Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
michael@0 | 1 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 2 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 3 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 4 | |
michael@0 | 5 | #include "ecp.h" |
michael@0 | 6 | #include "mpi.h" |
michael@0 | 7 | #include "mplogic.h" |
michael@0 | 8 | #include "mpi-priv.h" |
michael@0 | 9 | |
michael@0 | 10 | /* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1. a can be r. |
michael@0 | 11 | * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to |
michael@0 | 12 | * Elliptic Curve Cryptography. */ |
michael@0 | 13 | static mp_err |
michael@0 | 14 | ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth) |
michael@0 | 15 | { |
michael@0 | 16 | mp_err res = MP_OKAY; |
michael@0 | 17 | int a_bits = mpl_significant_bits(a); |
michael@0 | 18 | int i; |
michael@0 | 19 | |
michael@0 | 20 | /* m1, m2 are statically-allocated mp_int of exactly the size we need */ |
michael@0 | 21 | mp_int m[10]; |
michael@0 | 22 | |
michael@0 | 23 | #ifdef ECL_THIRTY_TWO_BIT |
michael@0 | 24 | mp_digit s[10][12]; |
michael@0 | 25 | for (i = 0; i < 10; i++) { |
michael@0 | 26 | MP_SIGN(&m[i]) = MP_ZPOS; |
michael@0 | 27 | MP_ALLOC(&m[i]) = 12; |
michael@0 | 28 | MP_USED(&m[i]) = 12; |
michael@0 | 29 | MP_DIGITS(&m[i]) = s[i]; |
michael@0 | 30 | } |
michael@0 | 31 | #else |
michael@0 | 32 | mp_digit s[10][6]; |
michael@0 | 33 | for (i = 0; i < 10; i++) { |
michael@0 | 34 | MP_SIGN(&m[i]) = MP_ZPOS; |
michael@0 | 35 | MP_ALLOC(&m[i]) = 6; |
michael@0 | 36 | MP_USED(&m[i]) = 6; |
michael@0 | 37 | MP_DIGITS(&m[i]) = s[i]; |
michael@0 | 38 | } |
michael@0 | 39 | #endif |
michael@0 | 40 | |
michael@0 | 41 | #ifdef ECL_THIRTY_TWO_BIT |
michael@0 | 42 | /* for polynomials larger than twice the field size or polynomials |
michael@0 | 43 | * not using all words, use regular reduction */ |
michael@0 | 44 | if ((a_bits > 768) || (a_bits <= 736)) { |
michael@0 | 45 | MP_CHECKOK(mp_mod(a, &meth->irr, r)); |
michael@0 | 46 | } else { |
michael@0 | 47 | for (i = 0; i < 12; i++) { |
michael@0 | 48 | s[0][i] = MP_DIGIT(a, i); |
michael@0 | 49 | } |
michael@0 | 50 | s[1][0] = 0; |
michael@0 | 51 | s[1][1] = 0; |
michael@0 | 52 | s[1][2] = 0; |
michael@0 | 53 | s[1][3] = 0; |
michael@0 | 54 | s[1][4] = MP_DIGIT(a, 21); |
michael@0 | 55 | s[1][5] = MP_DIGIT(a, 22); |
michael@0 | 56 | s[1][6] = MP_DIGIT(a, 23); |
michael@0 | 57 | s[1][7] = 0; |
michael@0 | 58 | s[1][8] = 0; |
michael@0 | 59 | s[1][9] = 0; |
michael@0 | 60 | s[1][10] = 0; |
michael@0 | 61 | s[1][11] = 0; |
michael@0 | 62 | for (i = 0; i < 12; i++) { |
michael@0 | 63 | s[2][i] = MP_DIGIT(a, i+12); |
michael@0 | 64 | } |
michael@0 | 65 | s[3][0] = MP_DIGIT(a, 21); |
michael@0 | 66 | s[3][1] = MP_DIGIT(a, 22); |
michael@0 | 67 | s[3][2] = MP_DIGIT(a, 23); |
michael@0 | 68 | for (i = 3; i < 12; i++) { |
michael@0 | 69 | s[3][i] = MP_DIGIT(a, i+9); |
michael@0 | 70 | } |
michael@0 | 71 | s[4][0] = 0; |
michael@0 | 72 | s[4][1] = MP_DIGIT(a, 23); |
michael@0 | 73 | s[4][2] = 0; |
michael@0 | 74 | s[4][3] = MP_DIGIT(a, 20); |
michael@0 | 75 | for (i = 4; i < 12; i++) { |
michael@0 | 76 | s[4][i] = MP_DIGIT(a, i+8); |
michael@0 | 77 | } |
michael@0 | 78 | s[5][0] = 0; |
michael@0 | 79 | s[5][1] = 0; |
michael@0 | 80 | s[5][2] = 0; |
michael@0 | 81 | s[5][3] = 0; |
michael@0 | 82 | s[5][4] = MP_DIGIT(a, 20); |
michael@0 | 83 | s[5][5] = MP_DIGIT(a, 21); |
michael@0 | 84 | s[5][6] = MP_DIGIT(a, 22); |
michael@0 | 85 | s[5][7] = MP_DIGIT(a, 23); |
michael@0 | 86 | s[5][8] = 0; |
michael@0 | 87 | s[5][9] = 0; |
michael@0 | 88 | s[5][10] = 0; |
michael@0 | 89 | s[5][11] = 0; |
michael@0 | 90 | s[6][0] = MP_DIGIT(a, 20); |
michael@0 | 91 | s[6][1] = 0; |
michael@0 | 92 | s[6][2] = 0; |
michael@0 | 93 | s[6][3] = MP_DIGIT(a, 21); |
michael@0 | 94 | s[6][4] = MP_DIGIT(a, 22); |
michael@0 | 95 | s[6][5] = MP_DIGIT(a, 23); |
michael@0 | 96 | s[6][6] = 0; |
michael@0 | 97 | s[6][7] = 0; |
michael@0 | 98 | s[6][8] = 0; |
michael@0 | 99 | s[6][9] = 0; |
michael@0 | 100 | s[6][10] = 0; |
michael@0 | 101 | s[6][11] = 0; |
michael@0 | 102 | s[7][0] = MP_DIGIT(a, 23); |
michael@0 | 103 | for (i = 1; i < 12; i++) { |
michael@0 | 104 | s[7][i] = MP_DIGIT(a, i+11); |
michael@0 | 105 | } |
michael@0 | 106 | s[8][0] = 0; |
michael@0 | 107 | s[8][1] = MP_DIGIT(a, 20); |
michael@0 | 108 | s[8][2] = MP_DIGIT(a, 21); |
michael@0 | 109 | s[8][3] = MP_DIGIT(a, 22); |
michael@0 | 110 | s[8][4] = MP_DIGIT(a, 23); |
michael@0 | 111 | s[8][5] = 0; |
michael@0 | 112 | s[8][6] = 0; |
michael@0 | 113 | s[8][7] = 0; |
michael@0 | 114 | s[8][8] = 0; |
michael@0 | 115 | s[8][9] = 0; |
michael@0 | 116 | s[8][10] = 0; |
michael@0 | 117 | s[8][11] = 0; |
michael@0 | 118 | s[9][0] = 0; |
michael@0 | 119 | s[9][1] = 0; |
michael@0 | 120 | s[9][2] = 0; |
michael@0 | 121 | s[9][3] = MP_DIGIT(a, 23); |
michael@0 | 122 | s[9][4] = MP_DIGIT(a, 23); |
michael@0 | 123 | s[9][5] = 0; |
michael@0 | 124 | s[9][6] = 0; |
michael@0 | 125 | s[9][7] = 0; |
michael@0 | 126 | s[9][8] = 0; |
michael@0 | 127 | s[9][9] = 0; |
michael@0 | 128 | s[9][10] = 0; |
michael@0 | 129 | s[9][11] = 0; |
michael@0 | 130 | |
michael@0 | 131 | MP_CHECKOK(mp_add(&m[0], &m[1], r)); |
michael@0 | 132 | MP_CHECKOK(mp_add(r, &m[1], r)); |
michael@0 | 133 | MP_CHECKOK(mp_add(r, &m[2], r)); |
michael@0 | 134 | MP_CHECKOK(mp_add(r, &m[3], r)); |
michael@0 | 135 | MP_CHECKOK(mp_add(r, &m[4], r)); |
michael@0 | 136 | MP_CHECKOK(mp_add(r, &m[5], r)); |
michael@0 | 137 | MP_CHECKOK(mp_add(r, &m[6], r)); |
michael@0 | 138 | MP_CHECKOK(mp_sub(r, &m[7], r)); |
michael@0 | 139 | MP_CHECKOK(mp_sub(r, &m[8], r)); |
michael@0 | 140 | MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r)); |
michael@0 | 141 | s_mp_clamp(r); |
michael@0 | 142 | } |
michael@0 | 143 | #else |
michael@0 | 144 | /* for polynomials larger than twice the field size or polynomials |
michael@0 | 145 | * not using all words, use regular reduction */ |
michael@0 | 146 | if ((a_bits > 768) || (a_bits <= 736)) { |
michael@0 | 147 | MP_CHECKOK(mp_mod(a, &meth->irr, r)); |
michael@0 | 148 | } else { |
michael@0 | 149 | for (i = 0; i < 6; i++) { |
michael@0 | 150 | s[0][i] = MP_DIGIT(a, i); |
michael@0 | 151 | } |
michael@0 | 152 | s[1][0] = 0; |
michael@0 | 153 | s[1][1] = 0; |
michael@0 | 154 | s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); |
michael@0 | 155 | s[1][3] = MP_DIGIT(a, 11) >> 32; |
michael@0 | 156 | s[1][4] = 0; |
michael@0 | 157 | s[1][5] = 0; |
michael@0 | 158 | for (i = 0; i < 6; i++) { |
michael@0 | 159 | s[2][i] = MP_DIGIT(a, i+6); |
michael@0 | 160 | } |
michael@0 | 161 | s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); |
michael@0 | 162 | s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32); |
michael@0 | 163 | for (i = 2; i < 6; i++) { |
michael@0 | 164 | s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32); |
michael@0 | 165 | } |
michael@0 | 166 | s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32; |
michael@0 | 167 | s[4][1] = MP_DIGIT(a, 10) << 32; |
michael@0 | 168 | for (i = 2; i < 6; i++) { |
michael@0 | 169 | s[4][i] = MP_DIGIT(a, i+4); |
michael@0 | 170 | } |
michael@0 | 171 | s[5][0] = 0; |
michael@0 | 172 | s[5][1] = 0; |
michael@0 | 173 | s[5][2] = MP_DIGIT(a, 10); |
michael@0 | 174 | s[5][3] = MP_DIGIT(a, 11); |
michael@0 | 175 | s[5][4] = 0; |
michael@0 | 176 | s[5][5] = 0; |
michael@0 | 177 | s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32; |
michael@0 | 178 | s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32; |
michael@0 | 179 | s[6][2] = MP_DIGIT(a, 11); |
michael@0 | 180 | s[6][3] = 0; |
michael@0 | 181 | s[6][4] = 0; |
michael@0 | 182 | s[6][5] = 0; |
michael@0 | 183 | s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32); |
michael@0 | 184 | for (i = 1; i < 6; i++) { |
michael@0 | 185 | s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32); |
michael@0 | 186 | } |
michael@0 | 187 | s[8][0] = MP_DIGIT(a, 10) << 32; |
michael@0 | 188 | s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); |
michael@0 | 189 | s[8][2] = MP_DIGIT(a, 11) >> 32; |
michael@0 | 190 | s[8][3] = 0; |
michael@0 | 191 | s[8][4] = 0; |
michael@0 | 192 | s[8][5] = 0; |
michael@0 | 193 | s[9][0] = 0; |
michael@0 | 194 | s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32; |
michael@0 | 195 | s[9][2] = MP_DIGIT(a, 11) >> 32; |
michael@0 | 196 | s[9][3] = 0; |
michael@0 | 197 | s[9][4] = 0; |
michael@0 | 198 | s[9][5] = 0; |
michael@0 | 199 | |
michael@0 | 200 | MP_CHECKOK(mp_add(&m[0], &m[1], r)); |
michael@0 | 201 | MP_CHECKOK(mp_add(r, &m[1], r)); |
michael@0 | 202 | MP_CHECKOK(mp_add(r, &m[2], r)); |
michael@0 | 203 | MP_CHECKOK(mp_add(r, &m[3], r)); |
michael@0 | 204 | MP_CHECKOK(mp_add(r, &m[4], r)); |
michael@0 | 205 | MP_CHECKOK(mp_add(r, &m[5], r)); |
michael@0 | 206 | MP_CHECKOK(mp_add(r, &m[6], r)); |
michael@0 | 207 | MP_CHECKOK(mp_sub(r, &m[7], r)); |
michael@0 | 208 | MP_CHECKOK(mp_sub(r, &m[8], r)); |
michael@0 | 209 | MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r)); |
michael@0 | 210 | s_mp_clamp(r); |
michael@0 | 211 | } |
michael@0 | 212 | #endif |
michael@0 | 213 | |
michael@0 | 214 | CLEANUP: |
michael@0 | 215 | return res; |
michael@0 | 216 | } |
michael@0 | 217 | |
michael@0 | 218 | /* Compute the square of polynomial a, reduce modulo p384. Store the |
michael@0 | 219 | * result in r. r could be a. Uses optimized modular reduction for p384. |
michael@0 | 220 | */ |
michael@0 | 221 | static mp_err |
michael@0 | 222 | ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) |
michael@0 | 223 | { |
michael@0 | 224 | mp_err res = MP_OKAY; |
michael@0 | 225 | |
michael@0 | 226 | MP_CHECKOK(mp_sqr(a, r)); |
michael@0 | 227 | MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth)); |
michael@0 | 228 | CLEANUP: |
michael@0 | 229 | return res; |
michael@0 | 230 | } |
michael@0 | 231 | |
michael@0 | 232 | /* Compute the product of two polynomials a and b, reduce modulo p384. |
michael@0 | 233 | * Store the result in r. r could be a or b; a could be b. Uses |
michael@0 | 234 | * optimized modular reduction for p384. */ |
michael@0 | 235 | static mp_err |
michael@0 | 236 | ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r, |
michael@0 | 237 | const GFMethod *meth) |
michael@0 | 238 | { |
michael@0 | 239 | mp_err res = MP_OKAY; |
michael@0 | 240 | |
michael@0 | 241 | MP_CHECKOK(mp_mul(a, b, r)); |
michael@0 | 242 | MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth)); |
michael@0 | 243 | CLEANUP: |
michael@0 | 244 | return res; |
michael@0 | 245 | } |
michael@0 | 246 | |
michael@0 | 247 | /* Wire in fast field arithmetic and precomputation of base point for |
michael@0 | 248 | * named curves. */ |
michael@0 | 249 | mp_err |
michael@0 | 250 | ec_group_set_gfp384(ECGroup *group, ECCurveName name) |
michael@0 | 251 | { |
michael@0 | 252 | if (name == ECCurve_NIST_P384) { |
michael@0 | 253 | group->meth->field_mod = &ec_GFp_nistp384_mod; |
michael@0 | 254 | group->meth->field_mul = &ec_GFp_nistp384_mul; |
michael@0 | 255 | group->meth->field_sqr = &ec_GFp_nistp384_sqr; |
michael@0 | 256 | } |
michael@0 | 257 | return MP_OKAY; |
michael@0 | 258 | } |