Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
michael@0 | 1 | /* This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 2 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 3 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 4 | |
michael@0 | 5 | /* This file implements moduluar exponentiation using Montgomery's |
michael@0 | 6 | * method for modular reduction. This file implements the method |
michael@0 | 7 | * described as "Improvement 2" in the paper "A Cryptogrpahic Library for |
michael@0 | 8 | * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr. |
michael@0 | 9 | * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90" |
michael@0 | 10 | * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244, |
michael@0 | 11 | * published by Springer Verlag. |
michael@0 | 12 | */ |
michael@0 | 13 | |
michael@0 | 14 | #define MP_USING_CACHE_SAFE_MOD_EXP 1 |
michael@0 | 15 | #include <string.h> |
michael@0 | 16 | #include "mpi-priv.h" |
michael@0 | 17 | #include "mplogic.h" |
michael@0 | 18 | #include "mpprime.h" |
michael@0 | 19 | #ifdef MP_USING_MONT_MULF |
michael@0 | 20 | #include "montmulf.h" |
michael@0 | 21 | #endif |
michael@0 | 22 | #include <stddef.h> /* ptrdiff_t */ |
michael@0 | 23 | |
michael@0 | 24 | /* if MP_CHAR_STORE_SLOW is defined, we */ |
michael@0 | 25 | /* need to know endianness of this platform. */ |
michael@0 | 26 | #ifdef MP_CHAR_STORE_SLOW |
michael@0 | 27 | #if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN) |
michael@0 | 28 | #error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \ |
michael@0 | 29 | " if you define MP_CHAR_STORE_SLOW." |
michael@0 | 30 | #endif |
michael@0 | 31 | #endif |
michael@0 | 32 | |
michael@0 | 33 | #define STATIC |
michael@0 | 34 | |
michael@0 | 35 | #define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */ |
michael@0 | 36 | |
michael@0 | 37 | /*! computes T = REDC(T), 2^b == R |
michael@0 | 38 | \param T < RN |
michael@0 | 39 | */ |
michael@0 | 40 | mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm) |
michael@0 | 41 | { |
michael@0 | 42 | mp_err res; |
michael@0 | 43 | mp_size i; |
michael@0 | 44 | |
michael@0 | 45 | i = (MP_USED(&mmm->N) << 1) + 1; |
michael@0 | 46 | MP_CHECKOK( s_mp_pad(T, i) ); |
michael@0 | 47 | for (i = 0; i < MP_USED(&mmm->N); ++i ) { |
michael@0 | 48 | mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime; |
michael@0 | 49 | /* T += N * m_i * (MP_RADIX ** i); */ |
michael@0 | 50 | MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) ); |
michael@0 | 51 | } |
michael@0 | 52 | s_mp_clamp(T); |
michael@0 | 53 | |
michael@0 | 54 | /* T /= R */ |
michael@0 | 55 | s_mp_rshd( T, MP_USED(&mmm->N) ); |
michael@0 | 56 | |
michael@0 | 57 | if ((res = s_mp_cmp(T, &mmm->N)) >= 0) { |
michael@0 | 58 | /* T = T - N */ |
michael@0 | 59 | MP_CHECKOK( s_mp_sub(T, &mmm->N) ); |
michael@0 | 60 | #ifdef DEBUG |
michael@0 | 61 | if ((res = mp_cmp(T, &mmm->N)) >= 0) { |
michael@0 | 62 | res = MP_UNDEF; |
michael@0 | 63 | goto CLEANUP; |
michael@0 | 64 | } |
michael@0 | 65 | #endif |
michael@0 | 66 | } |
michael@0 | 67 | res = MP_OKAY; |
michael@0 | 68 | CLEANUP: |
michael@0 | 69 | return res; |
michael@0 | 70 | } |
michael@0 | 71 | |
michael@0 | 72 | #if !defined(MP_MONT_USE_MP_MUL) |
michael@0 | 73 | |
michael@0 | 74 | /*! c <- REDC( a * b ) mod N |
michael@0 | 75 | \param a < N i.e. "reduced" |
michael@0 | 76 | \param b < N i.e. "reduced" |
michael@0 | 77 | \param mmm modulus N and n0' of N |
michael@0 | 78 | */ |
michael@0 | 79 | mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, |
michael@0 | 80 | mp_mont_modulus *mmm) |
michael@0 | 81 | { |
michael@0 | 82 | mp_digit *pb; |
michael@0 | 83 | mp_digit m_i; |
michael@0 | 84 | mp_err res; |
michael@0 | 85 | mp_size ib; /* "index b": index of current digit of B */ |
michael@0 | 86 | mp_size useda, usedb; |
michael@0 | 87 | |
michael@0 | 88 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
michael@0 | 89 | |
michael@0 | 90 | if (MP_USED(a) < MP_USED(b)) { |
michael@0 | 91 | const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ |
michael@0 | 92 | b = a; |
michael@0 | 93 | a = xch; |
michael@0 | 94 | } |
michael@0 | 95 | |
michael@0 | 96 | MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; |
michael@0 | 97 | ib = (MP_USED(&mmm->N) << 1) + 1; |
michael@0 | 98 | if((res = s_mp_pad(c, ib)) != MP_OKAY) |
michael@0 | 99 | goto CLEANUP; |
michael@0 | 100 | |
michael@0 | 101 | useda = MP_USED(a); |
michael@0 | 102 | pb = MP_DIGITS(b); |
michael@0 | 103 | s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c)); |
michael@0 | 104 | s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1)); |
michael@0 | 105 | m_i = MP_DIGIT(c, 0) * mmm->n0prime; |
michael@0 | 106 | s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0); |
michael@0 | 107 | |
michael@0 | 108 | /* Outer loop: Digits of b */ |
michael@0 | 109 | usedb = MP_USED(b); |
michael@0 | 110 | for (ib = 1; ib < usedb; ib++) { |
michael@0 | 111 | mp_digit b_i = *pb++; |
michael@0 | 112 | |
michael@0 | 113 | /* Inner product: Digits of a */ |
michael@0 | 114 | if (b_i) |
michael@0 | 115 | s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); |
michael@0 | 116 | m_i = MP_DIGIT(c, ib) * mmm->n0prime; |
michael@0 | 117 | s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib); |
michael@0 | 118 | } |
michael@0 | 119 | if (usedb < MP_USED(&mmm->N)) { |
michael@0 | 120 | for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) { |
michael@0 | 121 | m_i = MP_DIGIT(c, ib) * mmm->n0prime; |
michael@0 | 122 | s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib); |
michael@0 | 123 | } |
michael@0 | 124 | } |
michael@0 | 125 | s_mp_clamp(c); |
michael@0 | 126 | s_mp_rshd( c, MP_USED(&mmm->N) ); /* c /= R */ |
michael@0 | 127 | if (s_mp_cmp(c, &mmm->N) >= 0) { |
michael@0 | 128 | MP_CHECKOK( s_mp_sub(c, &mmm->N) ); |
michael@0 | 129 | } |
michael@0 | 130 | res = MP_OKAY; |
michael@0 | 131 | |
michael@0 | 132 | CLEANUP: |
michael@0 | 133 | return res; |
michael@0 | 134 | } |
michael@0 | 135 | #endif |
michael@0 | 136 | |
michael@0 | 137 | STATIC |
michael@0 | 138 | mp_err s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont) |
michael@0 | 139 | { |
michael@0 | 140 | mp_err res; |
michael@0 | 141 | |
michael@0 | 142 | /* xMont = x * R mod N where N is modulus */ |
michael@0 | 143 | MP_CHECKOK( mp_copy( x, xMont ) ); |
michael@0 | 144 | MP_CHECKOK( s_mp_lshd( xMont, MP_USED(&mmm->N) ) ); /* xMont = x << b */ |
michael@0 | 145 | MP_CHECKOK( mp_div(xMont, &mmm->N, 0, xMont) ); /* mod N */ |
michael@0 | 146 | CLEANUP: |
michael@0 | 147 | return res; |
michael@0 | 148 | } |
michael@0 | 149 | |
michael@0 | 150 | #ifdef MP_USING_MONT_MULF |
michael@0 | 151 | |
michael@0 | 152 | /* the floating point multiply is already cache safe, |
michael@0 | 153 | * don't turn on cache safe unless we specifically |
michael@0 | 154 | * force it */ |
michael@0 | 155 | #ifndef MP_FORCE_CACHE_SAFE |
michael@0 | 156 | #undef MP_USING_CACHE_SAFE_MOD_EXP |
michael@0 | 157 | #endif |
michael@0 | 158 | |
michael@0 | 159 | unsigned int mp_using_mont_mulf = 1; |
michael@0 | 160 | |
michael@0 | 161 | /* computes montgomery square of the integer in mResult */ |
michael@0 | 162 | #define SQR \ |
michael@0 | 163 | conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \ |
michael@0 | 164 | mont_mulf_noconv(mResult, dm1, d16Tmp, \ |
michael@0 | 165 | dTmp, dn, MP_DIGITS(modulus), nLen, dn0) |
michael@0 | 166 | |
michael@0 | 167 | /* computes montgomery product of x and the integer in mResult */ |
michael@0 | 168 | #define MUL(x) \ |
michael@0 | 169 | conv_i32_to_d32(dm1, mResult, nLen); \ |
michael@0 | 170 | mont_mulf_noconv(mResult, dm1, oddPowers[x], \ |
michael@0 | 171 | dTmp, dn, MP_DIGITS(modulus), nLen, dn0) |
michael@0 | 172 | |
michael@0 | 173 | /* Do modular exponentiation using floating point multiply code. */ |
michael@0 | 174 | mp_err mp_exptmod_f(const mp_int * montBase, |
michael@0 | 175 | const mp_int * exponent, |
michael@0 | 176 | const mp_int * modulus, |
michael@0 | 177 | mp_int * result, |
michael@0 | 178 | mp_mont_modulus *mmm, |
michael@0 | 179 | int nLen, |
michael@0 | 180 | mp_size bits_in_exponent, |
michael@0 | 181 | mp_size window_bits, |
michael@0 | 182 | mp_size odd_ints) |
michael@0 | 183 | { |
michael@0 | 184 | mp_digit *mResult; |
michael@0 | 185 | double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp; |
michael@0 | 186 | double dn0; |
michael@0 | 187 | mp_size i; |
michael@0 | 188 | mp_err res; |
michael@0 | 189 | int expOff; |
michael@0 | 190 | int dSize = 0, oddPowSize, dTmpSize; |
michael@0 | 191 | mp_int accum1; |
michael@0 | 192 | double *oddPowers[MAX_ODD_INTS]; |
michael@0 | 193 | |
michael@0 | 194 | /* function for computing n0prime only works if n0 is odd */ |
michael@0 | 195 | |
michael@0 | 196 | MP_DIGITS(&accum1) = 0; |
michael@0 | 197 | |
michael@0 | 198 | for (i = 0; i < MAX_ODD_INTS; ++i) |
michael@0 | 199 | oddPowers[i] = 0; |
michael@0 | 200 | |
michael@0 | 201 | MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) ); |
michael@0 | 202 | |
michael@0 | 203 | mp_set(&accum1, 1); |
michael@0 | 204 | MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) ); |
michael@0 | 205 | MP_CHECKOK( s_mp_pad(&accum1, nLen) ); |
michael@0 | 206 | |
michael@0 | 207 | oddPowSize = 2 * nLen + 1; |
michael@0 | 208 | dTmpSize = 2 * oddPowSize; |
michael@0 | 209 | dSize = sizeof(double) * (nLen * 4 + 1 + |
michael@0 | 210 | ((odd_ints + 1) * oddPowSize) + dTmpSize); |
michael@0 | 211 | dBuf = (double *)malloc(dSize); |
michael@0 | 212 | dm1 = dBuf; /* array of d32 */ |
michael@0 | 213 | dn = dBuf + nLen; /* array of d32 */ |
michael@0 | 214 | dSqr = dn + nLen; /* array of d32 */ |
michael@0 | 215 | d16Tmp = dSqr + nLen; /* array of d16 */ |
michael@0 | 216 | dTmp = d16Tmp + oddPowSize; |
michael@0 | 217 | |
michael@0 | 218 | for (i = 0; i < odd_ints; ++i) { |
michael@0 | 219 | oddPowers[i] = dTmp; |
michael@0 | 220 | dTmp += oddPowSize; |
michael@0 | 221 | } |
michael@0 | 222 | mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */ |
michael@0 | 223 | |
michael@0 | 224 | /* Make dn and dn0 */ |
michael@0 | 225 | conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen); |
michael@0 | 226 | dn0 = (double)(mmm->n0prime & 0xffff); |
michael@0 | 227 | |
michael@0 | 228 | /* Make dSqr */ |
michael@0 | 229 | conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen); |
michael@0 | 230 | mont_mulf_noconv(mResult, dm1, oddPowers[0], |
michael@0 | 231 | dTmp, dn, MP_DIGITS(modulus), nLen, dn0); |
michael@0 | 232 | conv_i32_to_d32(dSqr, mResult, nLen); |
michael@0 | 233 | |
michael@0 | 234 | for (i = 1; i < odd_ints; ++i) { |
michael@0 | 235 | mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1], |
michael@0 | 236 | dTmp, dn, MP_DIGITS(modulus), nLen, dn0); |
michael@0 | 237 | conv_i32_to_d16(oddPowers[i], mResult, nLen); |
michael@0 | 238 | } |
michael@0 | 239 | |
michael@0 | 240 | s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */ |
michael@0 | 241 | |
michael@0 | 242 | for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { |
michael@0 | 243 | mp_size smallExp; |
michael@0 | 244 | MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) ); |
michael@0 | 245 | smallExp = (mp_size)res; |
michael@0 | 246 | |
michael@0 | 247 | if (window_bits == 1) { |
michael@0 | 248 | if (!smallExp) { |
michael@0 | 249 | SQR; |
michael@0 | 250 | } else if (smallExp & 1) { |
michael@0 | 251 | SQR; MUL(0); |
michael@0 | 252 | } else { |
michael@0 | 253 | abort(); |
michael@0 | 254 | } |
michael@0 | 255 | } else if (window_bits == 4) { |
michael@0 | 256 | if (!smallExp) { |
michael@0 | 257 | SQR; SQR; SQR; SQR; |
michael@0 | 258 | } else if (smallExp & 1) { |
michael@0 | 259 | SQR; SQR; SQR; SQR; MUL(smallExp/2); |
michael@0 | 260 | } else if (smallExp & 2) { |
michael@0 | 261 | SQR; SQR; SQR; MUL(smallExp/4); SQR; |
michael@0 | 262 | } else if (smallExp & 4) { |
michael@0 | 263 | SQR; SQR; MUL(smallExp/8); SQR; SQR; |
michael@0 | 264 | } else if (smallExp & 8) { |
michael@0 | 265 | SQR; MUL(smallExp/16); SQR; SQR; SQR; |
michael@0 | 266 | } else { |
michael@0 | 267 | abort(); |
michael@0 | 268 | } |
michael@0 | 269 | } else if (window_bits == 5) { |
michael@0 | 270 | if (!smallExp) { |
michael@0 | 271 | SQR; SQR; SQR; SQR; SQR; |
michael@0 | 272 | } else if (smallExp & 1) { |
michael@0 | 273 | SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2); |
michael@0 | 274 | } else if (smallExp & 2) { |
michael@0 | 275 | SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR; |
michael@0 | 276 | } else if (smallExp & 4) { |
michael@0 | 277 | SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR; |
michael@0 | 278 | } else if (smallExp & 8) { |
michael@0 | 279 | SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR; |
michael@0 | 280 | } else if (smallExp & 0x10) { |
michael@0 | 281 | SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR; |
michael@0 | 282 | } else { |
michael@0 | 283 | abort(); |
michael@0 | 284 | } |
michael@0 | 285 | } else if (window_bits == 6) { |
michael@0 | 286 | if (!smallExp) { |
michael@0 | 287 | SQR; SQR; SQR; SQR; SQR; SQR; |
michael@0 | 288 | } else if (smallExp & 1) { |
michael@0 | 289 | SQR; SQR; SQR; SQR; SQR; SQR; MUL(smallExp/2); |
michael@0 | 290 | } else if (smallExp & 2) { |
michael@0 | 291 | SQR; SQR; SQR; SQR; SQR; MUL(smallExp/4); SQR; |
michael@0 | 292 | } else if (smallExp & 4) { |
michael@0 | 293 | SQR; SQR; SQR; SQR; MUL(smallExp/8); SQR; SQR; |
michael@0 | 294 | } else if (smallExp & 8) { |
michael@0 | 295 | SQR; SQR; SQR; MUL(smallExp/16); SQR; SQR; SQR; |
michael@0 | 296 | } else if (smallExp & 0x10) { |
michael@0 | 297 | SQR; SQR; MUL(smallExp/32); SQR; SQR; SQR; SQR; |
michael@0 | 298 | } else if (smallExp & 0x20) { |
michael@0 | 299 | SQR; MUL(smallExp/64); SQR; SQR; SQR; SQR; SQR; |
michael@0 | 300 | } else { |
michael@0 | 301 | abort(); |
michael@0 | 302 | } |
michael@0 | 303 | } else { |
michael@0 | 304 | abort(); |
michael@0 | 305 | } |
michael@0 | 306 | } |
michael@0 | 307 | |
michael@0 | 308 | s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */ |
michael@0 | 309 | |
michael@0 | 310 | res = s_mp_redc(&accum1, mmm); |
michael@0 | 311 | mp_exch(&accum1, result); |
michael@0 | 312 | |
michael@0 | 313 | CLEANUP: |
michael@0 | 314 | mp_clear(&accum1); |
michael@0 | 315 | if (dBuf) { |
michael@0 | 316 | if (dSize) |
michael@0 | 317 | memset(dBuf, 0, dSize); |
michael@0 | 318 | free(dBuf); |
michael@0 | 319 | } |
michael@0 | 320 | |
michael@0 | 321 | return res; |
michael@0 | 322 | } |
michael@0 | 323 | #undef SQR |
michael@0 | 324 | #undef MUL |
michael@0 | 325 | #endif |
michael@0 | 326 | |
michael@0 | 327 | #define SQR(a,b) \ |
michael@0 | 328 | MP_CHECKOK( mp_sqr(a, b) );\ |
michael@0 | 329 | MP_CHECKOK( s_mp_redc(b, mmm) ) |
michael@0 | 330 | |
michael@0 | 331 | #if defined(MP_MONT_USE_MP_MUL) |
michael@0 | 332 | #define MUL(x,a,b) \ |
michael@0 | 333 | MP_CHECKOK( mp_mul(a, oddPowers + (x), b) ); \ |
michael@0 | 334 | MP_CHECKOK( s_mp_redc(b, mmm) ) |
michael@0 | 335 | #else |
michael@0 | 336 | #define MUL(x,a,b) \ |
michael@0 | 337 | MP_CHECKOK( s_mp_mul_mont(a, oddPowers + (x), b, mmm) ) |
michael@0 | 338 | #endif |
michael@0 | 339 | |
michael@0 | 340 | #define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp |
michael@0 | 341 | |
michael@0 | 342 | /* Do modular exponentiation using integer multiply code. */ |
michael@0 | 343 | mp_err mp_exptmod_i(const mp_int * montBase, |
michael@0 | 344 | const mp_int * exponent, |
michael@0 | 345 | const mp_int * modulus, |
michael@0 | 346 | mp_int * result, |
michael@0 | 347 | mp_mont_modulus *mmm, |
michael@0 | 348 | int nLen, |
michael@0 | 349 | mp_size bits_in_exponent, |
michael@0 | 350 | mp_size window_bits, |
michael@0 | 351 | mp_size odd_ints) |
michael@0 | 352 | { |
michael@0 | 353 | mp_int *pa1, *pa2, *ptmp; |
michael@0 | 354 | mp_size i; |
michael@0 | 355 | mp_err res; |
michael@0 | 356 | int expOff; |
michael@0 | 357 | mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS]; |
michael@0 | 358 | |
michael@0 | 359 | /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */ |
michael@0 | 360 | /* oddPowers[i] = base ** (2*i + 1); */ |
michael@0 | 361 | |
michael@0 | 362 | MP_DIGITS(&accum1) = 0; |
michael@0 | 363 | MP_DIGITS(&accum2) = 0; |
michael@0 | 364 | MP_DIGITS(&power2) = 0; |
michael@0 | 365 | for (i = 0; i < MAX_ODD_INTS; ++i) { |
michael@0 | 366 | MP_DIGITS(oddPowers + i) = 0; |
michael@0 | 367 | } |
michael@0 | 368 | |
michael@0 | 369 | MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) ); |
michael@0 | 370 | MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) ); |
michael@0 | 371 | |
michael@0 | 372 | MP_CHECKOK( mp_init_copy(&oddPowers[0], montBase) ); |
michael@0 | 373 | |
michael@0 | 374 | mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2); |
michael@0 | 375 | MP_CHECKOK( mp_sqr(montBase, &power2) ); /* power2 = montBase ** 2 */ |
michael@0 | 376 | MP_CHECKOK( s_mp_redc(&power2, mmm) ); |
michael@0 | 377 | |
michael@0 | 378 | for (i = 1; i < odd_ints; ++i) { |
michael@0 | 379 | mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2); |
michael@0 | 380 | MP_CHECKOK( mp_mul(oddPowers + (i - 1), &power2, oddPowers + i) ); |
michael@0 | 381 | MP_CHECKOK( s_mp_redc(oddPowers + i, mmm) ); |
michael@0 | 382 | } |
michael@0 | 383 | |
michael@0 | 384 | /* set accumulator to montgomery residue of 1 */ |
michael@0 | 385 | mp_set(&accum1, 1); |
michael@0 | 386 | MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) ); |
michael@0 | 387 | pa1 = &accum1; |
michael@0 | 388 | pa2 = &accum2; |
michael@0 | 389 | |
michael@0 | 390 | for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { |
michael@0 | 391 | mp_size smallExp; |
michael@0 | 392 | MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) ); |
michael@0 | 393 | smallExp = (mp_size)res; |
michael@0 | 394 | |
michael@0 | 395 | if (window_bits == 1) { |
michael@0 | 396 | if (!smallExp) { |
michael@0 | 397 | SQR(pa1,pa2); SWAPPA; |
michael@0 | 398 | } else if (smallExp & 1) { |
michael@0 | 399 | SQR(pa1,pa2); MUL(0,pa2,pa1); |
michael@0 | 400 | } else { |
michael@0 | 401 | abort(); |
michael@0 | 402 | } |
michael@0 | 403 | } else if (window_bits == 4) { |
michael@0 | 404 | if (!smallExp) { |
michael@0 | 405 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 406 | } else if (smallExp & 1) { |
michael@0 | 407 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 408 | MUL(smallExp/2, pa1,pa2); SWAPPA; |
michael@0 | 409 | } else if (smallExp & 2) { |
michael@0 | 410 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); |
michael@0 | 411 | MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA; |
michael@0 | 412 | } else if (smallExp & 4) { |
michael@0 | 413 | SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/8,pa1,pa2); |
michael@0 | 414 | SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA; |
michael@0 | 415 | } else if (smallExp & 8) { |
michael@0 | 416 | SQR(pa1,pa2); MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); |
michael@0 | 417 | SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA; |
michael@0 | 418 | } else { |
michael@0 | 419 | abort(); |
michael@0 | 420 | } |
michael@0 | 421 | } else if (window_bits == 5) { |
michael@0 | 422 | if (!smallExp) { |
michael@0 | 423 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 424 | SQR(pa1,pa2); SWAPPA; |
michael@0 | 425 | } else if (smallExp & 1) { |
michael@0 | 426 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 427 | SQR(pa1,pa2); MUL(smallExp/2,pa2,pa1); |
michael@0 | 428 | } else if (smallExp & 2) { |
michael@0 | 429 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 430 | MUL(smallExp/4,pa1,pa2); SQR(pa2,pa1); |
michael@0 | 431 | } else if (smallExp & 4) { |
michael@0 | 432 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); |
michael@0 | 433 | MUL(smallExp/8,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 434 | } else if (smallExp & 8) { |
michael@0 | 435 | SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/16,pa1,pa2); |
michael@0 | 436 | SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 437 | } else if (smallExp & 0x10) { |
michael@0 | 438 | SQR(pa1,pa2); MUL(smallExp/32,pa2,pa1); SQR(pa1,pa2); |
michael@0 | 439 | SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 440 | } else { |
michael@0 | 441 | abort(); |
michael@0 | 442 | } |
michael@0 | 443 | } else if (window_bits == 6) { |
michael@0 | 444 | if (!smallExp) { |
michael@0 | 445 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 446 | SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 447 | } else if (smallExp & 1) { |
michael@0 | 448 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 449 | SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/2,pa1,pa2); SWAPPA; |
michael@0 | 450 | } else if (smallExp & 2) { |
michael@0 | 451 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 452 | SQR(pa1,pa2); MUL(smallExp/4,pa2,pa1); SQR(pa1,pa2); SWAPPA; |
michael@0 | 453 | } else if (smallExp & 4) { |
michael@0 | 454 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 455 | MUL(smallExp/8,pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA; |
michael@0 | 456 | } else if (smallExp & 8) { |
michael@0 | 457 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); |
michael@0 | 458 | MUL(smallExp/16,pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 459 | SQR(pa1,pa2); SWAPPA; |
michael@0 | 460 | } else if (smallExp & 0x10) { |
michael@0 | 461 | SQR(pa1,pa2); SQR(pa2,pa1); MUL(smallExp/32,pa1,pa2); |
michael@0 | 462 | SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA; |
michael@0 | 463 | } else if (smallExp & 0x20) { |
michael@0 | 464 | SQR(pa1,pa2); MUL(smallExp/64,pa2,pa1); SQR(pa1,pa2); |
michael@0 | 465 | SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SWAPPA; |
michael@0 | 466 | } else { |
michael@0 | 467 | abort(); |
michael@0 | 468 | } |
michael@0 | 469 | } else { |
michael@0 | 470 | abort(); |
michael@0 | 471 | } |
michael@0 | 472 | } |
michael@0 | 473 | |
michael@0 | 474 | res = s_mp_redc(pa1, mmm); |
michael@0 | 475 | mp_exch(pa1, result); |
michael@0 | 476 | |
michael@0 | 477 | CLEANUP: |
michael@0 | 478 | mp_clear(&accum1); |
michael@0 | 479 | mp_clear(&accum2); |
michael@0 | 480 | mp_clear(&power2); |
michael@0 | 481 | for (i = 0; i < odd_ints; ++i) { |
michael@0 | 482 | mp_clear(oddPowers + i); |
michael@0 | 483 | } |
michael@0 | 484 | return res; |
michael@0 | 485 | } |
michael@0 | 486 | #undef SQR |
michael@0 | 487 | #undef MUL |
michael@0 | 488 | |
michael@0 | 489 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
michael@0 | 490 | unsigned int mp_using_cache_safe_exp = 1; |
michael@0 | 491 | #endif |
michael@0 | 492 | |
michael@0 | 493 | mp_err mp_set_safe_modexp(int value) |
michael@0 | 494 | { |
michael@0 | 495 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
michael@0 | 496 | mp_using_cache_safe_exp = value; |
michael@0 | 497 | return MP_OKAY; |
michael@0 | 498 | #else |
michael@0 | 499 | if (value == 0) { |
michael@0 | 500 | return MP_OKAY; |
michael@0 | 501 | } |
michael@0 | 502 | return MP_BADARG; |
michael@0 | 503 | #endif |
michael@0 | 504 | } |
michael@0 | 505 | |
michael@0 | 506 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
michael@0 | 507 | #define WEAVE_WORD_SIZE 4 |
michael@0 | 508 | |
michael@0 | 509 | #ifndef MP_CHAR_STORE_SLOW |
michael@0 | 510 | /* |
michael@0 | 511 | * mpi_to_weave takes an array of bignums, a matrix in which each bignum |
michael@0 | 512 | * occupies all the columns of a row, and transposes it into a matrix in |
michael@0 | 513 | * which each bignum occupies a column of every row. The first row of the |
michael@0 | 514 | * input matrix becomes the first column of the output matrix. The n'th |
michael@0 | 515 | * row of input becomes the n'th column of output. The input data is said |
michael@0 | 516 | * to be "interleaved" or "woven" into the output matrix. |
michael@0 | 517 | * |
michael@0 | 518 | * The array of bignums is left in this woven form. Each time a single |
michael@0 | 519 | * bignum value is needed, it is recreated by fetching the n'th column, |
michael@0 | 520 | * forming a single row which is the new bignum. |
michael@0 | 521 | * |
michael@0 | 522 | * The purpose of this interleaving is make it impossible to determine which |
michael@0 | 523 | * of the bignums is being used in any one operation by examining the pattern |
michael@0 | 524 | * of cache misses. |
michael@0 | 525 | * |
michael@0 | 526 | * The weaving function does not transpose the entire input matrix in one call. |
michael@0 | 527 | * It transposes 4 rows of mp_ints into their respective columns of output. |
michael@0 | 528 | * |
michael@0 | 529 | * There are two different implementations of the weaving and unweaving code |
michael@0 | 530 | * in this file. One uses byte loads and stores. The second uses loads and |
michael@0 | 531 | * stores of mp_weave_word size values. The weaved forms of these two |
michael@0 | 532 | * implementations differ. Consequently, each one has its own explanation. |
michael@0 | 533 | * |
michael@0 | 534 | * Here is the explanation for the byte-at-a-time implementation. |
michael@0 | 535 | * |
michael@0 | 536 | * This implementation treats each mp_int bignum as an array of bytes, |
michael@0 | 537 | * rather than as an array of mp_digits. It stores those bytes as a |
michael@0 | 538 | * column of bytes in the output matrix. It doesn't care if the machine |
michael@0 | 539 | * uses big-endian or little-endian byte ordering within mp_digits. |
michael@0 | 540 | * The first byte of the mp_digit array becomes the first byte in the output |
michael@0 | 541 | * column, regardless of whether that byte is the MSB or LSB of the mp_digit. |
michael@0 | 542 | * |
michael@0 | 543 | * "bignums" is an array of mp_ints. |
michael@0 | 544 | * It points to four rows, four mp_ints, a subset of a larger array of mp_ints. |
michael@0 | 545 | * |
michael@0 | 546 | * "weaved" is the weaved output matrix. |
michael@0 | 547 | * The first byte of bignums[0] is stored in weaved[0]. |
michael@0 | 548 | * |
michael@0 | 549 | * "nBignums" is the total number of bignums in the array of which "bignums" |
michael@0 | 550 | * is a part. |
michael@0 | 551 | * |
michael@0 | 552 | * "nDigits" is the size in mp_digits of each mp_int in the "bignums" array. |
michael@0 | 553 | * mp_ints that use less than nDigits digits are logically padded with zeros |
michael@0 | 554 | * while being stored in the weaved array. |
michael@0 | 555 | */ |
michael@0 | 556 | mp_err mpi_to_weave(const mp_int *bignums, |
michael@0 | 557 | unsigned char *weaved, |
michael@0 | 558 | mp_size nDigits, /* in each mp_int of input */ |
michael@0 | 559 | mp_size nBignums) /* in the entire source array */ |
michael@0 | 560 | { |
michael@0 | 561 | mp_size i; |
michael@0 | 562 | unsigned char * endDest = weaved + (nDigits * nBignums * sizeof(mp_digit)); |
michael@0 | 563 | |
michael@0 | 564 | for (i=0; i < WEAVE_WORD_SIZE; i++) { |
michael@0 | 565 | mp_size used = MP_USED(&bignums[i]); |
michael@0 | 566 | unsigned char *pSrc = (unsigned char *)MP_DIGITS(&bignums[i]); |
michael@0 | 567 | unsigned char *endSrc = pSrc + (used * sizeof(mp_digit)); |
michael@0 | 568 | unsigned char *pDest = weaved + i; |
michael@0 | 569 | |
michael@0 | 570 | ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG); |
michael@0 | 571 | ARGCHK(used <= nDigits, MP_BADARG); |
michael@0 | 572 | |
michael@0 | 573 | for (; pSrc < endSrc; pSrc++) { |
michael@0 | 574 | *pDest = *pSrc; |
michael@0 | 575 | pDest += nBignums; |
michael@0 | 576 | } |
michael@0 | 577 | while (pDest < endDest) { |
michael@0 | 578 | *pDest = 0; |
michael@0 | 579 | pDest += nBignums; |
michael@0 | 580 | } |
michael@0 | 581 | } |
michael@0 | 582 | |
michael@0 | 583 | return MP_OKAY; |
michael@0 | 584 | } |
michael@0 | 585 | |
michael@0 | 586 | /* Reverse the operation above for one mp_int. |
michael@0 | 587 | * Reconstruct one mp_int from its column in the weaved array. |
michael@0 | 588 | * "pSrc" points to the offset into the weave array of the bignum we |
michael@0 | 589 | * are going to reconstruct. |
michael@0 | 590 | */ |
michael@0 | 591 | mp_err weave_to_mpi(mp_int *a, /* output, result */ |
michael@0 | 592 | const unsigned char *pSrc, /* input, byte matrix */ |
michael@0 | 593 | mp_size nDigits, /* per mp_int output */ |
michael@0 | 594 | mp_size nBignums) /* bignums in weaved matrix */ |
michael@0 | 595 | { |
michael@0 | 596 | unsigned char *pDest = (unsigned char *)MP_DIGITS(a); |
michael@0 | 597 | unsigned char *endDest = pDest + (nDigits * sizeof(mp_digit)); |
michael@0 | 598 | |
michael@0 | 599 | MP_SIGN(a) = MP_ZPOS; |
michael@0 | 600 | MP_USED(a) = nDigits; |
michael@0 | 601 | |
michael@0 | 602 | for (; pDest < endDest; pSrc += nBignums, pDest++) { |
michael@0 | 603 | *pDest = *pSrc; |
michael@0 | 604 | } |
michael@0 | 605 | s_mp_clamp(a); |
michael@0 | 606 | return MP_OKAY; |
michael@0 | 607 | } |
michael@0 | 608 | |
michael@0 | 609 | #else |
michael@0 | 610 | |
michael@0 | 611 | /* Need a primitive that we know is 32 bits long... */ |
michael@0 | 612 | /* this is true on all modern processors we know of today*/ |
michael@0 | 613 | typedef unsigned int mp_weave_word; |
michael@0 | 614 | |
michael@0 | 615 | /* |
michael@0 | 616 | * on some platforms character stores into memory is very expensive since they |
michael@0 | 617 | * generate a read/modify/write operation on the bus. On those platforms |
michael@0 | 618 | * we need to do integer writes to the bus. Because of some unrolled code, |
michael@0 | 619 | * in this current code the size of mp_weave_word must be four. The code that |
michael@0 | 620 | * makes this assumption explicity is called out. (on some platforms a write |
michael@0 | 621 | * of 4 bytes still requires a single read-modify-write operation. |
michael@0 | 622 | * |
michael@0 | 623 | * This function is takes the identical parameters as the function above, |
michael@0 | 624 | * however it lays out the final array differently. Where the previous function |
michael@0 | 625 | * treats the mpi_int as an byte array, this function treats it as an array of |
michael@0 | 626 | * mp_digits where each digit is stored in big endian order. |
michael@0 | 627 | * |
michael@0 | 628 | * since we need to interleave on a byte by byte basis, we need to collect |
michael@0 | 629 | * several mpi structures together into a single PRUint32 before we write. We |
michael@0 | 630 | * also need to make sure the PRUint32 is arranged so that the first value of |
michael@0 | 631 | * the first array winds up in b[0]. This means construction of that PRUint32 |
michael@0 | 632 | * is endian specific (even though the layout of the mp_digits in the array |
michael@0 | 633 | * is always big endian). |
michael@0 | 634 | * |
michael@0 | 635 | * The final data is stored as follows : |
michael@0 | 636 | * |
michael@0 | 637 | * Our same logical array p array, m is sizeof(mp_digit), |
michael@0 | 638 | * N is still count and n is now b_size. If we define p[i].digit[j]0 as the |
michael@0 | 639 | * most significant byte of the word p[i].digit[j], p[i].digit[j]1 as |
michael@0 | 640 | * the next most significant byte of p[i].digit[j], ... and p[i].digit[j]m-1 |
michael@0 | 641 | * is the least significant byte. |
michael@0 | 642 | * Our array would look like: |
michael@0 | 643 | * p[0].digit[0]0 p[1].digit[0]0 ... p[N-2].digit[0]0 p[N-1].digit[0]0 |
michael@0 | 644 | * p[0].digit[0]1 p[1].digit[0]1 ... p[N-2].digit[0]1 p[N-1].digit[0]1 |
michael@0 | 645 | * . . |
michael@0 | 646 | * p[0].digit[0]m-1 p[1].digit[0]m-1 ... p[N-2].digit[0]m-1 p[N-1].digit[0]m-1 |
michael@0 | 647 | * p[0].digit[1]0 p[1].digit[1]0 ... p[N-2].digit[1]0 p[N-1].digit[1]0 |
michael@0 | 648 | * . . |
michael@0 | 649 | * . . |
michael@0 | 650 | * p[0].digit[n-1]m-2 p[1].digit[n-1]m-2 ... p[N-2].digit[n-1]m-2 p[N-1].digit[n-1]m-2 |
michael@0 | 651 | * p[0].digit[n-1]m-1 p[1].digit[n-1]m-1 ... p[N-2].digit[n-1]m-1 p[N-1].digit[n-1]m-1 |
michael@0 | 652 | * |
michael@0 | 653 | */ |
michael@0 | 654 | mp_err mpi_to_weave(const mp_int *a, unsigned char *b, |
michael@0 | 655 | mp_size b_size, mp_size count) |
michael@0 | 656 | { |
michael@0 | 657 | mp_size i; |
michael@0 | 658 | mp_digit *digitsa0; |
michael@0 | 659 | mp_digit *digitsa1; |
michael@0 | 660 | mp_digit *digitsa2; |
michael@0 | 661 | mp_digit *digitsa3; |
michael@0 | 662 | mp_size useda0; |
michael@0 | 663 | mp_size useda1; |
michael@0 | 664 | mp_size useda2; |
michael@0 | 665 | mp_size useda3; |
michael@0 | 666 | mp_weave_word *weaved = (mp_weave_word *)b; |
michael@0 | 667 | |
michael@0 | 668 | count = count/sizeof(mp_weave_word); |
michael@0 | 669 | |
michael@0 | 670 | /* this code pretty much depends on this ! */ |
michael@0 | 671 | #if MP_ARGCHK == 2 |
michael@0 | 672 | assert(WEAVE_WORD_SIZE == 4); |
michael@0 | 673 | assert(sizeof(mp_weave_word) == 4); |
michael@0 | 674 | #endif |
michael@0 | 675 | |
michael@0 | 676 | digitsa0 = MP_DIGITS(&a[0]); |
michael@0 | 677 | digitsa1 = MP_DIGITS(&a[1]); |
michael@0 | 678 | digitsa2 = MP_DIGITS(&a[2]); |
michael@0 | 679 | digitsa3 = MP_DIGITS(&a[3]); |
michael@0 | 680 | useda0 = MP_USED(&a[0]); |
michael@0 | 681 | useda1 = MP_USED(&a[1]); |
michael@0 | 682 | useda2 = MP_USED(&a[2]); |
michael@0 | 683 | useda3 = MP_USED(&a[3]); |
michael@0 | 684 | |
michael@0 | 685 | ARGCHK(MP_SIGN(&a[0]) == MP_ZPOS, MP_BADARG); |
michael@0 | 686 | ARGCHK(MP_SIGN(&a[1]) == MP_ZPOS, MP_BADARG); |
michael@0 | 687 | ARGCHK(MP_SIGN(&a[2]) == MP_ZPOS, MP_BADARG); |
michael@0 | 688 | ARGCHK(MP_SIGN(&a[3]) == MP_ZPOS, MP_BADARG); |
michael@0 | 689 | ARGCHK(useda0 <= b_size, MP_BADARG); |
michael@0 | 690 | ARGCHK(useda1 <= b_size, MP_BADARG); |
michael@0 | 691 | ARGCHK(useda2 <= b_size, MP_BADARG); |
michael@0 | 692 | ARGCHK(useda3 <= b_size, MP_BADARG); |
michael@0 | 693 | |
michael@0 | 694 | #define SAFE_FETCH(digit, used, word) ((word) < (used) ? (digit[word]) : 0) |
michael@0 | 695 | |
michael@0 | 696 | for (i=0; i < b_size; i++) { |
michael@0 | 697 | mp_digit d0 = SAFE_FETCH(digitsa0,useda0,i); |
michael@0 | 698 | mp_digit d1 = SAFE_FETCH(digitsa1,useda1,i); |
michael@0 | 699 | mp_digit d2 = SAFE_FETCH(digitsa2,useda2,i); |
michael@0 | 700 | mp_digit d3 = SAFE_FETCH(digitsa3,useda3,i); |
michael@0 | 701 | register mp_weave_word acc; |
michael@0 | 702 | |
michael@0 | 703 | /* |
michael@0 | 704 | * ONE_STEP takes the MSB of each of our current digits and places that |
michael@0 | 705 | * byte in the appropriate position for writing to the weaved array. |
michael@0 | 706 | * On little endian: |
michael@0 | 707 | * b3 b2 b1 b0 |
michael@0 | 708 | * On big endian: |
michael@0 | 709 | * b0 b1 b2 b3 |
michael@0 | 710 | * When the data is written it would always wind up: |
michael@0 | 711 | * b[0] = b0 |
michael@0 | 712 | * b[1] = b1 |
michael@0 | 713 | * b[2] = b2 |
michael@0 | 714 | * b[3] = b3 |
michael@0 | 715 | * |
michael@0 | 716 | * Once we've written the MSB, we shift the whole digit up left one |
michael@0 | 717 | * byte, putting the Next Most Significant Byte in the MSB position, |
michael@0 | 718 | * so we we repeat the next one step that byte will be written. |
michael@0 | 719 | * NOTE: This code assumes sizeof(mp_weave_word) and MP_WEAVE_WORD_SIZE |
michael@0 | 720 | * is 4. |
michael@0 | 721 | */ |
michael@0 | 722 | #ifdef MP_IS_LITTLE_ENDIAN |
michael@0 | 723 | #define MPI_WEAVE_ONE_STEP \ |
michael@0 | 724 | acc = (d0 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d0 <<= 8; /*b0*/ \ |
michael@0 | 725 | acc |= (d1 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d1 <<= 8; /*b1*/ \ |
michael@0 | 726 | acc |= (d2 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d2 <<= 8; /*b2*/ \ |
michael@0 | 727 | acc |= (d3 >> (MP_DIGIT_BIT-32)) & 0xff000000; d3 <<= 8; /*b3*/ \ |
michael@0 | 728 | *weaved = acc; weaved += count; |
michael@0 | 729 | #else |
michael@0 | 730 | #define MPI_WEAVE_ONE_STEP \ |
michael@0 | 731 | acc = (d0 >> (MP_DIGIT_BIT-32)) & 0xff000000; d0 <<= 8; /*b0*/ \ |
michael@0 | 732 | acc |= (d1 >> (MP_DIGIT_BIT-24)) & 0x00ff0000; d1 <<= 8; /*b1*/ \ |
michael@0 | 733 | acc |= (d2 >> (MP_DIGIT_BIT-16)) & 0x0000ff00; d2 <<= 8; /*b2*/ \ |
michael@0 | 734 | acc |= (d3 >> (MP_DIGIT_BIT-8)) & 0x000000ff; d3 <<= 8; /*b3*/ \ |
michael@0 | 735 | *weaved = acc; weaved += count; |
michael@0 | 736 | #endif |
michael@0 | 737 | switch (sizeof(mp_digit)) { |
michael@0 | 738 | case 32: |
michael@0 | 739 | MPI_WEAVE_ONE_STEP |
michael@0 | 740 | MPI_WEAVE_ONE_STEP |
michael@0 | 741 | MPI_WEAVE_ONE_STEP |
michael@0 | 742 | MPI_WEAVE_ONE_STEP |
michael@0 | 743 | MPI_WEAVE_ONE_STEP |
michael@0 | 744 | MPI_WEAVE_ONE_STEP |
michael@0 | 745 | MPI_WEAVE_ONE_STEP |
michael@0 | 746 | MPI_WEAVE_ONE_STEP |
michael@0 | 747 | MPI_WEAVE_ONE_STEP |
michael@0 | 748 | MPI_WEAVE_ONE_STEP |
michael@0 | 749 | MPI_WEAVE_ONE_STEP |
michael@0 | 750 | MPI_WEAVE_ONE_STEP |
michael@0 | 751 | MPI_WEAVE_ONE_STEP |
michael@0 | 752 | MPI_WEAVE_ONE_STEP |
michael@0 | 753 | MPI_WEAVE_ONE_STEP |
michael@0 | 754 | MPI_WEAVE_ONE_STEP |
michael@0 | 755 | case 16: |
michael@0 | 756 | MPI_WEAVE_ONE_STEP |
michael@0 | 757 | MPI_WEAVE_ONE_STEP |
michael@0 | 758 | MPI_WEAVE_ONE_STEP |
michael@0 | 759 | MPI_WEAVE_ONE_STEP |
michael@0 | 760 | MPI_WEAVE_ONE_STEP |
michael@0 | 761 | MPI_WEAVE_ONE_STEP |
michael@0 | 762 | MPI_WEAVE_ONE_STEP |
michael@0 | 763 | MPI_WEAVE_ONE_STEP |
michael@0 | 764 | case 8: |
michael@0 | 765 | MPI_WEAVE_ONE_STEP |
michael@0 | 766 | MPI_WEAVE_ONE_STEP |
michael@0 | 767 | MPI_WEAVE_ONE_STEP |
michael@0 | 768 | MPI_WEAVE_ONE_STEP |
michael@0 | 769 | case 4: |
michael@0 | 770 | MPI_WEAVE_ONE_STEP |
michael@0 | 771 | MPI_WEAVE_ONE_STEP |
michael@0 | 772 | case 2: |
michael@0 | 773 | MPI_WEAVE_ONE_STEP |
michael@0 | 774 | case 1: |
michael@0 | 775 | MPI_WEAVE_ONE_STEP |
michael@0 | 776 | break; |
michael@0 | 777 | } |
michael@0 | 778 | } |
michael@0 | 779 | |
michael@0 | 780 | return MP_OKAY; |
michael@0 | 781 | } |
michael@0 | 782 | |
michael@0 | 783 | /* reverse the operation above for one entry. |
michael@0 | 784 | * b points to the offset into the weave array of the power we are |
michael@0 | 785 | * calculating */ |
michael@0 | 786 | mp_err weave_to_mpi(mp_int *a, const unsigned char *b, |
michael@0 | 787 | mp_size b_size, mp_size count) |
michael@0 | 788 | { |
michael@0 | 789 | mp_digit *pb = MP_DIGITS(a); |
michael@0 | 790 | mp_digit *end = &pb[b_size]; |
michael@0 | 791 | |
michael@0 | 792 | MP_SIGN(a) = MP_ZPOS; |
michael@0 | 793 | MP_USED(a) = b_size; |
michael@0 | 794 | |
michael@0 | 795 | for (; pb < end; pb++) { |
michael@0 | 796 | register mp_digit digit; |
michael@0 | 797 | |
michael@0 | 798 | digit = *b << 8; b += count; |
michael@0 | 799 | #define MPI_UNWEAVE_ONE_STEP digit |= *b; b += count; digit = digit << 8; |
michael@0 | 800 | switch (sizeof(mp_digit)) { |
michael@0 | 801 | case 32: |
michael@0 | 802 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 803 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 804 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 805 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 806 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 807 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 808 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 809 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 810 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 811 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 812 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 813 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 814 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 815 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 816 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 817 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 818 | case 16: |
michael@0 | 819 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 820 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 821 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 822 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 823 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 824 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 825 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 826 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 827 | case 8: |
michael@0 | 828 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 829 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 830 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 831 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 832 | case 4: |
michael@0 | 833 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 834 | MPI_UNWEAVE_ONE_STEP |
michael@0 | 835 | case 2: |
michael@0 | 836 | break; |
michael@0 | 837 | } |
michael@0 | 838 | digit |= *b; b += count; |
michael@0 | 839 | |
michael@0 | 840 | *pb = digit; |
michael@0 | 841 | } |
michael@0 | 842 | s_mp_clamp(a); |
michael@0 | 843 | return MP_OKAY; |
michael@0 | 844 | } |
michael@0 | 845 | #endif |
michael@0 | 846 | |
michael@0 | 847 | |
michael@0 | 848 | #define SQR(a,b) \ |
michael@0 | 849 | MP_CHECKOK( mp_sqr(a, b) );\ |
michael@0 | 850 | MP_CHECKOK( s_mp_redc(b, mmm) ) |
michael@0 | 851 | |
michael@0 | 852 | #if defined(MP_MONT_USE_MP_MUL) |
michael@0 | 853 | #define MUL_NOWEAVE(x,a,b) \ |
michael@0 | 854 | MP_CHECKOK( mp_mul(a, x, b) ); \ |
michael@0 | 855 | MP_CHECKOK( s_mp_redc(b, mmm) ) |
michael@0 | 856 | #else |
michael@0 | 857 | #define MUL_NOWEAVE(x,a,b) \ |
michael@0 | 858 | MP_CHECKOK( s_mp_mul_mont(a, x, b, mmm) ) |
michael@0 | 859 | #endif |
michael@0 | 860 | |
michael@0 | 861 | #define MUL(x,a,b) \ |
michael@0 | 862 | MP_CHECKOK( weave_to_mpi(&tmp, powers + (x), nLen, num_powers) ); \ |
michael@0 | 863 | MUL_NOWEAVE(&tmp,a,b) |
michael@0 | 864 | |
michael@0 | 865 | #define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp |
michael@0 | 866 | #define MP_ALIGN(x,y) ((((ptrdiff_t)(x))+((y)-1))&(((ptrdiff_t)0)-(y))) |
michael@0 | 867 | |
michael@0 | 868 | /* Do modular exponentiation using integer multiply code. */ |
michael@0 | 869 | mp_err mp_exptmod_safe_i(const mp_int * montBase, |
michael@0 | 870 | const mp_int * exponent, |
michael@0 | 871 | const mp_int * modulus, |
michael@0 | 872 | mp_int * result, |
michael@0 | 873 | mp_mont_modulus *mmm, |
michael@0 | 874 | int nLen, |
michael@0 | 875 | mp_size bits_in_exponent, |
michael@0 | 876 | mp_size window_bits, |
michael@0 | 877 | mp_size num_powers) |
michael@0 | 878 | { |
michael@0 | 879 | mp_int *pa1, *pa2, *ptmp; |
michael@0 | 880 | mp_size i; |
michael@0 | 881 | mp_size first_window; |
michael@0 | 882 | mp_err res; |
michael@0 | 883 | int expOff; |
michael@0 | 884 | mp_int accum1, accum2, accum[WEAVE_WORD_SIZE]; |
michael@0 | 885 | mp_int tmp; |
michael@0 | 886 | unsigned char *powersArray; |
michael@0 | 887 | unsigned char *powers; |
michael@0 | 888 | |
michael@0 | 889 | MP_DIGITS(&accum1) = 0; |
michael@0 | 890 | MP_DIGITS(&accum2) = 0; |
michael@0 | 891 | MP_DIGITS(&accum[0]) = 0; |
michael@0 | 892 | MP_DIGITS(&accum[1]) = 0; |
michael@0 | 893 | MP_DIGITS(&accum[2]) = 0; |
michael@0 | 894 | MP_DIGITS(&accum[3]) = 0; |
michael@0 | 895 | MP_DIGITS(&tmp) = 0; |
michael@0 | 896 | |
michael@0 | 897 | powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1)); |
michael@0 | 898 | if (powersArray == NULL) { |
michael@0 | 899 | res = MP_MEM; |
michael@0 | 900 | goto CLEANUP; |
michael@0 | 901 | } |
michael@0 | 902 | |
michael@0 | 903 | /* powers[i] = base ** (i); */ |
michael@0 | 904 | powers = (unsigned char *)MP_ALIGN(powersArray,num_powers); |
michael@0 | 905 | |
michael@0 | 906 | /* grab the first window value. This allows us to preload accumulator1 |
michael@0 | 907 | * and save a conversion, some squares and a multiple*/ |
michael@0 | 908 | MP_CHECKOK( mpl_get_bits(exponent, |
michael@0 | 909 | bits_in_exponent-window_bits, window_bits) ); |
michael@0 | 910 | first_window = (mp_size)res; |
michael@0 | 911 | |
michael@0 | 912 | MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) ); |
michael@0 | 913 | MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) ); |
michael@0 | 914 | MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) ); |
michael@0 | 915 | |
michael@0 | 916 | /* build the first WEAVE_WORD powers inline */ |
michael@0 | 917 | /* if WEAVE_WORD_SIZE is not 4, this code will have to change */ |
michael@0 | 918 | if (num_powers > 2) { |
michael@0 | 919 | MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) ); |
michael@0 | 920 | MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) ); |
michael@0 | 921 | MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) ); |
michael@0 | 922 | MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) ); |
michael@0 | 923 | mp_set(&accum[0], 1); |
michael@0 | 924 | MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) ); |
michael@0 | 925 | MP_CHECKOK( mp_copy(montBase, &accum[1]) ); |
michael@0 | 926 | SQR(montBase, &accum[2]); |
michael@0 | 927 | MUL_NOWEAVE(montBase, &accum[2], &accum[3]); |
michael@0 | 928 | MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) ); |
michael@0 | 929 | if (first_window < 4) { |
michael@0 | 930 | MP_CHECKOK( mp_copy(&accum[first_window], &accum1) ); |
michael@0 | 931 | first_window = num_powers; |
michael@0 | 932 | } |
michael@0 | 933 | } else { |
michael@0 | 934 | if (first_window == 0) { |
michael@0 | 935 | mp_set(&accum1, 1); |
michael@0 | 936 | MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) ); |
michael@0 | 937 | } else { |
michael@0 | 938 | /* assert first_window == 1? */ |
michael@0 | 939 | MP_CHECKOK( mp_copy(montBase, &accum1) ); |
michael@0 | 940 | } |
michael@0 | 941 | } |
michael@0 | 942 | |
michael@0 | 943 | /* |
michael@0 | 944 | * calculate all the powers in the powers array. |
michael@0 | 945 | * this adds 2**(k-1)-2 square operations over just calculating the |
michael@0 | 946 | * odd powers where k is the window size in the two other mp_modexpt |
michael@0 | 947 | * implementations in this file. We will get some of that |
michael@0 | 948 | * back by not needing the first 'k' squares and one multiply for the |
michael@0 | 949 | * first window */ |
michael@0 | 950 | for (i = WEAVE_WORD_SIZE; i < num_powers; i++) { |
michael@0 | 951 | int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */ |
michael@0 | 952 | if ( i & 1 ) { |
michael@0 | 953 | MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]); |
michael@0 | 954 | /* we've filled the array do our 'per array' processing */ |
michael@0 | 955 | if (acc_index == (WEAVE_WORD_SIZE-1)) { |
michael@0 | 956 | MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1), |
michael@0 | 957 | nLen, num_powers) ); |
michael@0 | 958 | |
michael@0 | 959 | if (first_window <= i) { |
michael@0 | 960 | MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)], |
michael@0 | 961 | &accum1) ); |
michael@0 | 962 | first_window = num_powers; |
michael@0 | 963 | } |
michael@0 | 964 | } |
michael@0 | 965 | } else { |
michael@0 | 966 | /* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source |
michael@0 | 967 | * and target are the same so we need to copy.. After that, the |
michael@0 | 968 | * value is overwritten, so we need to fetch it from the stored |
michael@0 | 969 | * weave array */ |
michael@0 | 970 | if (i > 2* WEAVE_WORD_SIZE) { |
michael@0 | 971 | MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers)); |
michael@0 | 972 | SQR(&accum2, &accum[acc_index]); |
michael@0 | 973 | } else { |
michael@0 | 974 | int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1); |
michael@0 | 975 | if (half_power_index == acc_index) { |
michael@0 | 976 | /* copy is cheaper than weave_to_mpi */ |
michael@0 | 977 | MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2)); |
michael@0 | 978 | SQR(&accum2,&accum[acc_index]); |
michael@0 | 979 | } else { |
michael@0 | 980 | SQR(&accum[half_power_index],&accum[acc_index]); |
michael@0 | 981 | } |
michael@0 | 982 | } |
michael@0 | 983 | } |
michael@0 | 984 | } |
michael@0 | 985 | /* if the accum1 isn't set, Then there is something wrong with our logic |
michael@0 | 986 | * above and is an internal programming error. |
michael@0 | 987 | */ |
michael@0 | 988 | #if MP_ARGCHK == 2 |
michael@0 | 989 | assert(MP_USED(&accum1) != 0); |
michael@0 | 990 | #endif |
michael@0 | 991 | |
michael@0 | 992 | /* set accumulator to montgomery residue of 1 */ |
michael@0 | 993 | pa1 = &accum1; |
michael@0 | 994 | pa2 = &accum2; |
michael@0 | 995 | |
michael@0 | 996 | for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_bits) { |
michael@0 | 997 | mp_size smallExp; |
michael@0 | 998 | MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) ); |
michael@0 | 999 | smallExp = (mp_size)res; |
michael@0 | 1000 | |
michael@0 | 1001 | /* handle unroll the loops */ |
michael@0 | 1002 | switch (window_bits) { |
michael@0 | 1003 | case 1: |
michael@0 | 1004 | if (!smallExp) { |
michael@0 | 1005 | SQR(pa1,pa2); SWAPPA; |
michael@0 | 1006 | } else if (smallExp & 1) { |
michael@0 | 1007 | SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1); |
michael@0 | 1008 | } else { |
michael@0 | 1009 | abort(); |
michael@0 | 1010 | } |
michael@0 | 1011 | break; |
michael@0 | 1012 | case 6: |
michael@0 | 1013 | SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 1014 | /* fall through */ |
michael@0 | 1015 | case 4: |
michael@0 | 1016 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 1017 | MUL(smallExp, pa1,pa2); SWAPPA; |
michael@0 | 1018 | break; |
michael@0 | 1019 | case 5: |
michael@0 | 1020 | SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1); |
michael@0 | 1021 | SQR(pa1,pa2); MUL(smallExp,pa2,pa1); |
michael@0 | 1022 | break; |
michael@0 | 1023 | default: |
michael@0 | 1024 | abort(); /* could do a loop? */ |
michael@0 | 1025 | } |
michael@0 | 1026 | } |
michael@0 | 1027 | |
michael@0 | 1028 | res = s_mp_redc(pa1, mmm); |
michael@0 | 1029 | mp_exch(pa1, result); |
michael@0 | 1030 | |
michael@0 | 1031 | CLEANUP: |
michael@0 | 1032 | mp_clear(&accum1); |
michael@0 | 1033 | mp_clear(&accum2); |
michael@0 | 1034 | mp_clear(&accum[0]); |
michael@0 | 1035 | mp_clear(&accum[1]); |
michael@0 | 1036 | mp_clear(&accum[2]); |
michael@0 | 1037 | mp_clear(&accum[3]); |
michael@0 | 1038 | mp_clear(&tmp); |
michael@0 | 1039 | /* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */ |
michael@0 | 1040 | free(powersArray); |
michael@0 | 1041 | return res; |
michael@0 | 1042 | } |
michael@0 | 1043 | #undef SQR |
michael@0 | 1044 | #undef MUL |
michael@0 | 1045 | #endif |
michael@0 | 1046 | |
michael@0 | 1047 | mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent, |
michael@0 | 1048 | const mp_int *modulus, mp_int *result) |
michael@0 | 1049 | { |
michael@0 | 1050 | const mp_int *base; |
michael@0 | 1051 | mp_size bits_in_exponent, i, window_bits, odd_ints; |
michael@0 | 1052 | mp_err res; |
michael@0 | 1053 | int nLen; |
michael@0 | 1054 | mp_int montBase, goodBase; |
michael@0 | 1055 | mp_mont_modulus mmm; |
michael@0 | 1056 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
michael@0 | 1057 | static unsigned int max_window_bits; |
michael@0 | 1058 | #endif |
michael@0 | 1059 | |
michael@0 | 1060 | /* function for computing n0prime only works if n0 is odd */ |
michael@0 | 1061 | if (!mp_isodd(modulus)) |
michael@0 | 1062 | return s_mp_exptmod(inBase, exponent, modulus, result); |
michael@0 | 1063 | |
michael@0 | 1064 | MP_DIGITS(&montBase) = 0; |
michael@0 | 1065 | MP_DIGITS(&goodBase) = 0; |
michael@0 | 1066 | |
michael@0 | 1067 | if (mp_cmp(inBase, modulus) < 0) { |
michael@0 | 1068 | base = inBase; |
michael@0 | 1069 | } else { |
michael@0 | 1070 | MP_CHECKOK( mp_init(&goodBase) ); |
michael@0 | 1071 | base = &goodBase; |
michael@0 | 1072 | MP_CHECKOK( mp_mod(inBase, modulus, &goodBase) ); |
michael@0 | 1073 | } |
michael@0 | 1074 | |
michael@0 | 1075 | nLen = MP_USED(modulus); |
michael@0 | 1076 | MP_CHECKOK( mp_init_size(&montBase, 2 * nLen + 2) ); |
michael@0 | 1077 | |
michael@0 | 1078 | mmm.N = *modulus; /* a copy of the mp_int struct */ |
michael@0 | 1079 | |
michael@0 | 1080 | /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX |
michael@0 | 1081 | ** where n0 = least significant mp_digit of N, the modulus. |
michael@0 | 1082 | */ |
michael@0 | 1083 | mmm.n0prime = 0 - s_mp_invmod_radix( MP_DIGIT(modulus, 0) ); |
michael@0 | 1084 | |
michael@0 | 1085 | MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) ); |
michael@0 | 1086 | |
michael@0 | 1087 | bits_in_exponent = mpl_significant_bits(exponent); |
michael@0 | 1088 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
michael@0 | 1089 | if (mp_using_cache_safe_exp) { |
michael@0 | 1090 | if (bits_in_exponent > 780) |
michael@0 | 1091 | window_bits = 6; |
michael@0 | 1092 | else if (bits_in_exponent > 256) |
michael@0 | 1093 | window_bits = 5; |
michael@0 | 1094 | else if (bits_in_exponent > 20) |
michael@0 | 1095 | window_bits = 4; |
michael@0 | 1096 | /* RSA public key exponents are typically under 20 bits (common values |
michael@0 | 1097 | * are: 3, 17, 65537) and a 4-bit window is inefficient |
michael@0 | 1098 | */ |
michael@0 | 1099 | else |
michael@0 | 1100 | window_bits = 1; |
michael@0 | 1101 | } else |
michael@0 | 1102 | #endif |
michael@0 | 1103 | if (bits_in_exponent > 480) |
michael@0 | 1104 | window_bits = 6; |
michael@0 | 1105 | else if (bits_in_exponent > 160) |
michael@0 | 1106 | window_bits = 5; |
michael@0 | 1107 | else if (bits_in_exponent > 20) |
michael@0 | 1108 | window_bits = 4; |
michael@0 | 1109 | /* RSA public key exponents are typically under 20 bits (common values |
michael@0 | 1110 | * are: 3, 17, 65537) and a 4-bit window is inefficient |
michael@0 | 1111 | */ |
michael@0 | 1112 | else |
michael@0 | 1113 | window_bits = 1; |
michael@0 | 1114 | |
michael@0 | 1115 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
michael@0 | 1116 | /* |
michael@0 | 1117 | * clamp the window size based on |
michael@0 | 1118 | * the cache line size. |
michael@0 | 1119 | */ |
michael@0 | 1120 | if (!max_window_bits) { |
michael@0 | 1121 | unsigned long cache_size = s_mpi_getProcessorLineSize(); |
michael@0 | 1122 | /* processor has no cache, use 'fast' code always */ |
michael@0 | 1123 | if (cache_size == 0) { |
michael@0 | 1124 | mp_using_cache_safe_exp = 0; |
michael@0 | 1125 | } |
michael@0 | 1126 | if ((cache_size == 0) || (cache_size >= 64)) { |
michael@0 | 1127 | max_window_bits = 6; |
michael@0 | 1128 | } else if (cache_size >= 32) { |
michael@0 | 1129 | max_window_bits = 5; |
michael@0 | 1130 | } else if (cache_size >= 16) { |
michael@0 | 1131 | max_window_bits = 4; |
michael@0 | 1132 | } else max_window_bits = 1; /* should this be an assert? */ |
michael@0 | 1133 | } |
michael@0 | 1134 | |
michael@0 | 1135 | /* clamp the window size down before we caclulate bits_in_exponent */ |
michael@0 | 1136 | if (mp_using_cache_safe_exp) { |
michael@0 | 1137 | if (window_bits > max_window_bits) { |
michael@0 | 1138 | window_bits = max_window_bits; |
michael@0 | 1139 | } |
michael@0 | 1140 | } |
michael@0 | 1141 | #endif |
michael@0 | 1142 | |
michael@0 | 1143 | odd_ints = 1 << (window_bits - 1); |
michael@0 | 1144 | i = bits_in_exponent % window_bits; |
michael@0 | 1145 | if (i != 0) { |
michael@0 | 1146 | bits_in_exponent += window_bits - i; |
michael@0 | 1147 | } |
michael@0 | 1148 | |
michael@0 | 1149 | #ifdef MP_USING_MONT_MULF |
michael@0 | 1150 | if (mp_using_mont_mulf) { |
michael@0 | 1151 | MP_CHECKOK( s_mp_pad(&montBase, nLen) ); |
michael@0 | 1152 | res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen, |
michael@0 | 1153 | bits_in_exponent, window_bits, odd_ints); |
michael@0 | 1154 | } else |
michael@0 | 1155 | #endif |
michael@0 | 1156 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
michael@0 | 1157 | if (mp_using_cache_safe_exp) { |
michael@0 | 1158 | res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen, |
michael@0 | 1159 | bits_in_exponent, window_bits, 1 << window_bits); |
michael@0 | 1160 | } else |
michael@0 | 1161 | #endif |
michael@0 | 1162 | res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen, |
michael@0 | 1163 | bits_in_exponent, window_bits, odd_ints); |
michael@0 | 1164 | |
michael@0 | 1165 | CLEANUP: |
michael@0 | 1166 | mp_clear(&montBase); |
michael@0 | 1167 | mp_clear(&goodBase); |
michael@0 | 1168 | /* Don't mp_clear mmm.N because it is merely a copy of modulus. |
michael@0 | 1169 | ** Just zap it. |
michael@0 | 1170 | */ |
michael@0 | 1171 | memset(&mmm, 0, sizeof mmm); |
michael@0 | 1172 | return res; |
michael@0 | 1173 | } |