security/nss/lib/freebl/ecl/ecp.h

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /* This Source Code Form is subject to the terms of the Mozilla Public
michael@0 2 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 4
michael@0 5 #ifndef __ecp_h_
michael@0 6 #define __ecp_h_
michael@0 7
michael@0 8 #include "ecl-priv.h"
michael@0 9
michael@0 10 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
michael@0 11 mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
michael@0 12
michael@0 13 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
michael@0 14 mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
michael@0 15
michael@0 16 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
michael@0 17 * qy). Uses affine coordinates. */
michael@0 18 mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
michael@0 19 const mp_int *qx, const mp_int *qy, mp_int *rx,
michael@0 20 mp_int *ry, const ECGroup *group);
michael@0 21
michael@0 22 /* Computes R = P - Q. Uses affine coordinates. */
michael@0 23 mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
michael@0 24 const mp_int *qx, const mp_int *qy, mp_int *rx,
michael@0 25 mp_int *ry, const ECGroup *group);
michael@0 26
michael@0 27 /* Computes R = 2P. Uses affine coordinates. */
michael@0 28 mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
michael@0 29 mp_int *ry, const ECGroup *group);
michael@0 30
michael@0 31 /* Validates a point on a GFp curve. */
michael@0 32 mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
michael@0 33
michael@0 34 #ifdef ECL_ENABLE_GFP_PT_MUL_AFF
michael@0 35 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
michael@0 36 * a, b and p are the elliptic curve coefficients and the prime that
michael@0 37 * determines the field GFp. Uses affine coordinates. */
michael@0 38 mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
michael@0 39 const mp_int *py, mp_int *rx, mp_int *ry,
michael@0 40 const ECGroup *group);
michael@0 41 #endif
michael@0 42
michael@0 43 /* Converts a point P(px, py) from affine coordinates to Jacobian
michael@0 44 * projective coordinates R(rx, ry, rz). */
michael@0 45 mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
michael@0 46 mp_int *ry, mp_int *rz, const ECGroup *group);
michael@0 47
michael@0 48 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to
michael@0 49 * affine coordinates R(rx, ry). */
michael@0 50 mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
michael@0 51 const mp_int *pz, mp_int *rx, mp_int *ry,
michael@0 52 const ECGroup *group);
michael@0 53
michael@0 54 /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
michael@0 55 * coordinates. */
michael@0 56 mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
michael@0 57 const mp_int *pz);
michael@0 58
michael@0 59 /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
michael@0 60 * coordinates. */
michael@0 61 mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
michael@0 62
michael@0 63 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
michael@0 64 * (qx, qy, qz). Uses Jacobian coordinates. */
michael@0 65 mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
michael@0 66 const mp_int *pz, const mp_int *qx,
michael@0 67 const mp_int *qy, mp_int *rx, mp_int *ry,
michael@0 68 mp_int *rz, const ECGroup *group);
michael@0 69
michael@0 70 /* Computes R = 2P. Uses Jacobian coordinates. */
michael@0 71 mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
michael@0 72 const mp_int *pz, mp_int *rx, mp_int *ry,
michael@0 73 mp_int *rz, const ECGroup *group);
michael@0 74
michael@0 75 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC
michael@0 76 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
michael@0 77 * a, b and p are the elliptic curve coefficients and the prime that
michael@0 78 * determines the field GFp. Uses Jacobian coordinates. */
michael@0 79 mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
michael@0 80 const mp_int *py, mp_int *rx, mp_int *ry,
michael@0 81 const ECGroup *group);
michael@0 82 #endif
michael@0 83
michael@0 84 /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
michael@0 85 * (base point) of the group of points on the elliptic curve. Allows k1 =
michael@0 86 * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine
michael@0 87 * coordinates. Input and output values are assumed to be NOT
michael@0 88 * field-encoded and are in affine form. */
michael@0 89 mp_err
michael@0 90 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
michael@0 91 const mp_int *py, mp_int *rx, mp_int *ry,
michael@0 92 const ECGroup *group);
michael@0 93
michael@0 94 /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
michael@0 95 * curve points P and R can be identical. Uses mixed Modified-Jacobian
michael@0 96 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
michael@0 97 * additions. Assumes input is already field-encoded using field_enc, and
michael@0 98 * returns output that is still field-encoded. Uses 5-bit window NAF
michael@0 99 * method (algorithm 11) for scalar-point multiplication from Brown,
michael@0 100 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
michael@0 101 * Curves Over Prime Fields. */
michael@0 102 mp_err
michael@0 103 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
michael@0 104 mp_int *rx, mp_int *ry, const ECGroup *group);
michael@0 105
michael@0 106 #endif /* __ecp_h_ */

mercurial