif
michael@0 312
michael@0 313 /* Even part */
michael@0 314
michael@0 315 tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
michael@0 316 tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
michael@0 317
michael@0 318 tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
michael@0 319 tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
michael@0 320 - tmp13;
michael@0 321
michael@0 322 tmp0 = tmp10 + tmp13;
michael@0 323 tmp3 = tmp10 - tmp13;
michael@0 324 tmp1 = tmp11 + tmp12;
michael@0 325 tmp2 = tmp11 - tmp12;
michael@0 326
michael@0 327 /* Odd part */
michael@0 328
michael@0 329 z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
michael@0 330 z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
michael@0 331 z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
michael@0 332 z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
michael@0 333
michael@0 334 tmp7 = z11 + z13; /* phase 5 */
michael@0 335 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
michael@0 336
michael@0 337 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
michael@0 338 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
michael@0 339 tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
michael@0 340
michael@0 341 tmp6 = tmp12 - tmp7; /* phase 2 */
michael@0 342 tmp5 = tmp11 - tmp6;
michael@0 343 tmp4 = tmp10 + tmp5;
michael@0 344
michael@0 345 /* Final output stage: scale down by a factor of 8 and range-limit */
michael@0 346
michael@0 347 outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
michael@0 348 & RANGE_MASK];
michael@0 349 outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
michael@0 350 & RANGE_MASK];
michael@0 351 outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
michael@0 352 & RANGE_MASK];
michael@0 353 outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
michael@0 354 & RANGE_MASK];
michael@0 355 outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
michael@0 356 & RANGE_MASK];
michael@0 357 outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
michael@0 358 & RANGE_MASK];
michael@0 359 outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
michael@0 360 & RANGE_MASK];
michael@0 361 outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
michael@0 362 & RANGE_MASK];
michael@0 363
michael@0 364 wsptr += DCTSIZE; /* advance pointer to next row */
michael@0 365 }
michael@0 366 }
michael@0 367
michael@0 368 #endif /* DCT_IFAST_SUPPORTED */

mercurial