security/nss/lib/freebl/alg2268.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /*
michael@0 2 * alg2268.c - implementation of the algorithm in RFC 2268
michael@0 3 *
michael@0 4 * This Source Code Form is subject to the terms of the Mozilla Public
michael@0 5 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 6 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 7
michael@0 8 #ifdef FREEBL_NO_DEPEND
michael@0 9 #include "stubs.h"
michael@0 10 #endif
michael@0 11
michael@0 12 #include "blapi.h"
michael@0 13 #include "secerr.h"
michael@0 14 #ifdef XP_UNIX_XXX
michael@0 15 #include <stddef.h> /* for ptrdiff_t */
michael@0 16 #endif
michael@0 17
michael@0 18 /*
michael@0 19 ** RC2 symmetric block cypher
michael@0 20 */
michael@0 21
michael@0 22 typedef SECStatus (rc2Func)(RC2Context *cx, unsigned char *output,
michael@0 23 const unsigned char *input, unsigned int inputLen);
michael@0 24
michael@0 25 /* forward declarations */
michael@0 26 static rc2Func rc2_EncryptECB;
michael@0 27 static rc2Func rc2_DecryptECB;
michael@0 28 static rc2Func rc2_EncryptCBC;
michael@0 29 static rc2Func rc2_DecryptCBC;
michael@0 30
michael@0 31 typedef union {
michael@0 32 PRUint32 l[2];
michael@0 33 PRUint16 s[4];
michael@0 34 PRUint8 b[8];
michael@0 35 } RC2Block;
michael@0 36
michael@0 37 struct RC2ContextStr {
michael@0 38 union {
michael@0 39 PRUint8 Kb[128];
michael@0 40 PRUint16 Kw[64];
michael@0 41 } u;
michael@0 42 RC2Block iv;
michael@0 43 rc2Func *enc;
michael@0 44 rc2Func *dec;
michael@0 45 };
michael@0 46
michael@0 47 #define B u.Kb
michael@0 48 #define K u.Kw
michael@0 49 #define BYTESWAP(x) ((x) << 8 | (x) >> 8)
michael@0 50 #define SWAPK(i) cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS))
michael@0 51 #define RC2_BLOCK_SIZE 8
michael@0 52
michael@0 53 #define LOAD_HARD(R) \
michael@0 54 R[0] = (PRUint16)input[1] << 8 | input[0]; \
michael@0 55 R[1] = (PRUint16)input[3] << 8 | input[2]; \
michael@0 56 R[2] = (PRUint16)input[5] << 8 | input[4]; \
michael@0 57 R[3] = (PRUint16)input[7] << 8 | input[6];
michael@0 58 #define LOAD_EASY(R) \
michael@0 59 R[0] = ((PRUint16 *)input)[0]; \
michael@0 60 R[1] = ((PRUint16 *)input)[1]; \
michael@0 61 R[2] = ((PRUint16 *)input)[2]; \
michael@0 62 R[3] = ((PRUint16 *)input)[3];
michael@0 63 #define STORE_HARD(R) \
michael@0 64 output[0] = (PRUint8)(R[0]); output[1] = (PRUint8)(R[0] >> 8); \
michael@0 65 output[2] = (PRUint8)(R[1]); output[3] = (PRUint8)(R[1] >> 8); \
michael@0 66 output[4] = (PRUint8)(R[2]); output[5] = (PRUint8)(R[2] >> 8); \
michael@0 67 output[6] = (PRUint8)(R[3]); output[7] = (PRUint8)(R[3] >> 8);
michael@0 68 #define STORE_EASY(R) \
michael@0 69 ((PRUint16 *)output)[0] = R[0]; \
michael@0 70 ((PRUint16 *)output)[1] = R[1]; \
michael@0 71 ((PRUint16 *)output)[2] = R[2]; \
michael@0 72 ((PRUint16 *)output)[3] = R[3];
michael@0 73
michael@0 74 #if defined (NSS_X86_OR_X64)
michael@0 75 #define LOAD(R) LOAD_EASY(R)
michael@0 76 #define STORE(R) STORE_EASY(R)
michael@0 77 #elif !defined(IS_LITTLE_ENDIAN)
michael@0 78 #define LOAD(R) LOAD_HARD(R)
michael@0 79 #define STORE(R) STORE_HARD(R)
michael@0 80 #else
michael@0 81 #define LOAD(R) if ((ptrdiff_t)input & 1) { LOAD_HARD(R) } else { LOAD_EASY(R) }
michael@0 82 #define STORE(R) if ((ptrdiff_t)input & 1) { STORE_HARD(R) } else { STORE_EASY(R) }
michael@0 83 #endif
michael@0 84
michael@0 85 static const PRUint8 S[256] = {
michael@0 86 0331,0170,0371,0304,0031,0335,0265,0355,0050,0351,0375,0171,0112,0240,0330,0235,
michael@0 87 0306,0176,0067,0203,0053,0166,0123,0216,0142,0114,0144,0210,0104,0213,0373,0242,
michael@0 88 0027,0232,0131,0365,0207,0263,0117,0023,0141,0105,0155,0215,0011,0201,0175,0062,
michael@0 89 0275,0217,0100,0353,0206,0267,0173,0013,0360,0225,0041,0042,0134,0153,0116,0202,
michael@0 90 0124,0326,0145,0223,0316,0140,0262,0034,0163,0126,0300,0024,0247,0214,0361,0334,
michael@0 91 0022,0165,0312,0037,0073,0276,0344,0321,0102,0075,0324,0060,0243,0074,0266,0046,
michael@0 92 0157,0277,0016,0332,0106,0151,0007,0127,0047,0362,0035,0233,0274,0224,0103,0003,
michael@0 93 0370,0021,0307,0366,0220,0357,0076,0347,0006,0303,0325,0057,0310,0146,0036,0327,
michael@0 94 0010,0350,0352,0336,0200,0122,0356,0367,0204,0252,0162,0254,0065,0115,0152,0052,
michael@0 95 0226,0032,0322,0161,0132,0025,0111,0164,0113,0237,0320,0136,0004,0030,0244,0354,
michael@0 96 0302,0340,0101,0156,0017,0121,0313,0314,0044,0221,0257,0120,0241,0364,0160,0071,
michael@0 97 0231,0174,0072,0205,0043,0270,0264,0172,0374,0002,0066,0133,0045,0125,0227,0061,
michael@0 98 0055,0135,0372,0230,0343,0212,0222,0256,0005,0337,0051,0020,0147,0154,0272,0311,
michael@0 99 0323,0000,0346,0317,0341,0236,0250,0054,0143,0026,0001,0077,0130,0342,0211,0251,
michael@0 100 0015,0070,0064,0033,0253,0063,0377,0260,0273,0110,0014,0137,0271,0261,0315,0056,
michael@0 101 0305,0363,0333,0107,0345,0245,0234,0167,0012,0246,0040,0150,0376,0177,0301,0255
michael@0 102 };
michael@0 103
michael@0 104 RC2Context * RC2_AllocateContext(void)
michael@0 105 {
michael@0 106 return PORT_ZNew(RC2Context);
michael@0 107 }
michael@0 108 SECStatus
michael@0 109 RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int len,
michael@0 110 const unsigned char *input, int mode, unsigned int efLen8,
michael@0 111 unsigned int unused)
michael@0 112 {
michael@0 113 PRUint8 *L,*L2;
michael@0 114 int i;
michael@0 115 #if !defined(IS_LITTLE_ENDIAN)
michael@0 116 PRUint16 tmpS;
michael@0 117 #endif
michael@0 118 PRUint8 tmpB;
michael@0 119
michael@0 120 if (!key || !cx || !len || len > (sizeof cx->B) ||
michael@0 121 efLen8 > (sizeof cx->B)) {
michael@0 122 PORT_SetError(SEC_ERROR_INVALID_ARGS);
michael@0 123 return SECFailure;
michael@0 124 }
michael@0 125 if (mode == NSS_RC2) {
michael@0 126 /* groovy */
michael@0 127 } else if (mode == NSS_RC2_CBC) {
michael@0 128 if (!input) {
michael@0 129 PORT_SetError(SEC_ERROR_INVALID_ARGS);
michael@0 130 return SECFailure;
michael@0 131 }
michael@0 132 } else {
michael@0 133 PORT_SetError(SEC_ERROR_INVALID_ARGS);
michael@0 134 return SECFailure;
michael@0 135 }
michael@0 136
michael@0 137 if (mode == NSS_RC2_CBC) {
michael@0 138 cx->enc = & rc2_EncryptCBC;
michael@0 139 cx->dec = & rc2_DecryptCBC;
michael@0 140 LOAD(cx->iv.s);
michael@0 141 } else {
michael@0 142 cx->enc = & rc2_EncryptECB;
michael@0 143 cx->dec = & rc2_DecryptECB;
michael@0 144 }
michael@0 145
michael@0 146 /* Step 0. Copy key into table. */
michael@0 147 memcpy(cx->B, key, len);
michael@0 148
michael@0 149 /* Step 1. Compute all values to the right of the key. */
michael@0 150 L2 = cx->B;
michael@0 151 L = L2 + len;
michael@0 152 tmpB = L[-1];
michael@0 153 for (i = (sizeof cx->B) - len; i > 0; --i) {
michael@0 154 *L++ = tmpB = S[ (PRUint8)(tmpB + *L2++) ];
michael@0 155 }
michael@0 156
michael@0 157 /* step 2. Adjust left most byte of effective key. */
michael@0 158 i = (sizeof cx->B) - efLen8;
michael@0 159 L = cx->B + i;
michael@0 160 *L = tmpB = S[*L]; /* mask is always 0xff */
michael@0 161
michael@0 162 /* step 3. Recompute all values to the left of effective key. */
michael@0 163 L2 = --L + efLen8;
michael@0 164 while(L >= cx->B) {
michael@0 165 *L-- = tmpB = S[ tmpB ^ *L2-- ];
michael@0 166 }
michael@0 167
michael@0 168 #if !defined(IS_LITTLE_ENDIAN)
michael@0 169 for (i = 63; i >= 0; --i) {
michael@0 170 SWAPK(i); /* candidate for unrolling */
michael@0 171 }
michael@0 172 #endif
michael@0 173 return SECSuccess;
michael@0 174 }
michael@0 175
michael@0 176 /*
michael@0 177 ** Create a new RC2 context suitable for RC2 encryption/decryption.
michael@0 178 ** "key" raw key data
michael@0 179 ** "len" the number of bytes of key data
michael@0 180 ** "iv" is the CBC initialization vector (if mode is NSS_RC2_CBC)
michael@0 181 ** "mode" one of NSS_RC2 or NSS_RC2_CBC
michael@0 182 ** "effectiveKeyLen" in bytes, not bits.
michael@0 183 **
michael@0 184 ** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block
michael@0 185 ** chaining" mode.
michael@0 186 */
michael@0 187 RC2Context *
michael@0 188 RC2_CreateContext(const unsigned char *key, unsigned int len,
michael@0 189 const unsigned char *iv, int mode, unsigned efLen8)
michael@0 190 {
michael@0 191 RC2Context *cx = PORT_ZNew(RC2Context);
michael@0 192 if (cx) {
michael@0 193 SECStatus rv = RC2_InitContext(cx, key, len, iv, mode, efLen8, 0);
michael@0 194 if (rv != SECSuccess) {
michael@0 195 RC2_DestroyContext(cx, PR_TRUE);
michael@0 196 cx = NULL;
michael@0 197 }
michael@0 198 }
michael@0 199 return cx;
michael@0 200 }
michael@0 201
michael@0 202 /*
michael@0 203 ** Destroy an RC2 encryption/decryption context.
michael@0 204 ** "cx" the context
michael@0 205 ** "freeit" if PR_TRUE then free the object as well as its sub-objects
michael@0 206 */
michael@0 207 void
michael@0 208 RC2_DestroyContext(RC2Context *cx, PRBool freeit)
michael@0 209 {
michael@0 210 if (cx) {
michael@0 211 memset(cx, 0, sizeof *cx);
michael@0 212 if (freeit) {
michael@0 213 PORT_Free(cx);
michael@0 214 }
michael@0 215 }
michael@0 216 }
michael@0 217
michael@0 218 #define ROL(x,k) (x << k | x >> (16-k))
michael@0 219 #define MIX(j) \
michael@0 220 R0 = R0 + cx->K[ 4*j+0] + (R3 & R2) + (~R3 & R1); R0 = ROL(R0,1);\
michael@0 221 R1 = R1 + cx->K[ 4*j+1] + (R0 & R3) + (~R0 & R2); R1 = ROL(R1,2);\
michael@0 222 R2 = R2 + cx->K[ 4*j+2] + (R1 & R0) + (~R1 & R3); R2 = ROL(R2,3);\
michael@0 223 R3 = R3 + cx->K[ 4*j+3] + (R2 & R1) + (~R2 & R0); R3 = ROL(R3,5)
michael@0 224 #define MASH \
michael@0 225 R0 = R0 + cx->K[R3 & 63];\
michael@0 226 R1 = R1 + cx->K[R0 & 63];\
michael@0 227 R2 = R2 + cx->K[R1 & 63];\
michael@0 228 R3 = R3 + cx->K[R2 & 63]
michael@0 229
michael@0 230 /* Encrypt one block */
michael@0 231 static void
michael@0 232 rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
michael@0 233 {
michael@0 234 register PRUint16 R0, R1, R2, R3;
michael@0 235
michael@0 236 /* step 1. Initialize input. */
michael@0 237 R0 = input->s[0];
michael@0 238 R1 = input->s[1];
michael@0 239 R2 = input->s[2];
michael@0 240 R3 = input->s[3];
michael@0 241
michael@0 242 /* step 2. Expand Key (already done, in context) */
michael@0 243 /* step 3. j = 0 */
michael@0 244 /* step 4. Perform 5 mixing rounds. */
michael@0 245
michael@0 246 MIX(0);
michael@0 247 MIX(1);
michael@0 248 MIX(2);
michael@0 249 MIX(3);
michael@0 250 MIX(4);
michael@0 251
michael@0 252 /* step 5. Perform 1 mashing round. */
michael@0 253 MASH;
michael@0 254
michael@0 255 /* step 6. Perform 6 mixing rounds. */
michael@0 256
michael@0 257 MIX(5);
michael@0 258 MIX(6);
michael@0 259 MIX(7);
michael@0 260 MIX(8);
michael@0 261 MIX(9);
michael@0 262 MIX(10);
michael@0 263
michael@0 264 /* step 7. Perform 1 mashing round. */
michael@0 265 MASH;
michael@0 266
michael@0 267 /* step 8. Perform 5 mixing rounds. */
michael@0 268
michael@0 269 MIX(11);
michael@0 270 MIX(12);
michael@0 271 MIX(13);
michael@0 272 MIX(14);
michael@0 273 MIX(15);
michael@0 274
michael@0 275 /* output results */
michael@0 276 output->s[0] = R0;
michael@0 277 output->s[1] = R1;
michael@0 278 output->s[2] = R2;
michael@0 279 output->s[3] = R3;
michael@0 280 }
michael@0 281
michael@0 282 #define ROR(x,k) (x >> k | x << (16-k))
michael@0 283 #define R_MIX(j) \
michael@0 284 R3 = ROR(R3,5); R3 = R3 - cx->K[ 4*j+3] - (R2 & R1) - (~R2 & R0); \
michael@0 285 R2 = ROR(R2,3); R2 = R2 - cx->K[ 4*j+2] - (R1 & R0) - (~R1 & R3); \
michael@0 286 R1 = ROR(R1,2); R1 = R1 - cx->K[ 4*j+1] - (R0 & R3) - (~R0 & R2); \
michael@0 287 R0 = ROR(R0,1); R0 = R0 - cx->K[ 4*j+0] - (R3 & R2) - (~R3 & R1)
michael@0 288 #define R_MASH \
michael@0 289 R3 = R3 - cx->K[R2 & 63];\
michael@0 290 R2 = R2 - cx->K[R1 & 63];\
michael@0 291 R1 = R1 - cx->K[R0 & 63];\
michael@0 292 R0 = R0 - cx->K[R3 & 63]
michael@0 293
michael@0 294 /* Encrypt one block */
michael@0 295 static void
michael@0 296 rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
michael@0 297 {
michael@0 298 register PRUint16 R0, R1, R2, R3;
michael@0 299
michael@0 300 /* step 1. Initialize input. */
michael@0 301 R0 = input->s[0];
michael@0 302 R1 = input->s[1];
michael@0 303 R2 = input->s[2];
michael@0 304 R3 = input->s[3];
michael@0 305
michael@0 306 /* step 2. Expand Key (already done, in context) */
michael@0 307 /* step 3. j = 63 */
michael@0 308 /* step 4. Perform 5 r_mixing rounds. */
michael@0 309 R_MIX(15);
michael@0 310 R_MIX(14);
michael@0 311 R_MIX(13);
michael@0 312 R_MIX(12);
michael@0 313 R_MIX(11);
michael@0 314
michael@0 315 /* step 5. Perform 1 r_mashing round. */
michael@0 316 R_MASH;
michael@0 317
michael@0 318 /* step 6. Perform 6 r_mixing rounds. */
michael@0 319 R_MIX(10);
michael@0 320 R_MIX(9);
michael@0 321 R_MIX(8);
michael@0 322 R_MIX(7);
michael@0 323 R_MIX(6);
michael@0 324 R_MIX(5);
michael@0 325
michael@0 326 /* step 7. Perform 1 r_mashing round. */
michael@0 327 R_MASH;
michael@0 328
michael@0 329 /* step 8. Perform 5 r_mixing rounds. */
michael@0 330 R_MIX(4);
michael@0 331 R_MIX(3);
michael@0 332 R_MIX(2);
michael@0 333 R_MIX(1);
michael@0 334 R_MIX(0);
michael@0 335
michael@0 336 /* output results */
michael@0 337 output->s[0] = R0;
michael@0 338 output->s[1] = R1;
michael@0 339 output->s[2] = R2;
michael@0 340 output->s[3] = R3;
michael@0 341 }
michael@0 342
michael@0 343 static SECStatus
michael@0 344 rc2_EncryptECB(RC2Context *cx, unsigned char *output,
michael@0 345 const unsigned char *input, unsigned int inputLen)
michael@0 346 {
michael@0 347 RC2Block iBlock;
michael@0 348
michael@0 349 while (inputLen > 0) {
michael@0 350 LOAD(iBlock.s)
michael@0 351 rc2_Encrypt1Block(cx, &iBlock, &iBlock);
michael@0 352 STORE(iBlock.s)
michael@0 353 output += RC2_BLOCK_SIZE;
michael@0 354 input += RC2_BLOCK_SIZE;
michael@0 355 inputLen -= RC2_BLOCK_SIZE;
michael@0 356 }
michael@0 357 return SECSuccess;
michael@0 358 }
michael@0 359
michael@0 360 static SECStatus
michael@0 361 rc2_DecryptECB(RC2Context *cx, unsigned char *output,
michael@0 362 const unsigned char *input, unsigned int inputLen)
michael@0 363 {
michael@0 364 RC2Block iBlock;
michael@0 365
michael@0 366 while (inputLen > 0) {
michael@0 367 LOAD(iBlock.s)
michael@0 368 rc2_Decrypt1Block(cx, &iBlock, &iBlock);
michael@0 369 STORE(iBlock.s)
michael@0 370 output += RC2_BLOCK_SIZE;
michael@0 371 input += RC2_BLOCK_SIZE;
michael@0 372 inputLen -= RC2_BLOCK_SIZE;
michael@0 373 }
michael@0 374 return SECSuccess;
michael@0 375 }
michael@0 376
michael@0 377 static SECStatus
michael@0 378 rc2_EncryptCBC(RC2Context *cx, unsigned char *output,
michael@0 379 const unsigned char *input, unsigned int inputLen)
michael@0 380 {
michael@0 381 RC2Block iBlock;
michael@0 382
michael@0 383 while (inputLen > 0) {
michael@0 384
michael@0 385 LOAD(iBlock.s)
michael@0 386 iBlock.l[0] ^= cx->iv.l[0];
michael@0 387 iBlock.l[1] ^= cx->iv.l[1];
michael@0 388 rc2_Encrypt1Block(cx, &iBlock, &iBlock);
michael@0 389 cx->iv = iBlock;
michael@0 390 STORE(iBlock.s)
michael@0 391 output += RC2_BLOCK_SIZE;
michael@0 392 input += RC2_BLOCK_SIZE;
michael@0 393 inputLen -= RC2_BLOCK_SIZE;
michael@0 394 }
michael@0 395 return SECSuccess;
michael@0 396 }
michael@0 397
michael@0 398 static SECStatus
michael@0 399 rc2_DecryptCBC(RC2Context *cx, unsigned char *output,
michael@0 400 const unsigned char *input, unsigned int inputLen)
michael@0 401 {
michael@0 402 RC2Block iBlock;
michael@0 403 RC2Block oBlock;
michael@0 404
michael@0 405 while (inputLen > 0) {
michael@0 406 LOAD(iBlock.s)
michael@0 407 rc2_Decrypt1Block(cx, &oBlock, &iBlock);
michael@0 408 oBlock.l[0] ^= cx->iv.l[0];
michael@0 409 oBlock.l[1] ^= cx->iv.l[1];
michael@0 410 cx->iv = iBlock;
michael@0 411 STORE(oBlock.s)
michael@0 412 output += RC2_BLOCK_SIZE;
michael@0 413 input += RC2_BLOCK_SIZE;
michael@0 414 inputLen -= RC2_BLOCK_SIZE;
michael@0 415 }
michael@0 416 return SECSuccess;
michael@0 417 }
michael@0 418
michael@0 419
michael@0 420 /*
michael@0 421 ** Perform RC2 encryption.
michael@0 422 ** "cx" the context
michael@0 423 ** "output" the output buffer to store the encrypted data.
michael@0 424 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 425 ** after some data is stored in output.
michael@0 426 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 427 ** stored in "output"
michael@0 428 ** "input" the input data
michael@0 429 ** "inputLen" the amount of input data
michael@0 430 */
michael@0 431 SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output,
michael@0 432 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 433 const unsigned char *input, unsigned int inputLen)
michael@0 434 {
michael@0 435 SECStatus rv = SECSuccess;
michael@0 436 if (inputLen) {
michael@0 437 if (inputLen % RC2_BLOCK_SIZE) {
michael@0 438 PORT_SetError(SEC_ERROR_INPUT_LEN);
michael@0 439 return SECFailure;
michael@0 440 }
michael@0 441 if (maxOutputLen < inputLen) {
michael@0 442 PORT_SetError(SEC_ERROR_OUTPUT_LEN);
michael@0 443 return SECFailure;
michael@0 444 }
michael@0 445 rv = (*cx->enc)(cx, output, input, inputLen);
michael@0 446 }
michael@0 447 if (rv == SECSuccess) {
michael@0 448 *outputLen = inputLen;
michael@0 449 }
michael@0 450 return rv;
michael@0 451 }
michael@0 452
michael@0 453 /*
michael@0 454 ** Perform RC2 decryption.
michael@0 455 ** "cx" the context
michael@0 456 ** "output" the output buffer to store the decrypted data.
michael@0 457 ** "outputLen" how much data is stored in "output". Set by the routine
michael@0 458 ** after some data is stored in output.
michael@0 459 ** "maxOutputLen" the maximum amount of data that can ever be
michael@0 460 ** stored in "output"
michael@0 461 ** "input" the input data
michael@0 462 ** "inputLen" the amount of input data
michael@0 463 */
michael@0 464 SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output,
michael@0 465 unsigned int *outputLen, unsigned int maxOutputLen,
michael@0 466 const unsigned char *input, unsigned int inputLen)
michael@0 467 {
michael@0 468 SECStatus rv = SECSuccess;
michael@0 469 if (inputLen) {
michael@0 470 if (inputLen % RC2_BLOCK_SIZE) {
michael@0 471 PORT_SetError(SEC_ERROR_INPUT_LEN);
michael@0 472 return SECFailure;
michael@0 473 }
michael@0 474 if (maxOutputLen < inputLen) {
michael@0 475 PORT_SetError(SEC_ERROR_OUTPUT_LEN);
michael@0 476 return SECFailure;
michael@0 477 }
michael@0 478 rv = (*cx->dec)(cx, output, input, inputLen);
michael@0 479 }
michael@0 480 if (rv == SECSuccess) {
michael@0 481 *outputLen = inputLen;
michael@0 482 }
michael@0 483 return rv;
michael@0 484 }
michael@0 485

mercurial