media/libtheora/lib/ocintrin.h

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /********************************************************************
michael@0 2 * *
michael@0 3 * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. *
michael@0 4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
michael@0 5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
michael@0 6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
michael@0 7 * *
michael@0 8 * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009 *
michael@0 9 * by the Xiph.Org Foundation and contributors http://www.xiph.org/ *
michael@0 10 * *
michael@0 11 ********************************************************************
michael@0 12
michael@0 13 function:
michael@0 14 last mod: $Id: ocintrin.h 16503 2009-08-22 18:14:02Z giles $
michael@0 15
michael@0 16 ********************************************************************/
michael@0 17
michael@0 18 /*Some common macros for potential platform-specific optimization.*/
michael@0 19 #include <math.h>
michael@0 20 #if !defined(_ocintrin_H)
michael@0 21 # define _ocintrin_H (1)
michael@0 22
michael@0 23 /*Some specific platforms may have optimized intrinsic or inline assembly
michael@0 24 versions of these functions which can substantially improve performance.
michael@0 25 We define macros for them to allow easy incorporation of these non-ANSI
michael@0 26 features.*/
michael@0 27
michael@0 28 /*Note that we do not provide a macro for abs(), because it is provided as a
michael@0 29 library function, which we assume is translated into an intrinsic to avoid
michael@0 30 the function call overhead and then implemented in the smartest way for the
michael@0 31 target platform.
michael@0 32 With modern gcc (4.x), this is true: it uses cmov instructions if the
michael@0 33 architecture supports it and branchless bit-twiddling if it does not (the
michael@0 34 speed difference between the two approaches is not measurable).
michael@0 35 Interestingly, the bit-twiddling method was patented in 2000 (US 6,073,150)
michael@0 36 by Sun Microsystems, despite prior art dating back to at least 1996:
michael@0 37 http://web.archive.org/web/19961201174141/www.x86.org/ftp/articles/pentopt/PENTOPT.TXT
michael@0 38 On gcc 3.x, however, our assumption is not true, as abs() is translated to a
michael@0 39 conditional jump, which is horrible on deeply piplined architectures (e.g.,
michael@0 40 all consumer architectures for the past decade or more).
michael@0 41 Also be warned that -C*abs(x) where C is a constant is mis-optimized as
michael@0 42 abs(C*x) on every gcc release before 4.2.3.
michael@0 43 See bug http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34130 */
michael@0 44
michael@0 45 /*Modern gcc (4.x) can compile the naive versions of min and max with cmov if
michael@0 46 given an appropriate architecture, but the branchless bit-twiddling versions
michael@0 47 are just as fast, and do not require any special target architecture.
michael@0 48 Earlier gcc versions (3.x) compiled both code to the same assembly
michael@0 49 instructions, because of the way they represented ((_b)>(_a)) internally.*/
michael@0 50 #define OC_MAXI(_a,_b) ((_a)-((_a)-(_b)&-((_b)>(_a))))
michael@0 51 #define OC_MINI(_a,_b) ((_a)+((_b)-(_a)&-((_b)<(_a))))
michael@0 52 /*Clamps an integer into the given range.
michael@0 53 If _a>_c, then the lower bound _a is respected over the upper bound _c (this
michael@0 54 behavior is required to meet our documented API behavior).
michael@0 55 _a: The lower bound.
michael@0 56 _b: The value to clamp.
michael@0 57 _c: The upper boud.*/
michael@0 58 #define OC_CLAMPI(_a,_b,_c) (OC_MAXI(_a,OC_MINI(_b,_c)))
michael@0 59 #define OC_CLAMP255(_x) ((unsigned char)((((_x)<0)-1)&((_x)|-((_x)>255))))
michael@0 60 /*This has a chance of compiling branchless, and is just as fast as the
michael@0 61 bit-twiddling method, which is slightly less portable, since it relies on a
michael@0 62 sign-extended rightshift, which is not guaranteed by ANSI (but present on
michael@0 63 every relevant platform).*/
michael@0 64 #define OC_SIGNI(_a) (((_a)>0)-((_a)<0))
michael@0 65 /*Slightly more portable than relying on a sign-extended right-shift (which is
michael@0 66 not guaranteed by ANSI), and just as fast, since gcc (3.x and 4.x both)
michael@0 67 compile it into the right-shift anyway.*/
michael@0 68 #define OC_SIGNMASK(_a) (-((_a)<0))
michael@0 69 /*Divides an integer by a power of two, truncating towards 0.
michael@0 70 _dividend: The integer to divide.
michael@0 71 _shift: The non-negative power of two to divide by.
michael@0 72 _rmask: (1<<_shift)-1*/
michael@0 73 #define OC_DIV_POW2(_dividend,_shift,_rmask)\
michael@0 74 ((_dividend)+(OC_SIGNMASK(_dividend)&(_rmask))>>(_shift))
michael@0 75 /*Divides _x by 65536, truncating towards 0.*/
michael@0 76 #define OC_DIV2_16(_x) OC_DIV_POW2(_x,16,0xFFFF)
michael@0 77 /*Divides _x by 2, truncating towards 0.*/
michael@0 78 #define OC_DIV2(_x) OC_DIV_POW2(_x,1,0x1)
michael@0 79 /*Divides _x by 8, truncating towards 0.*/
michael@0 80 #define OC_DIV8(_x) OC_DIV_POW2(_x,3,0x7)
michael@0 81 /*Divides _x by 16, truncating towards 0.*/
michael@0 82 #define OC_DIV16(_x) OC_DIV_POW2(_x,4,0xF)
michael@0 83 /*Right shifts _dividend by _shift, adding _rval, and subtracting one for
michael@0 84 negative dividends first.
michael@0 85 When _rval is (1<<_shift-1), this is equivalent to division with rounding
michael@0 86 ties away from zero.*/
michael@0 87 #define OC_DIV_ROUND_POW2(_dividend,_shift,_rval)\
michael@0 88 ((_dividend)+OC_SIGNMASK(_dividend)+(_rval)>>(_shift))
michael@0 89 /*Divides a _x by 2, rounding towards even numbers.*/
michael@0 90 #define OC_DIV2_RE(_x) ((_x)+((_x)>>1&1)>>1)
michael@0 91 /*Divides a _x by (1<<(_shift)), rounding towards even numbers.*/
michael@0 92 #define OC_DIV_POW2_RE(_x,_shift) \
michael@0 93 ((_x)+((_x)>>(_shift)&1)+((1<<(_shift))-1>>1)>>(_shift))
michael@0 94 /*Swaps two integers _a and _b if _a>_b.*/
michael@0 95 #define OC_SORT2I(_a,_b) \
michael@0 96 do{ \
michael@0 97 int t__; \
michael@0 98 t__=((_a)^(_b))&-((_b)<(_a)); \
michael@0 99 (_a)^=t__; \
michael@0 100 (_b)^=t__; \
michael@0 101 } \
michael@0 102 while(0)
michael@0 103
michael@0 104 /*Accesses one of four (signed) bytes given an index.
michael@0 105 This can be used to avoid small lookup tables.*/
michael@0 106 #define OC_BYTE_TABLE32(_a,_b,_c,_d,_i) \
michael@0 107 ((signed char) \
michael@0 108 (((_a)&0xFF|((_b)&0xFF)<<8|((_c)&0xFF)<<16|((_d)&0xFF)<<24)>>(_i)*8))
michael@0 109 /*Accesses one of eight (unsigned) nibbles given an index.
michael@0 110 This can be used to avoid small lookup tables.*/
michael@0 111 #define OC_UNIBBLE_TABLE32(_a,_b,_c,_d,_e,_f,_g,_h,_i) \
michael@0 112 ((((_a)&0xF|((_b)&0xF)<<4|((_c)&0xF)<<8|((_d)&0xF)<<12| \
michael@0 113 ((_e)&0xF)<<16|((_f)&0xF)<<20|((_g)&0xF)<<24|((_h)&0xF)<<28)>>(_i)*4)&0xF)
michael@0 114
michael@0 115
michael@0 116
michael@0 117 /*All of these macros should expect floats as arguments.*/
michael@0 118 #define OC_MAXF(_a,_b) ((_a)<(_b)?(_b):(_a))
michael@0 119 #define OC_MINF(_a,_b) ((_a)>(_b)?(_b):(_a))
michael@0 120 #define OC_CLAMPF(_a,_b,_c) (OC_MINF(_a,OC_MAXF(_b,_c)))
michael@0 121 #define OC_FABSF(_f) ((float)fabs(_f))
michael@0 122 #define OC_SQRTF(_f) ((float)sqrt(_f))
michael@0 123 #define OC_POWF(_b,_e) ((float)pow(_b,_e))
michael@0 124 #define OC_LOGF(_f) ((float)log(_f))
michael@0 125 #define OC_IFLOORF(_f) ((int)floor(_f))
michael@0 126 #define OC_ICEILF(_f) ((int)ceil(_f))
michael@0 127
michael@0 128 #endif

mercurial