media/libvpx/vp9/common/vp9_reconinter.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /*
michael@0 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
michael@0 3 *
michael@0 4 * Use of this source code is governed by a BSD-style license
michael@0 5 * that can be found in the LICENSE file in the root of the source
michael@0 6 * tree. An additional intellectual property rights grant can be found
michael@0 7 * in the file PATENTS. All contributing project authors may
michael@0 8 * be found in the AUTHORS file in the root of the source tree.
michael@0 9 */
michael@0 10
michael@0 11 #include <assert.h>
michael@0 12
michael@0 13 #include "./vpx_scale_rtcd.h"
michael@0 14 #include "./vpx_config.h"
michael@0 15
michael@0 16 #include "vpx/vpx_integer.h"
michael@0 17
michael@0 18 #include "vp9/common/vp9_blockd.h"
michael@0 19 #include "vp9/common/vp9_filter.h"
michael@0 20 #include "vp9/common/vp9_reconinter.h"
michael@0 21 #include "vp9/common/vp9_reconintra.h"
michael@0 22
michael@0 23 void vp9_setup_interp_filters(MACROBLOCKD *xd,
michael@0 24 INTERPOLATION_TYPE mcomp_filter_type,
michael@0 25 VP9_COMMON *cm) {
michael@0 26 if (xd->mi_8x8 && xd->mi_8x8[0]) {
michael@0 27 MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
michael@0 28
michael@0 29 set_scale_factors(xd, mbmi->ref_frame[0] - LAST_FRAME,
michael@0 30 mbmi->ref_frame[1] - LAST_FRAME,
michael@0 31 cm->active_ref_scale);
michael@0 32 } else {
michael@0 33 set_scale_factors(xd, -1, -1, cm->active_ref_scale);
michael@0 34 }
michael@0 35
michael@0 36 xd->subpix.filter_x = xd->subpix.filter_y =
michael@0 37 vp9_get_filter_kernel(mcomp_filter_type == SWITCHABLE ?
michael@0 38 EIGHTTAP : mcomp_filter_type);
michael@0 39
michael@0 40 assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0);
michael@0 41 }
michael@0 42
michael@0 43 static void inter_predictor(const uint8_t *src, int src_stride,
michael@0 44 uint8_t *dst, int dst_stride,
michael@0 45 const MV32 *mv,
michael@0 46 const struct scale_factors *scale,
michael@0 47 int w, int h, int ref,
michael@0 48 const struct subpix_fn_table *subpix,
michael@0 49 int xs, int ys) {
michael@0 50 const int subpel_x = mv->col & SUBPEL_MASK;
michael@0 51 const int subpel_y = mv->row & SUBPEL_MASK;
michael@0 52
michael@0 53 src += (mv->row >> SUBPEL_BITS) * src_stride + (mv->col >> SUBPEL_BITS);
michael@0 54 scale->sfc->predict[subpel_x != 0][subpel_y != 0][ref](
michael@0 55 src, src_stride, dst, dst_stride,
michael@0 56 subpix->filter_x[subpel_x], xs,
michael@0 57 subpix->filter_y[subpel_y], ys,
michael@0 58 w, h);
michael@0 59 }
michael@0 60
michael@0 61 void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
michael@0 62 uint8_t *dst, int dst_stride,
michael@0 63 const MV *src_mv,
michael@0 64 const struct scale_factors *scale,
michael@0 65 int w, int h, int ref,
michael@0 66 const struct subpix_fn_table *subpix,
michael@0 67 enum mv_precision precision) {
michael@0 68 const int is_q4 = precision == MV_PRECISION_Q4;
michael@0 69 const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
michael@0 70 is_q4 ? src_mv->col : src_mv->col * 2 };
michael@0 71 const struct scale_factors_common *sfc = scale->sfc;
michael@0 72 const MV32 mv = sfc->scale_mv(&mv_q4, scale);
michael@0 73
michael@0 74 inter_predictor(src, src_stride, dst, dst_stride, &mv, scale,
michael@0 75 w, h, ref, subpix, sfc->x_step_q4, sfc->y_step_q4);
michael@0 76 }
michael@0 77
michael@0 78 static INLINE int round_mv_comp_q4(int value) {
michael@0 79 return (value < 0 ? value - 2 : value + 2) / 4;
michael@0 80 }
michael@0 81
michael@0 82 static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
michael@0 83 MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row +
michael@0 84 mi->bmi[1].as_mv[idx].as_mv.row +
michael@0 85 mi->bmi[2].as_mv[idx].as_mv.row +
michael@0 86 mi->bmi[3].as_mv[idx].as_mv.row),
michael@0 87 round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col +
michael@0 88 mi->bmi[1].as_mv[idx].as_mv.col +
michael@0 89 mi->bmi[2].as_mv[idx].as_mv.col +
michael@0 90 mi->bmi[3].as_mv[idx].as_mv.col) };
michael@0 91 return res;
michael@0 92 }
michael@0 93
michael@0 94 // TODO(jkoleszar): yet another mv clamping function :-(
michael@0 95 MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv,
michael@0 96 int bw, int bh, int ss_x, int ss_y) {
michael@0 97 // If the MV points so far into the UMV border that no visible pixels
michael@0 98 // are used for reconstruction, the subpel part of the MV can be
michael@0 99 // discarded and the MV limited to 16 pixels with equivalent results.
michael@0 100 const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS;
michael@0 101 const int spel_right = spel_left - SUBPEL_SHIFTS;
michael@0 102 const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS;
michael@0 103 const int spel_bottom = spel_top - SUBPEL_SHIFTS;
michael@0 104 MV clamped_mv = {
michael@0 105 src_mv->row * (1 << (1 - ss_y)),
michael@0 106 src_mv->col * (1 << (1 - ss_x))
michael@0 107 };
michael@0 108 assert(ss_x <= 1);
michael@0 109 assert(ss_y <= 1);
michael@0 110
michael@0 111 clamp_mv(&clamped_mv,
michael@0 112 xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
michael@0 113 xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
michael@0 114 xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
michael@0 115 xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
michael@0 116
michael@0 117 return clamped_mv;
michael@0 118 }
michael@0 119
michael@0 120
michael@0 121 // TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could
michael@0 122 // calculate the subsampled BLOCK_SIZE, but that type isn't defined for
michael@0 123 // sizes smaller than 16x16 yet.
michael@0 124 static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
michael@0 125 BLOCK_SIZE bsize, int pred_w, int pred_h,
michael@0 126 int mi_x, int mi_y) {
michael@0 127 struct macroblockd_plane *const pd = &xd->plane[plane];
michael@0 128 const int bwl = b_width_log2(bsize) - pd->subsampling_x;
michael@0 129 const int bw = 4 << bwl;
michael@0 130 const int bh = plane_block_height(bsize, pd);
michael@0 131 const int x = 4 * (block & ((1 << bwl) - 1));
michael@0 132 const int y = 4 * (block >> bwl);
michael@0 133 const MODE_INFO *mi = xd->mi_8x8[0];
michael@0 134 const int is_compound = has_second_ref(&mi->mbmi);
michael@0 135 int ref;
michael@0 136
michael@0 137 assert(x < bw);
michael@0 138 assert(y < bh);
michael@0 139 assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_w == bw);
michael@0 140 assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_h == bh);
michael@0 141
michael@0 142 for (ref = 0; ref < 1 + is_compound; ++ref) {
michael@0 143 struct scale_factors *const scale = &xd->scale_factor[ref];
michael@0 144 struct buf_2d *const pre_buf = &pd->pre[ref];
michael@0 145 struct buf_2d *const dst_buf = &pd->dst;
michael@0 146 uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
michael@0 147
michael@0 148 // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
michael@0 149 // same MV (the average of the 4 luma MVs) but we could do something
michael@0 150 // smarter for non-4:2:0. Just punt for now, pending the changes to get
michael@0 151 // rid of SPLITMV mode entirely.
michael@0 152 const MV mv = mi->mbmi.sb_type < BLOCK_8X8
michael@0 153 ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
michael@0 154 : mi_mv_pred_q4(mi, ref))
michael@0 155 : mi->mbmi.mv[ref].as_mv;
michael@0 156
michael@0 157 // TODO(jkoleszar): This clamping is done in the incorrect place for the
michael@0 158 // scaling case. It needs to be done on the scaled MV, not the pre-scaling
michael@0 159 // MV. Note however that it performs the subsampling aware scaling so
michael@0 160 // that the result is always q4.
michael@0 161 // mv_precision precision is MV_PRECISION_Q4.
michael@0 162 const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
michael@0 163 pd->subsampling_x,
michael@0 164 pd->subsampling_y);
michael@0 165
michael@0 166 uint8_t *pre;
michael@0 167 MV32 scaled_mv;
michael@0 168 int xs, ys;
michael@0 169
michael@0 170 if (vp9_is_scaled(scale->sfc)) {
michael@0 171 pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, scale);
michael@0 172 scale->sfc->set_scaled_offsets(scale, mi_y + y, mi_x + x);
michael@0 173 scaled_mv = scale->sfc->scale_mv(&mv_q4, scale);
michael@0 174 xs = scale->sfc->x_step_q4;
michael@0 175 ys = scale->sfc->y_step_q4;
michael@0 176 } else {
michael@0 177 pre = pre_buf->buf + (y * pre_buf->stride + x);
michael@0 178 scaled_mv.row = mv_q4.row;
michael@0 179 scaled_mv.col = mv_q4.col;
michael@0 180 xs = ys = 16;
michael@0 181 }
michael@0 182
michael@0 183 inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
michael@0 184 &scaled_mv, scale,
michael@0 185 4 << pred_w, 4 << pred_h, ref,
michael@0 186 &xd->subpix, xs, ys);
michael@0 187 }
michael@0 188 }
michael@0 189
michael@0 190 static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
michael@0 191 int mi_row, int mi_col,
michael@0 192 int plane_from, int plane_to) {
michael@0 193 int plane;
michael@0 194 for (plane = plane_from; plane <= plane_to; ++plane) {
michael@0 195 const int mi_x = mi_col * MI_SIZE;
michael@0 196 const int mi_y = mi_row * MI_SIZE;
michael@0 197 const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
michael@0 198 const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
michael@0 199
michael@0 200 if (xd->mi_8x8[0]->mbmi.sb_type < BLOCK_8X8) {
michael@0 201 int i = 0, x, y;
michael@0 202 assert(bsize == BLOCK_8X8);
michael@0 203 for (y = 0; y < 1 << bhl; ++y)
michael@0 204 for (x = 0; x < 1 << bwl; ++x)
michael@0 205 build_inter_predictors(xd, plane, i++, bsize, 0, 0, mi_x, mi_y);
michael@0 206 } else {
michael@0 207 build_inter_predictors(xd, plane, 0, bsize, bwl, bhl, mi_x, mi_y);
michael@0 208 }
michael@0 209 }
michael@0 210 }
michael@0 211
michael@0 212 void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
michael@0 213 BLOCK_SIZE bsize) {
michael@0 214 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
michael@0 215 }
michael@0 216 void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
michael@0 217 BLOCK_SIZE bsize) {
michael@0 218 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
michael@0 219 MAX_MB_PLANE - 1);
michael@0 220 }
michael@0 221 void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
michael@0 222 BLOCK_SIZE bsize) {
michael@0 223 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
michael@0 224 MAX_MB_PLANE - 1);
michael@0 225 }
michael@0 226
michael@0 227 // TODO(dkovalev: find better place for this function)
michael@0 228 void vp9_setup_scale_factors(VP9_COMMON *cm, int i) {
michael@0 229 const int ref = cm->active_ref_idx[i];
michael@0 230 struct scale_factors *const sf = &cm->active_ref_scale[i];
michael@0 231 struct scale_factors_common *const sfc = &cm->active_ref_scale_comm[i];
michael@0 232 if (ref >= NUM_YV12_BUFFERS) {
michael@0 233 vp9_zero(*sf);
michael@0 234 vp9_zero(*sfc);
michael@0 235 } else {
michael@0 236 YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref];
michael@0 237 vp9_setup_scale_factors_for_frame(sf, sfc,
michael@0 238 fb->y_crop_width, fb->y_crop_height,
michael@0 239 cm->width, cm->height);
michael@0 240
michael@0 241 if (vp9_is_scaled(sfc))
michael@0 242 vp9_extend_frame_borders(fb, cm->subsampling_x, cm->subsampling_y);
michael@0 243 }
michael@0 244 }
michael@0 245

mercurial