Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
michael@0 | 1 | /* |
michael@0 | 2 | * jidctfst.c |
michael@0 | 3 | * |
michael@0 | 4 | * Copyright (C) 1994-1998, Thomas G. Lane. |
michael@0 | 5 | * This file is part of the Independent JPEG Group's software. |
michael@0 | 6 | * For conditions of distribution and use, see the accompanying README file. |
michael@0 | 7 | * |
michael@0 | 8 | * This file contains a fast, not so accurate integer implementation of the |
michael@0 | 9 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
michael@0 | 10 | * must also perform dequantization of the input coefficients. |
michael@0 | 11 | * |
michael@0 | 12 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
michael@0 | 13 | * on each row (or vice versa, but it's more convenient to emit a row at |
michael@0 | 14 | * a time). Direct algorithms are also available, but they are much more |
michael@0 | 15 | * complex and seem not to be any faster when reduced to code. |
michael@0 | 16 | * |
michael@0 | 17 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
michael@0 | 18 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
michael@0 | 19 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
michael@0 | 20 | * JPEG textbook (see REFERENCES section in file README). The following code |
michael@0 | 21 | * is based directly on figure 4-8 in P&M. |
michael@0 | 22 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
michael@0 | 23 | * possible to arrange the computation so that many of the multiplies are |
michael@0 | 24 | * simple scalings of the final outputs. These multiplies can then be |
michael@0 | 25 | * folded into the multiplications or divisions by the JPEG quantization |
michael@0 | 26 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
michael@0 | 27 | * to be done in the DCT itself. |
michael@0 | 28 | * The primary disadvantage of this method is that with fixed-point math, |
michael@0 | 29 | * accuracy is lost due to imprecise representation of the scaled |
michael@0 | 30 | * quantization values. The smaller the quantization table entry, the less |
michael@0 | 31 | * precise the scaled value, so this implementation does worse with high- |
michael@0 | 32 | * quality-setting files than with low-quality ones. |
michael@0 | 33 | */ |
michael@0 | 34 | |
michael@0 | 35 | #define JPEG_INTERNALS |
michael@0 | 36 | #include "jinclude.h" |
michael@0 | 37 | #include "jpeglib.h" |
michael@0 | 38 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
michael@0 | 39 | |
michael@0 | 40 | #ifdef DCT_IFAST_SUPPORTED |
michael@0 | 41 | |
michael@0 | 42 | |
michael@0 | 43 | /* |
michael@0 | 44 | * This module is specialized to the case DCTSIZE = 8. |
michael@0 | 45 | */ |
michael@0 | 46 | |
michael@0 | 47 | #if DCTSIZE != 8 |
michael@0 | 48 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
michael@0 | 49 | #endif |
michael@0 | 50 | |
michael@0 | 51 | |
michael@0 | 52 | /* Scaling decisions are generally the same as in the LL&M algorithm; |
michael@0 | 53 | * see jidctint.c for more details. However, we choose to descale |
michael@0 | 54 | * (right shift) multiplication products as soon as they are formed, |
michael@0 | 55 | * rather than carrying additional fractional bits into subsequent additions. |
michael@0 | 56 | * This compromises accuracy slightly, but it lets us save a few shifts. |
michael@0 | 57 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
michael@0 | 58 | * everywhere except in the multiplications proper; this saves a good deal |
michael@0 | 59 | * of work on 16-bit-int machines. |
michael@0 | 60 | * |
michael@0 | 61 | * The dequantized coefficients are not integers because the AA&N scaling |
michael@0 | 62 | * factors have been incorporated. We represent them scaled up by PASS1_BITS, |
michael@0 | 63 | * so that the first and second IDCT rounds have the same input scaling. |
michael@0 | 64 | * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to |
michael@0 | 65 | * avoid a descaling shift; this compromises accuracy rather drastically |
michael@0 | 66 | * for small quantization table entries, but it saves a lot of shifts. |
michael@0 | 67 | * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, |
michael@0 | 68 | * so we use a much larger scaling factor to preserve accuracy. |
michael@0 | 69 | * |
michael@0 | 70 | * A final compromise is to represent the multiplicative constants to only |
michael@0 | 71 | * 8 fractional bits, rather than 13. This saves some shifting work on some |
michael@0 | 72 | * machines, and may also reduce the cost of multiplication (since there |
michael@0 | 73 | * are fewer one-bits in the constants). |
michael@0 | 74 | */ |
michael@0 | 75 | |
michael@0 | 76 | #if BITS_IN_JSAMPLE == 8 |
michael@0 | 77 | #define CONST_BITS 8 |
michael@0 | 78 | #define PASS1_BITS 2 |
michael@0 | 79 | #else |
michael@0 | 80 | #define CONST_BITS 8 |
michael@0 | 81 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
michael@0 | 82 | #endif |
michael@0 | 83 | |
michael@0 | 84 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
michael@0 | 85 | * causing a lot of useless floating-point operations at run time. |
michael@0 | 86 | * To get around this we use the following pre-calculated constants. |
michael@0 | 87 | * If you change CONST_BITS you may want to add appropriate values. |
michael@0 | 88 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
michael@0 | 89 | */ |
michael@0 | 90 | |
michael@0 | 91 | #if CONST_BITS == 8 |
michael@0 | 92 | #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ |
michael@0 | 93 | #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ |
michael@0 | 94 | #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ |
michael@0 | 95 | #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ |
michael@0 | 96 | #else |
michael@0 | 97 | #define FIX_1_082392200 FIX(1.082392200) |
michael@0 | 98 | #define FIX_1_414213562 FIX(1.414213562) |
michael@0 | 99 | #define FIX_1_847759065 FIX(1.847759065) |
michael@0 | 100 | #define FIX_2_613125930 FIX(2.613125930) |
michael@0 | 101 | #endif |
michael@0 | 102 | |
michael@0 | 103 | |
michael@0 | 104 | /* We can gain a little more speed, with a further compromise in accuracy, |
michael@0 | 105 | * by omitting the addition in a descaling shift. This yields an incorrectly |
michael@0 | 106 | * rounded result half the time... |
michael@0 | 107 | */ |
michael@0 | 108 | |
michael@0 | 109 | #ifndef USE_ACCURATE_ROUNDING |
michael@0 | 110 | #undef DESCALE |
michael@0 | 111 | #define DESCALE(x,n) RIGHT_SHIFT(x, n) |
michael@0 | 112 | #endif |
michael@0 | 113 | |
michael@0 | 114 | |
michael@0 | 115 | /* Multiply a DCTELEM variable by an INT32 constant, and immediately |
michael@0 | 116 | * descale to yield a DCTELEM result. |
michael@0 | 117 | */ |
michael@0 | 118 | |
michael@0 | 119 | #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
michael@0 | 120 | |
michael@0 | 121 | |
michael@0 | 122 | /* Dequantize a coefficient by multiplying it by the multiplier-table |
michael@0 | 123 | * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 |
michael@0 | 124 | * multiplication will do. For 12-bit data, the multiplier table is |
michael@0 | 125 | * declared INT32, so a 32-bit multiply will be used. |
michael@0 | 126 | */ |
michael@0 | 127 | |
michael@0 | 128 | #if BITS_IN_JSAMPLE == 8 |
michael@0 | 129 | #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) |
michael@0 | 130 | #else |
michael@0 | 131 | #define DEQUANTIZE(coef,quantval) \ |
michael@0 | 132 | DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) |
michael@0 | 133 | #endif |
michael@0 | 134 | |
michael@0 | 135 | |
michael@0 | 136 | /* Like DESCALE, but applies to a DCTELEM and produces an int. |
michael@0 | 137 | * We assume that int right shift is unsigned if INT32 right shift is. |
michael@0 | 138 | */ |
michael@0 | 139 | |
michael@0 | 140 | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
michael@0 | 141 | #define ISHIFT_TEMPS DCTELEM ishift_temp; |
michael@0 | 142 | #if BITS_IN_JSAMPLE == 8 |
michael@0 | 143 | #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ |
michael@0 | 144 | #else |
michael@0 | 145 | #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ |
michael@0 | 146 | #endif |
michael@0 | 147 | #define IRIGHT_SHIFT(x,shft) \ |
michael@0 | 148 | ((ishift_temp = (x)) < 0 ? \ |
michael@0 | 149 | (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ |
michael@0 | 150 | (ishift_temp >> (shft))) |
michael@0 | 151 | #else |
michael@0 | 152 | #define ISHIFT_TEMPS |
michael@0 | 153 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
michael@0 | 154 | #endif |
michael@0 | 155 | |
michael@0 | 156 | #ifdef USE_ACCURATE_ROUNDING |
michael@0 | 157 | #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) |
michael@0 | 158 | #else |
michael@0 | 159 | #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) |
michael@0 | 160 | #endif |
michael@0 | 161 | |
michael@0 | 162 | |
michael@0 | 163 | /* |
michael@0 | 164 | * Perform dequantization and inverse DCT on one block of coefficients. |
michael@0 | 165 | */ |
michael@0 | 166 | |
michael@0 | 167 | GLOBAL(void) |
michael@0 | 168 | jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
michael@0 | 169 | JCOEFPTR coef_block, |
michael@0 | 170 | JSAMPARRAY output_buf, JDIMENSION output_col) |
michael@0 | 171 | { |
michael@0 | 172 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
michael@0 | 173 | DCTELEM tmp10, tmp11, tmp12, tmp13; |
michael@0 | 174 | DCTELEM z5, z10, z11, z12, z13; |
michael@0 | 175 | JCOEFPTR inptr; |
michael@0 | 176 | IFAST_MULT_TYPE * quantptr; |
michael@0 | 177 | int * wsptr; |
michael@0 | 178 | JSAMPROW outptr; |
michael@0 | 179 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
michael@0 | 180 | int ctr; |
michael@0 | 181 | int workspace[DCTSIZE2]; /* buffers data between passes */ |
michael@0 | 182 | SHIFT_TEMPS /* for DESCALE */ |
michael@0 | 183 | ISHIFT_TEMPS /* for IDESCALE */ |
michael@0 | 184 | |
michael@0 | 185 | /* Pass 1: process columns from input, store into work array. */ |
michael@0 | 186 | |
michael@0 | 187 | inptr = coef_block; |
michael@0 | 188 | quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; |
michael@0 | 189 | wsptr = workspace; |
michael@0 | 190 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
michael@0 | 191 | /* Due to quantization, we will usually find that many of the input |
michael@0 | 192 | * coefficients are zero, especially the AC terms. We can exploit this |
michael@0 | 193 | * by short-circuiting the IDCT calculation for any column in which all |
michael@0 | 194 | * the AC terms are zero. In that case each output is equal to the |
michael@0 | 195 | * DC coefficient (with scale factor as needed). |
michael@0 | 196 | * With typical images and quantization tables, half or more of the |
michael@0 | 197 | * column DCT calculations can be simplified this way. |
michael@0 | 198 | */ |
michael@0 | 199 | |
michael@0 | 200 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
michael@0 | 201 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
michael@0 | 202 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
michael@0 | 203 | inptr[DCTSIZE*7] == 0) { |
michael@0 | 204 | /* AC terms all zero */ |
michael@0 | 205 | int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
michael@0 | 206 | |
michael@0 | 207 | wsptr[DCTSIZE*0] = dcval; |
michael@0 | 208 | wsptr[DCTSIZE*1] = dcval; |
michael@0 | 209 | wsptr[DCTSIZE*2] = dcval; |
michael@0 | 210 | wsptr[DCTSIZE*3] = dcval; |
michael@0 | 211 | wsptr[DCTSIZE*4] = dcval; |
michael@0 | 212 | wsptr[DCTSIZE*5] = dcval; |
michael@0 | 213 | wsptr[DCTSIZE*6] = dcval; |
michael@0 | 214 | wsptr[DCTSIZE*7] = dcval; |
michael@0 | 215 | |
michael@0 | 216 | inptr++; /* advance pointers to next column */ |
michael@0 | 217 | quantptr++; |
michael@0 | 218 | wsptr++; |
michael@0 | 219 | continue; |
michael@0 | 220 | } |
michael@0 | 221 | |
michael@0 | 222 | /* Even part */ |
michael@0 | 223 | |
michael@0 | 224 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
michael@0 | 225 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
michael@0 | 226 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
michael@0 | 227 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
michael@0 | 228 | |
michael@0 | 229 | tmp10 = tmp0 + tmp2; /* phase 3 */ |
michael@0 | 230 | tmp11 = tmp0 - tmp2; |
michael@0 | 231 | |
michael@0 | 232 | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
michael@0 | 233 | tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ |
michael@0 | 234 | |
michael@0 | 235 | tmp0 = tmp10 + tmp13; /* phase 2 */ |
michael@0 | 236 | tmp3 = tmp10 - tmp13; |
michael@0 | 237 | tmp1 = tmp11 + tmp12; |
michael@0 | 238 | tmp2 = tmp11 - tmp12; |
michael@0 | 239 | |
michael@0 | 240 | /* Odd part */ |
michael@0 | 241 | |
michael@0 | 242 | tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
michael@0 | 243 | tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
michael@0 | 244 | tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
michael@0 | 245 | tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
michael@0 | 246 | |
michael@0 | 247 | z13 = tmp6 + tmp5; /* phase 6 */ |
michael@0 | 248 | z10 = tmp6 - tmp5; |
michael@0 | 249 | z11 = tmp4 + tmp7; |
michael@0 | 250 | z12 = tmp4 - tmp7; |
michael@0 | 251 | |
michael@0 | 252 | tmp7 = z11 + z13; /* phase 5 */ |
michael@0 | 253 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
michael@0 | 254 | |
michael@0 | 255 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
michael@0 | 256 | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
michael@0 | 257 | tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
michael@0 | 258 | |
michael@0 | 259 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
michael@0 | 260 | tmp5 = tmp11 - tmp6; |
michael@0 | 261 | tmp4 = tmp10 + tmp5; |
michael@0 | 262 | |
michael@0 | 263 | wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); |
michael@0 | 264 | wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); |
michael@0 | 265 | wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); |
michael@0 | 266 | wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); |
michael@0 | 267 | wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); |
michael@0 | 268 | wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); |
michael@0 | 269 | wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); |
michael@0 | 270 | wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); |
michael@0 | 271 | |
michael@0 | 272 | inptr++; /* advance pointers to next column */ |
michael@0 | 273 | quantptr++; |
michael@0 | 274 | wsptr++; |
michael@0 | 275 | } |
michael@0 | 276 | |
michael@0 | 277 | /* Pass 2: process rows from work array, store into output array. */ |
michael@0 | 278 | /* Note that we must descale the results by a factor of 8 == 2**3, */ |
michael@0 | 279 | /* and also undo the PASS1_BITS scaling. */ |
michael@0 | 280 | |
michael@0 | 281 | wsptr = workspace; |
michael@0 | 282 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
michael@0 | 283 | outptr = output_buf[ctr] + output_col; |
michael@0 | 284 | /* Rows of zeroes can be exploited in the same way as we did with columns. |
michael@0 | 285 | * However, the column calculation has created many nonzero AC terms, so |
michael@0 | 286 | * the simplification applies less often (typically 5% to 10% of the time). |
michael@0 | 287 | * On machines with very fast multiplication, it's possible that the |
michael@0 | 288 | * test takes more time than it's worth. In that case this section |
michael@0 | 289 | * may be commented out. |
michael@0 | 290 | */ |
michael@0 | 291 | |
michael@0 | 292 | #ifndef NO_ZERO_ROW_TEST |
michael@0 | 293 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
michael@0 | 294 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
michael@0 | 295 | /* AC terms all zero */ |
michael@0 | 296 | JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) |
michael@0 | 297 | & RANGE_MASK]; |
michael@0 | 298 | |
michael@0 | 299 | outptr[0] = dcval; |
michael@0 | 300 | outptr[1] = dcval; |
michael@0 | 301 | outptr[2] = dcval; |
michael@0 | 302 | outptr[3] = dcval; |
michael@0 | 303 | outptr[4] = dcval; |
michael@0 | 304 | outptr[5] = dcval; |
michael@0 | 305 | outptr[6] = dcval; |
michael@0 | 306 | outptr[7] = dcval; |
michael@0 | 307 | |
michael@0 | 308 | wsptr += DCTSIZE; /* advance pointer to next row */ |
michael@0 | 309 | continue; |
michael@0 | 310 | } |
michael@0 | 311 | #endif |
michael@0 | 312 | |
michael@0 | 313 | /* Even part */ |
michael@0 | 314 | |
michael@0 | 315 | tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); |
michael@0 | 316 | tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); |
michael@0 | 317 | |
michael@0 | 318 | tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); |
michael@0 | 319 | tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) |
michael@0 | 320 | - tmp13; |
michael@0 | 321 | |
michael@0 | 322 | tmp0 = tmp10 + tmp13; |
michael@0 | 323 | tmp3 = tmp10 - tmp13; |
michael@0 | 324 | tmp1 = tmp11 + tmp12; |
michael@0 | 325 | tmp2 = tmp11 - tmp12; |
michael@0 | 326 | |
michael@0 | 327 | /* Odd part */ |
michael@0 | 328 | |
michael@0 | 329 | z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; |
michael@0 | 330 | z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; |
michael@0 | 331 | z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; |
michael@0 | 332 | z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; |
michael@0 | 333 | |
michael@0 | 334 | tmp7 = z11 + z13; /* phase 5 */ |
michael@0 | 335 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
michael@0 | 336 | |
michael@0 | 337 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
michael@0 | 338 | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
michael@0 | 339 | tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
michael@0 | 340 | |
michael@0 | 341 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
michael@0 | 342 | tmp5 = tmp11 - tmp6; |
michael@0 | 343 | tmp4 = tmp10 + tmp5; |
michael@0 | 344 | |
michael@0 | 345 | /* Final output stage: scale down by a factor of 8 and range-limit */ |
michael@0 | 346 | |
michael@0 | 347 | outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) |
michael@0 | 348 | & RANGE_MASK]; |
michael@0 | 349 | outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) |
michael@0 | 350 | & RANGE_MASK]; |
michael@0 | 351 | outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) |
michael@0 | 352 | & RANGE_MASK]; |
michael@0 | 353 | outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) |
michael@0 | 354 | & RANGE_MASK]; |
michael@0 | 355 | outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) |
michael@0 | 356 | & RANGE_MASK]; |
michael@0 | 357 | outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) |
michael@0 | 358 | & RANGE_MASK]; |
michael@0 | 359 | outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) |
michael@0 | 360 | & RANGE_MASK]; |
michael@0 | 361 | outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) |
michael@0 | 362 | & RANGE_MASK]; |
michael@0 | 363 | |
michael@0 | 364 | wsptr += DCTSIZE; /* advance pointer to next row */ |
michael@0 | 365 | } |
michael@0 | 366 | } |
michael@0 | 367 | |
michael@0 | 368 | #endif /* DCT_IFAST_SUPPORTED */ |