security/nss/lib/freebl/rsa.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

michael@0 1 /* This Source Code Form is subject to the terms of the Mozilla Public
michael@0 2 * License, v. 2.0. If a copy of the MPL was not distributed with this
michael@0 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
michael@0 4
michael@0 5 /*
michael@0 6 * RSA key generation, public key op, private key op.
michael@0 7 */
michael@0 8 #ifdef FREEBL_NO_DEPEND
michael@0 9 #include "stubs.h"
michael@0 10 #endif
michael@0 11
michael@0 12 #include "secerr.h"
michael@0 13
michael@0 14 #include "prclist.h"
michael@0 15 #include "nssilock.h"
michael@0 16 #include "prinit.h"
michael@0 17 #include "blapi.h"
michael@0 18 #include "mpi.h"
michael@0 19 #include "mpprime.h"
michael@0 20 #include "mplogic.h"
michael@0 21 #include "secmpi.h"
michael@0 22 #include "secitem.h"
michael@0 23 #include "blapii.h"
michael@0 24
michael@0 25 /*
michael@0 26 ** Number of times to attempt to generate a prime (p or q) from a random
michael@0 27 ** seed (the seed changes for each iteration).
michael@0 28 */
michael@0 29 #define MAX_PRIME_GEN_ATTEMPTS 10
michael@0 30 /*
michael@0 31 ** Number of times to attempt to generate a key. The primes p and q change
michael@0 32 ** for each attempt.
michael@0 33 */
michael@0 34 #define MAX_KEY_GEN_ATTEMPTS 10
michael@0 35
michael@0 36 /* Blinding Parameters max cache size */
michael@0 37 #define RSA_BLINDING_PARAMS_MAX_CACHE_SIZE 20
michael@0 38
michael@0 39 /* exponent should not be greater than modulus */
michael@0 40 #define BAD_RSA_KEY_SIZE(modLen, expLen) \
michael@0 41 ((expLen) > (modLen) || (modLen) > RSA_MAX_MODULUS_BITS/8 || \
michael@0 42 (expLen) > RSA_MAX_EXPONENT_BITS/8)
michael@0 43
michael@0 44 struct blindingParamsStr;
michael@0 45 typedef struct blindingParamsStr blindingParams;
michael@0 46
michael@0 47 struct blindingParamsStr {
michael@0 48 blindingParams *next;
michael@0 49 mp_int f, g; /* blinding parameter */
michael@0 50 int counter; /* number of remaining uses of (f, g) */
michael@0 51 };
michael@0 52
michael@0 53 /*
michael@0 54 ** RSABlindingParamsStr
michael@0 55 **
michael@0 56 ** For discussion of Paul Kocher's timing attack against an RSA private key
michael@0 57 ** operation, see http://www.cryptography.com/timingattack/paper.html. The
michael@0 58 ** countermeasure to this attack, known as blinding, is also discussed in
michael@0 59 ** the Handbook of Applied Cryptography, 11.118-11.119.
michael@0 60 */
michael@0 61 struct RSABlindingParamsStr
michael@0 62 {
michael@0 63 /* Blinding-specific parameters */
michael@0 64 PRCList link; /* link to list of structs */
michael@0 65 SECItem modulus; /* list element "key" */
michael@0 66 blindingParams *free, *bp; /* Blinding parameters queue */
michael@0 67 blindingParams array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE];
michael@0 68 };
michael@0 69 typedef struct RSABlindingParamsStr RSABlindingParams;
michael@0 70
michael@0 71 /*
michael@0 72 ** RSABlindingParamsListStr
michael@0 73 **
michael@0 74 ** List of key-specific blinding params. The arena holds the volatile pool
michael@0 75 ** of memory for each entry and the list itself. The lock is for list
michael@0 76 ** operations, in this case insertions and iterations, as well as control
michael@0 77 ** of the counter for each set of blinding parameters.
michael@0 78 */
michael@0 79 struct RSABlindingParamsListStr
michael@0 80 {
michael@0 81 PZLock *lock; /* Lock for the list */
michael@0 82 PRCondVar *cVar; /* Condidtion Variable */
michael@0 83 int waitCount; /* Number of threads waiting on cVar */
michael@0 84 PRCList head; /* Pointer to the list */
michael@0 85 };
michael@0 86
michael@0 87 /*
michael@0 88 ** The master blinding params list.
michael@0 89 */
michael@0 90 static struct RSABlindingParamsListStr blindingParamsList = { 0 };
michael@0 91
michael@0 92 /* Number of times to reuse (f, g). Suggested by Paul Kocher */
michael@0 93 #define RSA_BLINDING_PARAMS_MAX_REUSE 50
michael@0 94
michael@0 95 /* Global, allows optional use of blinding. On by default. */
michael@0 96 /* Cannot be changed at the moment, due to thread-safety issues. */
michael@0 97 static PRBool nssRSAUseBlinding = PR_TRUE;
michael@0 98
michael@0 99 static SECStatus
michael@0 100 rsa_build_from_primes(const mp_int *p, const mp_int *q,
michael@0 101 mp_int *e, PRBool needPublicExponent,
michael@0 102 mp_int *d, PRBool needPrivateExponent,
michael@0 103 RSAPrivateKey *key, unsigned int keySizeInBits)
michael@0 104 {
michael@0 105 mp_int n, phi;
michael@0 106 mp_int psub1, qsub1, tmp;
michael@0 107 mp_err err = MP_OKAY;
michael@0 108 SECStatus rv = SECSuccess;
michael@0 109 MP_DIGITS(&n) = 0;
michael@0 110 MP_DIGITS(&phi) = 0;
michael@0 111 MP_DIGITS(&psub1) = 0;
michael@0 112 MP_DIGITS(&qsub1) = 0;
michael@0 113 MP_DIGITS(&tmp) = 0;
michael@0 114 CHECK_MPI_OK( mp_init(&n) );
michael@0 115 CHECK_MPI_OK( mp_init(&phi) );
michael@0 116 CHECK_MPI_OK( mp_init(&psub1) );
michael@0 117 CHECK_MPI_OK( mp_init(&qsub1) );
michael@0 118 CHECK_MPI_OK( mp_init(&tmp) );
michael@0 119 /* p and q must be distinct. */
michael@0 120 if (mp_cmp(p, q) == 0) {
michael@0 121 PORT_SetError(SEC_ERROR_NEED_RANDOM);
michael@0 122 rv = SECFailure;
michael@0 123 goto cleanup;
michael@0 124 }
michael@0 125 /* 1. Compute n = p*q */
michael@0 126 CHECK_MPI_OK( mp_mul(p, q, &n) );
michael@0 127 /* verify that the modulus has the desired number of bits */
michael@0 128 if ((unsigned)mpl_significant_bits(&n) != keySizeInBits) {
michael@0 129 PORT_SetError(SEC_ERROR_NEED_RANDOM);
michael@0 130 rv = SECFailure;
michael@0 131 goto cleanup;
michael@0 132 }
michael@0 133
michael@0 134 /* at least one exponent must be given */
michael@0 135 PORT_Assert(!(needPublicExponent && needPrivateExponent));
michael@0 136
michael@0 137 /* 2. Compute phi = (p-1)*(q-1) */
michael@0 138 CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
michael@0 139 CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
michael@0 140 if (needPublicExponent || needPrivateExponent) {
michael@0 141 CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
michael@0 142 /* 3. Compute d = e**-1 mod(phi) */
michael@0 143 /* or e = d**-1 mod(phi) as necessary */
michael@0 144 if (needPublicExponent) {
michael@0 145 err = mp_invmod(d, &phi, e);
michael@0 146 } else {
michael@0 147 err = mp_invmod(e, &phi, d);
michael@0 148 }
michael@0 149 } else {
michael@0 150 err = MP_OKAY;
michael@0 151 }
michael@0 152 /* Verify that phi(n) and e have no common divisors */
michael@0 153 if (err != MP_OKAY) {
michael@0 154 if (err == MP_UNDEF) {
michael@0 155 PORT_SetError(SEC_ERROR_NEED_RANDOM);
michael@0 156 err = MP_OKAY; /* to keep PORT_SetError from being called again */
michael@0 157 rv = SECFailure;
michael@0 158 }
michael@0 159 goto cleanup;
michael@0 160 }
michael@0 161
michael@0 162 /* 4. Compute exponent1 = d mod (p-1) */
michael@0 163 CHECK_MPI_OK( mp_mod(d, &psub1, &tmp) );
michael@0 164 MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
michael@0 165 /* 5. Compute exponent2 = d mod (q-1) */
michael@0 166 CHECK_MPI_OK( mp_mod(d, &qsub1, &tmp) );
michael@0 167 MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
michael@0 168 /* 6. Compute coefficient = q**-1 mod p */
michael@0 169 CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
michael@0 170 MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);
michael@0 171
michael@0 172 /* copy our calculated results, overwrite what is there */
michael@0 173 key->modulus.data = NULL;
michael@0 174 MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
michael@0 175 key->privateExponent.data = NULL;
michael@0 176 MPINT_TO_SECITEM(d, &key->privateExponent, key->arena);
michael@0 177 key->publicExponent.data = NULL;
michael@0 178 MPINT_TO_SECITEM(e, &key->publicExponent, key->arena);
michael@0 179 key->prime1.data = NULL;
michael@0 180 MPINT_TO_SECITEM(p, &key->prime1, key->arena);
michael@0 181 key->prime2.data = NULL;
michael@0 182 MPINT_TO_SECITEM(q, &key->prime2, key->arena);
michael@0 183 cleanup:
michael@0 184 mp_clear(&n);
michael@0 185 mp_clear(&phi);
michael@0 186 mp_clear(&psub1);
michael@0 187 mp_clear(&qsub1);
michael@0 188 mp_clear(&tmp);
michael@0 189 if (err) {
michael@0 190 MP_TO_SEC_ERROR(err);
michael@0 191 rv = SECFailure;
michael@0 192 }
michael@0 193 return rv;
michael@0 194 }
michael@0 195 static SECStatus
michael@0 196 generate_prime(mp_int *prime, int primeLen)
michael@0 197 {
michael@0 198 mp_err err = MP_OKAY;
michael@0 199 SECStatus rv = SECSuccess;
michael@0 200 unsigned long counter = 0;
michael@0 201 int piter;
michael@0 202 unsigned char *pb = NULL;
michael@0 203 pb = PORT_Alloc(primeLen);
michael@0 204 if (!pb) {
michael@0 205 PORT_SetError(SEC_ERROR_NO_MEMORY);
michael@0 206 goto cleanup;
michael@0 207 }
michael@0 208 for (piter = 0; piter < MAX_PRIME_GEN_ATTEMPTS; piter++) {
michael@0 209 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) );
michael@0 210 pb[0] |= 0xC0; /* set two high-order bits */
michael@0 211 pb[primeLen-1] |= 0x01; /* set low-order bit */
michael@0 212 CHECK_MPI_OK( mp_read_unsigned_octets(prime, pb, primeLen) );
michael@0 213 err = mpp_make_prime(prime, primeLen * 8, PR_FALSE, &counter);
michael@0 214 if (err != MP_NO)
michael@0 215 goto cleanup;
michael@0 216 /* keep going while err == MP_NO */
michael@0 217 }
michael@0 218 cleanup:
michael@0 219 if (pb)
michael@0 220 PORT_ZFree(pb, primeLen);
michael@0 221 if (err) {
michael@0 222 MP_TO_SEC_ERROR(err);
michael@0 223 rv = SECFailure;
michael@0 224 }
michael@0 225 return rv;
michael@0 226 }
michael@0 227
michael@0 228 /*
michael@0 229 ** Generate and return a new RSA public and private key.
michael@0 230 ** Both keys are encoded in a single RSAPrivateKey structure.
michael@0 231 ** "cx" is the random number generator context
michael@0 232 ** "keySizeInBits" is the size of the key to be generated, in bits.
michael@0 233 ** 512, 1024, etc.
michael@0 234 ** "publicExponent" when not NULL is a pointer to some data that
michael@0 235 ** represents the public exponent to use. The data is a byte
michael@0 236 ** encoded integer, in "big endian" order.
michael@0 237 */
michael@0 238 RSAPrivateKey *
michael@0 239 RSA_NewKey(int keySizeInBits, SECItem *publicExponent)
michael@0 240 {
michael@0 241 unsigned int primeLen;
michael@0 242 mp_int p, q, e, d;
michael@0 243 int kiter;
michael@0 244 mp_err err = MP_OKAY;
michael@0 245 SECStatus rv = SECSuccess;
michael@0 246 int prerr = 0;
michael@0 247 RSAPrivateKey *key = NULL;
michael@0 248 PLArenaPool *arena = NULL;
michael@0 249 /* Require key size to be a multiple of 16 bits. */
michael@0 250 if (!publicExponent || keySizeInBits % 16 != 0 ||
michael@0 251 BAD_RSA_KEY_SIZE(keySizeInBits/8, publicExponent->len)) {
michael@0 252 PORT_SetError(SEC_ERROR_INVALID_ARGS);
michael@0 253 return NULL;
michael@0 254 }
michael@0 255 /* 1. Allocate arena & key */
michael@0 256 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
michael@0 257 if (!arena) {
michael@0 258 PORT_SetError(SEC_ERROR_NO_MEMORY);
michael@0 259 return NULL;
michael@0 260 }
michael@0 261 key = PORT_ArenaZNew(arena, RSAPrivateKey);
michael@0 262 if (!key) {
michael@0 263 PORT_SetError(SEC_ERROR_NO_MEMORY);
michael@0 264 PORT_FreeArena(arena, PR_TRUE);
michael@0 265 return NULL;
michael@0 266 }
michael@0 267 key->arena = arena;
michael@0 268 /* length of primes p and q (in bytes) */
michael@0 269 primeLen = keySizeInBits / (2 * PR_BITS_PER_BYTE);
michael@0 270 MP_DIGITS(&p) = 0;
michael@0 271 MP_DIGITS(&q) = 0;
michael@0 272 MP_DIGITS(&e) = 0;
michael@0 273 MP_DIGITS(&d) = 0;
michael@0 274 CHECK_MPI_OK( mp_init(&p) );
michael@0 275 CHECK_MPI_OK( mp_init(&q) );
michael@0 276 CHECK_MPI_OK( mp_init(&e) );
michael@0 277 CHECK_MPI_OK( mp_init(&d) );
michael@0 278 /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */
michael@0 279 SECITEM_AllocItem(arena, &key->version, 1);
michael@0 280 key->version.data[0] = 0;
michael@0 281 /* 3. Set the public exponent */
michael@0 282 SECITEM_TO_MPINT(*publicExponent, &e);
michael@0 283 kiter = 0;
michael@0 284 do {
michael@0 285 prerr = 0;
michael@0 286 PORT_SetError(0);
michael@0 287 CHECK_SEC_OK( generate_prime(&p, primeLen) );
michael@0 288 CHECK_SEC_OK( generate_prime(&q, primeLen) );
michael@0 289 /* Assure p > q */
michael@0 290 /* NOTE: PKCS #1 does not require p > q, and NSS doesn't use any
michael@0 291 * implementation optimization that requires p > q. We can remove
michael@0 292 * this code in the future.
michael@0 293 */
michael@0 294 if (mp_cmp(&p, &q) < 0)
michael@0 295 mp_exch(&p, &q);
michael@0 296 /* Attempt to use these primes to generate a key */
michael@0 297 rv = rsa_build_from_primes(&p, &q,
michael@0 298 &e, PR_FALSE, /* needPublicExponent=false */
michael@0 299 &d, PR_TRUE, /* needPrivateExponent=true */
michael@0 300 key, keySizeInBits);
michael@0 301 if (rv == SECSuccess)
michael@0 302 break; /* generated two good primes */
michael@0 303 prerr = PORT_GetError();
michael@0 304 kiter++;
michael@0 305 /* loop until have primes */
michael@0 306 } while (prerr == SEC_ERROR_NEED_RANDOM && kiter < MAX_KEY_GEN_ATTEMPTS);
michael@0 307 if (prerr)
michael@0 308 goto cleanup;
michael@0 309 cleanup:
michael@0 310 mp_clear(&p);
michael@0 311 mp_clear(&q);
michael@0 312 mp_clear(&e);
michael@0 313 mp_clear(&d);
michael@0 314 if (err) {
michael@0 315 MP_TO_SEC_ERROR(err);
michael@0 316 rv = SECFailure;
michael@0 317 }
michael@0 318 if (rv && arena) {
michael@0 319 PORT_FreeArena(arena, PR_TRUE);
michael@0 320 key = NULL;
michael@0 321 }
michael@0 322 return key;
michael@0 323 }
michael@0 324
michael@0 325 mp_err
michael@0 326 rsa_is_prime(mp_int *p) {
michael@0 327 int res;
michael@0 328
michael@0 329 /* run a Fermat test */
michael@0 330 res = mpp_fermat(p, 2);
michael@0 331 if (res != MP_OKAY) {
michael@0 332 return res;
michael@0 333 }
michael@0 334
michael@0 335 /* If that passed, run some Miller-Rabin tests */
michael@0 336 res = mpp_pprime(p, 2);
michael@0 337 return res;
michael@0 338 }
michael@0 339
michael@0 340 /*
michael@0 341 * Try to find the two primes based on 2 exponents plus either a prime
michael@0 342 * or a modulus.
michael@0 343 *
michael@0 344 * In: e, d and either p or n (depending on the setting of hasModulus).
michael@0 345 * Out: p,q.
michael@0 346 *
michael@0 347 * Step 1, Since d = e**-1 mod phi, we know that d*e == 1 mod phi, or
michael@0 348 * d*e = 1+k*phi, or d*e-1 = k*phi. since d is less than phi and e is
michael@0 349 * usually less than d, then k must be an integer between e-1 and 1
michael@0 350 * (probably on the order of e).
michael@0 351 * Step 1a, If we were passed just a prime, we can divide k*phi by that
michael@0 352 * prime-1 and get k*(q-1). This will reduce the size of our division
michael@0 353 * through the rest of the loop.
michael@0 354 * Step 2, Loop through the values k=e-1 to 1 looking for k. k should be on
michael@0 355 * the order or e, and e is typically small. This may take a while for
michael@0 356 * a large random e. We are looking for a k that divides kphi
michael@0 357 * evenly. Once we find a k that divides kphi evenly, we assume it
michael@0 358 * is the true k. It's possible this k is not the 'true' k but has
michael@0 359 * swapped factors of p-1 and/or q-1. Because of this, we
michael@0 360 * tentatively continue Steps 3-6 inside this loop, and may return looking
michael@0 361 * for another k on failure.
michael@0 362 * Step 3, Calculate are tentative phi=kphi/k. Note: real phi is (p-1)*(q-1).
michael@0 363 * Step 4a, if we have a prime, kphi is already k*(q-1), so phi is or tenative
michael@0 364 * q-1. q = phi+1. If k is correct, q should be the right length and
michael@0 365 * prime.
michael@0 366 * Step 4b, It's possible q-1 and k could have swapped factors. We now have a
michael@0 367 * possible solution that meets our criteria. It may not be the only
michael@0 368 * solution, however, so we keep looking. If we find more than one,
michael@0 369 * we will fail since we cannot determine which is the correct
michael@0 370 * solution, and returning the wrong modulus will compromise both
michael@0 371 * moduli. If no other solution is found, we return the unique solution.
michael@0 372 * Step 5a, If we have the modulus (n=pq), then use the following formula to
michael@0 373 * calculate s=(p+q): , phi = (p-1)(q-1) = pq -p-q +1 = n-s+1. so
michael@0 374 * s=n-phi+1.
michael@0 375 * Step 5b, Use n=pq and s=p+q to solve for p and q as follows:
michael@0 376 * since q=s-p, then n=p*(s-p)= sp - p^2, rearranging p^2-s*p+n = 0.
michael@0 377 * from the quadratic equation we have p=1/2*(s+sqrt(s*s-4*n)) and
michael@0 378 * q=1/2*(s-sqrt(s*s-4*n)) if s*s-4*n is a perfect square, we are DONE.
michael@0 379 * If it is not, continue in our look looking for another k. NOTE: the
michael@0 380 * code actually distributes the 1/2 and results in the equations:
michael@0 381 * sqrt = sqrt(s/2*s/2-n), p=s/2+sqrt, q=s/2-sqrt. The algebra saves us
michael@0 382 * and extra divide by 2 and a multiply by 4.
michael@0 383 *
michael@0 384 * This will return p & q. q may be larger than p in the case that p was given
michael@0 385 * and it was the smaller prime.
michael@0 386 */
michael@0 387 static mp_err
michael@0 388 rsa_get_primes_from_exponents(mp_int *e, mp_int *d, mp_int *p, mp_int *q,
michael@0 389 mp_int *n, PRBool hasModulus,
michael@0 390 unsigned int keySizeInBits)
michael@0 391 {
michael@0 392 mp_int kphi; /* k*phi */
michael@0 393 mp_int k; /* current guess at 'k' */
michael@0 394 mp_int phi; /* (p-1)(q-1) */
michael@0 395 mp_int s; /* p+q/2 (s/2 in the algebra) */
michael@0 396 mp_int r; /* remainder */
michael@0 397 mp_int tmp; /* p-1 if p is given, n+1 is modulus is given */
michael@0 398 mp_int sqrt; /* sqrt(s/2*s/2-n) */
michael@0 399 mp_err err = MP_OKAY;
michael@0 400 unsigned int order_k;
michael@0 401
michael@0 402 MP_DIGITS(&kphi) = 0;
michael@0 403 MP_DIGITS(&phi) = 0;
michael@0 404 MP_DIGITS(&s) = 0;
michael@0 405 MP_DIGITS(&k) = 0;
michael@0 406 MP_DIGITS(&r) = 0;
michael@0 407 MP_DIGITS(&tmp) = 0;
michael@0 408 MP_DIGITS(&sqrt) = 0;
michael@0 409 CHECK_MPI_OK( mp_init(&kphi) );
michael@0 410 CHECK_MPI_OK( mp_init(&phi) );
michael@0 411 CHECK_MPI_OK( mp_init(&s) );
michael@0 412 CHECK_MPI_OK( mp_init(&k) );
michael@0 413 CHECK_MPI_OK( mp_init(&r) );
michael@0 414 CHECK_MPI_OK( mp_init(&tmp) );
michael@0 415 CHECK_MPI_OK( mp_init(&sqrt) );
michael@0 416
michael@0 417 /* our algorithm looks for a factor k whose maximum size is dependent
michael@0 418 * on the size of our smallest exponent, which had better be the public
michael@0 419 * exponent (if it's the private, the key is vulnerable to a brute force
michael@0 420 * attack).
michael@0 421 *
michael@0 422 * since our factor search is linear, we need to limit the maximum
michael@0 423 * size of the public key. this should not be a problem normally, since
michael@0 424 * public keys are usually small.
michael@0 425 *
michael@0 426 * if we want to handle larger public key sizes, we should have
michael@0 427 * a version which tries to 'completely' factor k*phi (where completely
michael@0 428 * means 'factor into primes, or composites with which are products of
michael@0 429 * large primes). Once we have all the factors, we can sort them out and
michael@0 430 * try different combinations to form our phi. The risk is if (p-1)/2,
michael@0 431 * (q-1)/2, and k are all large primes. In any case if the public key
michael@0 432 * is small (order of 20 some bits), then a linear search for k is
michael@0 433 * manageable.
michael@0 434 */
michael@0 435 if (mpl_significant_bits(e) > 23) {
michael@0 436 err=MP_RANGE;
michael@0 437 goto cleanup;
michael@0 438 }
michael@0 439
michael@0 440 /* calculate k*phi = e*d - 1 */
michael@0 441 CHECK_MPI_OK( mp_mul(e, d, &kphi) );
michael@0 442 CHECK_MPI_OK( mp_sub_d(&kphi, 1, &kphi) );
michael@0 443
michael@0 444
michael@0 445 /* kphi is (e*d)-1, which is the same as k*(p-1)(q-1)
michael@0 446 * d < (p-1)(q-1), therefor k must be less than e-1
michael@0 447 * We can narrow down k even more, though. Since p and q are odd and both
michael@0 448 * have their high bit set, then we know that phi must be on order of
michael@0 449 * keySizeBits.
michael@0 450 */
michael@0 451 order_k = (unsigned)mpl_significant_bits(&kphi) - keySizeInBits;
michael@0 452
michael@0 453 /* for (k=kinit; order(k) >= order_k; k--) { */
michael@0 454 /* k=kinit: k can't be bigger than kphi/2^(keySizeInBits -1) */
michael@0 455 CHECK_MPI_OK( mp_2expt(&k,keySizeInBits-1) );
michael@0 456 CHECK_MPI_OK( mp_div(&kphi, &k, &k, NULL));
michael@0 457 if (mp_cmp(&k,e) >= 0) {
michael@0 458 /* also can't be bigger then e-1 */
michael@0 459 CHECK_MPI_OK( mp_sub_d(e, 1, &k) );
michael@0 460 }
michael@0 461
michael@0 462 /* calculate our temp value */
michael@0 463 /* This saves recalculating this value when the k guess is wrong, which
michael@0 464 * is reasonably frequent. */
michael@0 465 /* for the modulus case, tmp = n+1 (used to calculate p+q = tmp - phi) */
michael@0 466 /* for the prime case, tmp = p-1 (used to calculate q-1= phi/tmp) */
michael@0 467 if (hasModulus) {
michael@0 468 CHECK_MPI_OK( mp_add_d(n, 1, &tmp) );
michael@0 469 } else {
michael@0 470 CHECK_MPI_OK( mp_sub_d(p, 1, &tmp) );
michael@0 471 CHECK_MPI_OK(mp_div(&kphi,&tmp,&kphi,&r));
michael@0 472 if (mp_cmp_z(&r) != 0) {
michael@0 473 /* p-1 doesn't divide kphi, some parameter wasn't correct */
michael@0 474 err=MP_RANGE;
michael@0 475 goto cleanup;
michael@0 476 }
michael@0 477 mp_zero(q);
michael@0 478 /* kphi is now k*(q-1) */
michael@0 479 }
michael@0 480
michael@0 481 /* rest of the for loop */
michael@0 482 for (; (err == MP_OKAY) && (mpl_significant_bits(&k) >= order_k);
michael@0 483 err = mp_sub_d(&k, 1, &k)) {
michael@0 484 /* looking for k as a factor of kphi */
michael@0 485 CHECK_MPI_OK(mp_div(&kphi,&k,&phi,&r));
michael@0 486 if (mp_cmp_z(&r) != 0) {
michael@0 487 /* not a factor, try the next one */
michael@0 488 continue;
michael@0 489 }
michael@0 490 /* we have a possible phi, see if it works */
michael@0 491 if (!hasModulus) {
michael@0 492 if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits/2) {
michael@0 493 /* phi is not the right size */
michael@0 494 continue;
michael@0 495 }
michael@0 496 /* phi should be divisible by 2, since
michael@0 497 * q is odd and phi=(q-1). */
michael@0 498 if (mpp_divis_d(&phi,2) == MP_NO) {
michael@0 499 /* phi is not divisible by 4 */
michael@0 500 continue;
michael@0 501 }
michael@0 502 /* we now have a candidate for the second prime */
michael@0 503 CHECK_MPI_OK(mp_add_d(&phi, 1, &tmp));
michael@0 504
michael@0 505 /* check to make sure it is prime */
michael@0 506 err = rsa_is_prime(&tmp);
michael@0 507 if (err != MP_OKAY) {
michael@0 508 if (err == MP_NO) {
michael@0 509 /* No, then we still have the wrong phi */
michael@0 510 err = MP_OKAY;
michael@0 511 continue;
michael@0 512 }
michael@0 513 goto cleanup;
michael@0 514 }
michael@0 515 /*
michael@0 516 * It is possible that we have the wrong phi if
michael@0 517 * k_guess*(q_guess-1) = k*(q-1) (k and q-1 have swapped factors).
michael@0 518 * since our q_quess is prime, however. We have found a valid
michael@0 519 * rsa key because:
michael@0 520 * q is the correct order of magnitude.
michael@0 521 * phi = (p-1)(q-1) where p and q are both primes.
michael@0 522 * e*d mod phi = 1.
michael@0 523 * There is no way to know from the info given if this is the
michael@0 524 * original key. We never want to return the wrong key because if
michael@0 525 * two moduli with the same factor is known, then euclid's gcd
michael@0 526 * algorithm can be used to find that factor. Even though the
michael@0 527 * caller didn't pass the original modulus, it doesn't mean the
michael@0 528 * modulus wasn't known or isn't available somewhere. So to be safe
michael@0 529 * if we can't be sure we have the right q, we don't return any.
michael@0 530 *
michael@0 531 * So to make sure we continue looking for other valid q's. If none
michael@0 532 * are found, then we can safely return this one, otherwise we just
michael@0 533 * fail */
michael@0 534 if (mp_cmp_z(q) != 0) {
michael@0 535 /* this is the second valid q, don't return either,
michael@0 536 * just fail */
michael@0 537 err = MP_RANGE;
michael@0 538 break;
michael@0 539 }
michael@0 540 /* we only have one q so far, save it and if no others are found,
michael@0 541 * it's safe to return it */
michael@0 542 CHECK_MPI_OK(mp_copy(&tmp, q));
michael@0 543 continue;
michael@0 544 }
michael@0 545 /* test our tentative phi */
michael@0 546 /* phi should be the correct order */
michael@0 547 if ((unsigned)mpl_significant_bits(&phi) != keySizeInBits) {
michael@0 548 /* phi is not the right size */
michael@0 549 continue;
michael@0 550 }
michael@0 551 /* phi should be divisible by 4, since
michael@0 552 * p and q are odd and phi=(p-1)(q-1). */
michael@0 553 if (mpp_divis_d(&phi,4) == MP_NO) {
michael@0 554 /* phi is not divisible by 4 */
michael@0 555 continue;
michael@0 556 }
michael@0 557 /* n was given, calculate s/2=(p+q)/2 */
michael@0 558 CHECK_MPI_OK( mp_sub(&tmp, &phi, &s) );
michael@0 559 CHECK_MPI_OK( mp_div_2(&s, &s) );
michael@0 560
michael@0 561 /* calculate sqrt(s/2*s/2-n) */
michael@0 562 CHECK_MPI_OK(mp_sqr(&s,&sqrt));
michael@0 563 CHECK_MPI_OK(mp_sub(&sqrt,n,&r)); /* r as a tmp */
michael@0 564 CHECK_MPI_OK(mp_sqrt(&r,&sqrt));
michael@0 565 /* make sure it's a perfect square */
michael@0 566 /* r is our original value we took the square root of */
michael@0 567 /* q is the square of our tentative square root. They should be equal*/
michael@0 568 CHECK_MPI_OK(mp_sqr(&sqrt,q)); /* q as a tmp */
michael@0 569 if (mp_cmp(&r,q) != 0) {
michael@0 570 /* sigh according to the doc, mp_sqrt could return sqrt-1 */
michael@0 571 CHECK_MPI_OK(mp_add_d(&sqrt,1,&sqrt));
michael@0 572 CHECK_MPI_OK(mp_sqr(&sqrt,q));
michael@0 573 if (mp_cmp(&r,q) != 0) {
michael@0 574 /* s*s-n not a perfect square, this phi isn't valid, find * another.*/
michael@0 575 continue;
michael@0 576 }
michael@0 577 }
michael@0 578
michael@0 579 /* NOTE: In this case we know we have the one and only answer.
michael@0 580 * "Why?", you ask. Because:
michael@0 581 * 1) n is a composite of two large primes (or it wasn't a
michael@0 582 * valid RSA modulus).
michael@0 583 * 2) If we know any number such that x^2-n is a perfect square
michael@0 584 * and x is not (n+1)/2, then we can calculate 2 non-trivial
michael@0 585 * factors of n.
michael@0 586 * 3) Since we know that n has only 2 non-trivial prime factors,
michael@0 587 * we know the two factors we have are the only possible factors.
michael@0 588 */
michael@0 589
michael@0 590 /* Now we are home free to calculate p and q */
michael@0 591 /* p = s/2 + sqrt, q= s/2 - sqrt */
michael@0 592 CHECK_MPI_OK(mp_add(&s,&sqrt,p));
michael@0 593 CHECK_MPI_OK(mp_sub(&s,&sqrt,q));
michael@0 594 break;
michael@0 595 }
michael@0 596 if ((unsigned)mpl_significant_bits(&k) < order_k) {
michael@0 597 if (hasModulus || (mp_cmp_z(q) == 0)) {
michael@0 598 /* If we get here, something was wrong with the parameters we
michael@0 599 * were given */
michael@0 600 err = MP_RANGE;
michael@0 601 }
michael@0 602 }
michael@0 603 cleanup:
michael@0 604 mp_clear(&kphi);
michael@0 605 mp_clear(&phi);
michael@0 606 mp_clear(&s);
michael@0 607 mp_clear(&k);
michael@0 608 mp_clear(&r);
michael@0 609 mp_clear(&tmp);
michael@0 610 mp_clear(&sqrt);
michael@0 611 return err;
michael@0 612 }
michael@0 613
michael@0 614 /*
michael@0 615 * take a private key with only a few elements and fill out the missing pieces.
michael@0 616 *
michael@0 617 * All the entries will be overwritten with data allocated out of the arena
michael@0 618 * If no arena is supplied, one will be created.
michael@0 619 *
michael@0 620 * The following fields must be supplied in order for this function
michael@0 621 * to succeed:
michael@0 622 * one of either publicExponent or privateExponent
michael@0 623 * two more of the following 5 parameters.
michael@0 624 * modulus (n)
michael@0 625 * prime1 (p)
michael@0 626 * prime2 (q)
michael@0 627 * publicExponent (e)
michael@0 628 * privateExponent (d)
michael@0 629 *
michael@0 630 * NOTE: if only the publicExponent, privateExponent, and one prime is given,
michael@0 631 * then there may be more than one RSA key that matches that combination.
michael@0 632 *
michael@0 633 * All parameters will be replaced in the key structure with new parameters
michael@0 634 * Allocated out of the arena. There is no attempt to free the old structures.
michael@0 635 * Prime1 will always be greater than prime2 (even if the caller supplies the
michael@0 636 * smaller prime as prime1 or the larger prime as prime2). The parameters are
michael@0 637 * not overwritten on failure.
michael@0 638 *
michael@0 639 * How it works:
michael@0 640 * We can generate all the parameters from:
michael@0 641 * one of the exponents, plus the two primes. (rsa_build_key_from_primes) *
michael@0 642 * If we are given one of the exponents and both primes, we are done.
michael@0 643 * If we are given one of the exponents, the modulus and one prime, we
michael@0 644 * caclulate the second prime by dividing the modulus by the given
michael@0 645 * prime, giving us and exponent and 2 primes.
michael@0 646 * If we are given 2 exponents and either the modulus or one of the primes
michael@0 647 * we calculate k*phi = d*e-1, where k is an integer less than d which
michael@0 648 * divides d*e-1. We find factor k so we can isolate phi.
michael@0 649 * phi = (p-1)(q-1)
michael@0 650 * If one of the primes are given, we can use phi to find the other prime
michael@0 651 * as follows: q = (phi/(p-1)) + 1. We now have 2 primes and an
michael@0 652 * exponent. (NOTE: if more then one prime meets this condition, the
michael@0 653 * operation will fail. See comments elsewhere in this file about this).
michael@0 654 * If the modulus is given, then we can calculate the sum of the primes
michael@0 655 * as follows: s := (p+q), phi = (p-1)(q-1) = pq -p - q +1, pq = n ->
michael@0 656 * phi = n - s + 1, s = n - phi +1. Now that we have s = p+q and n=pq,
michael@0 657 * we can solve our 2 equations and 2 unknowns as follows: q=s-p ->
michael@0 658 * n=p*(s-p)= sp -p^2 -> p^2-sp+n = 0. Using the quadratic to solve for
michael@0 659 * p, p=1/2*(s+ sqrt(s*s-4*n)) [q=1/2*(s-sqrt(s*s-4*n)]. We again have
michael@0 660 * 2 primes and an exponent.
michael@0 661 *
michael@0 662 */
michael@0 663 SECStatus
michael@0 664 RSA_PopulatePrivateKey(RSAPrivateKey *key)
michael@0 665 {
michael@0 666 PLArenaPool *arena = NULL;
michael@0 667 PRBool needPublicExponent = PR_TRUE;
michael@0 668 PRBool needPrivateExponent = PR_TRUE;
michael@0 669 PRBool hasModulus = PR_FALSE;
michael@0 670 unsigned int keySizeInBits = 0;
michael@0 671 int prime_count = 0;
michael@0 672 /* standard RSA nominclature */
michael@0 673 mp_int p, q, e, d, n;
michael@0 674 /* remainder */
michael@0 675 mp_int r;
michael@0 676 mp_err err = 0;
michael@0 677 SECStatus rv = SECFailure;
michael@0 678
michael@0 679 MP_DIGITS(&p) = 0;
michael@0 680 MP_DIGITS(&q) = 0;
michael@0 681 MP_DIGITS(&e) = 0;
michael@0 682 MP_DIGITS(&d) = 0;
michael@0 683 MP_DIGITS(&n) = 0;
michael@0 684 MP_DIGITS(&r) = 0;
michael@0 685 CHECK_MPI_OK( mp_init(&p) );
michael@0 686 CHECK_MPI_OK( mp_init(&q) );
michael@0 687 CHECK_MPI_OK( mp_init(&e) );
michael@0 688 CHECK_MPI_OK( mp_init(&d) );
michael@0 689 CHECK_MPI_OK( mp_init(&n) );
michael@0 690 CHECK_MPI_OK( mp_init(&r) );
michael@0 691
michael@0 692 /* if the key didn't already have an arena, create one. */
michael@0 693 if (key->arena == NULL) {
michael@0 694 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
michael@0 695 if (!arena) {
michael@0 696 goto cleanup;
michael@0 697 }
michael@0 698 key->arena = arena;
michael@0 699 }
michael@0 700
michael@0 701 /* load up the known exponents */
michael@0 702 if (key->publicExponent.data) {
michael@0 703 SECITEM_TO_MPINT(key->publicExponent, &e);
michael@0 704 needPublicExponent = PR_FALSE;
michael@0 705 }
michael@0 706 if (key->privateExponent.data) {
michael@0 707 SECITEM_TO_MPINT(key->privateExponent, &d);
michael@0 708 needPrivateExponent = PR_FALSE;
michael@0 709 }
michael@0 710 if (needPrivateExponent && needPublicExponent) {
michael@0 711 /* Not enough information, we need at least one exponent */
michael@0 712 err = MP_BADARG;
michael@0 713 goto cleanup;
michael@0 714 }
michael@0 715
michael@0 716 /* load up the known primes. If only one prime is given, it will be
michael@0 717 * assigned 'p'. Once we have both primes, well make sure p is the larger.
michael@0 718 * The value prime_count tells us howe many we have acquired.
michael@0 719 */
michael@0 720 if (key->prime1.data) {
michael@0 721 int primeLen = key->prime1.len;
michael@0 722 if (key->prime1.data[0] == 0) {
michael@0 723 primeLen--;
michael@0 724 }
michael@0 725 keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE;
michael@0 726 SECITEM_TO_MPINT(key->prime1, &p);
michael@0 727 prime_count++;
michael@0 728 }
michael@0 729 if (key->prime2.data) {
michael@0 730 int primeLen = key->prime2.len;
michael@0 731 if (key->prime2.data[0] == 0) {
michael@0 732 primeLen--;
michael@0 733 }
michael@0 734 keySizeInBits = primeLen * 2 * PR_BITS_PER_BYTE;
michael@0 735 SECITEM_TO_MPINT(key->prime2, prime_count ? &q : &p);
michael@0 736 prime_count++;
michael@0 737 }
michael@0 738 /* load up the modulus */
michael@0 739 if (key->modulus.data) {
michael@0 740 int modLen = key->modulus.len;
michael@0 741 if (key->modulus.data[0] == 0) {
michael@0 742 modLen--;
michael@0 743 }
michael@0 744 keySizeInBits = modLen * PR_BITS_PER_BYTE;
michael@0 745 SECITEM_TO_MPINT(key->modulus, &n);
michael@0 746 hasModulus = PR_TRUE;
michael@0 747 }
michael@0 748 /* if we have the modulus and one prime, calculate the second. */
michael@0 749 if ((prime_count == 1) && (hasModulus)) {
michael@0 750 mp_div(&n,&p,&q,&r);
michael@0 751 if (mp_cmp_z(&r) != 0) {
michael@0 752 /* p is not a factor or n, fail */
michael@0 753 err = MP_BADARG;
michael@0 754 goto cleanup;
michael@0 755 }
michael@0 756 prime_count++;
michael@0 757 }
michael@0 758
michael@0 759 /* If we didn't have enough primes try to calculate the primes from
michael@0 760 * the exponents */
michael@0 761 if (prime_count < 2) {
michael@0 762 /* if we don't have at least 2 primes at this point, then we need both
michael@0 763 * exponents and one prime or a modulus*/
michael@0 764 if (!needPublicExponent && !needPrivateExponent &&
michael@0 765 ((prime_count > 0) || hasModulus)) {
michael@0 766 CHECK_MPI_OK(rsa_get_primes_from_exponents(&e,&d,&p,&q,
michael@0 767 &n,hasModulus,keySizeInBits));
michael@0 768 } else {
michael@0 769 /* not enough given parameters to get both primes */
michael@0 770 err = MP_BADARG;
michael@0 771 goto cleanup;
michael@0 772 }
michael@0 773 }
michael@0 774
michael@0 775 /* Assure p > q */
michael@0 776 /* NOTE: PKCS #1 does not require p > q, and NSS doesn't use any
michael@0 777 * implementation optimization that requires p > q. We can remove
michael@0 778 * this code in the future.
michael@0 779 */
michael@0 780 if (mp_cmp(&p, &q) < 0)
michael@0 781 mp_exch(&p, &q);
michael@0 782
michael@0 783 /* we now have our 2 primes and at least one exponent, we can fill
michael@0 784 * in the key */
michael@0 785 rv = rsa_build_from_primes(&p, &q,
michael@0 786 &e, needPublicExponent,
michael@0 787 &d, needPrivateExponent,
michael@0 788 key, keySizeInBits);
michael@0 789 cleanup:
michael@0 790 mp_clear(&p);
michael@0 791 mp_clear(&q);
michael@0 792 mp_clear(&e);
michael@0 793 mp_clear(&d);
michael@0 794 mp_clear(&n);
michael@0 795 mp_clear(&r);
michael@0 796 if (err) {
michael@0 797 MP_TO_SEC_ERROR(err);
michael@0 798 rv = SECFailure;
michael@0 799 }
michael@0 800 if (rv && arena) {
michael@0 801 PORT_FreeArena(arena, PR_TRUE);
michael@0 802 key->arena = NULL;
michael@0 803 }
michael@0 804 return rv;
michael@0 805 }
michael@0 806
michael@0 807 static unsigned int
michael@0 808 rsa_modulusLen(SECItem *modulus)
michael@0 809 {
michael@0 810 unsigned char byteZero = modulus->data[0];
michael@0 811 unsigned int modLen = modulus->len - !byteZero;
michael@0 812 return modLen;
michael@0 813 }
michael@0 814
michael@0 815 /*
michael@0 816 ** Perform a raw public-key operation
michael@0 817 ** Length of input and output buffers are equal to key's modulus len.
michael@0 818 */
michael@0 819 SECStatus
michael@0 820 RSA_PublicKeyOp(RSAPublicKey *key,
michael@0 821 unsigned char *output,
michael@0 822 const unsigned char *input)
michael@0 823 {
michael@0 824 unsigned int modLen, expLen, offset;
michael@0 825 mp_int n, e, m, c;
michael@0 826 mp_err err = MP_OKAY;
michael@0 827 SECStatus rv = SECSuccess;
michael@0 828 if (!key || !output || !input) {
michael@0 829 PORT_SetError(SEC_ERROR_INVALID_ARGS);
michael@0 830 return SECFailure;
michael@0 831 }
michael@0 832 MP_DIGITS(&n) = 0;
michael@0 833 MP_DIGITS(&e) = 0;
michael@0 834 MP_DIGITS(&m) = 0;
michael@0 835 MP_DIGITS(&c) = 0;
michael@0 836 CHECK_MPI_OK( mp_init(&n) );
michael@0 837 CHECK_MPI_OK( mp_init(&e) );
michael@0 838 CHECK_MPI_OK( mp_init(&m) );
michael@0 839 CHECK_MPI_OK( mp_init(&c) );
michael@0 840 modLen = rsa_modulusLen(&key->modulus);
michael@0 841 expLen = rsa_modulusLen(&key->publicExponent);
michael@0 842 /* 1. Obtain public key (n, e) */
michael@0 843 if (BAD_RSA_KEY_SIZE(modLen, expLen)) {
michael@0 844 PORT_SetError(SEC_ERROR_INVALID_KEY);
michael@0 845 rv = SECFailure;
michael@0 846 goto cleanup;
michael@0 847 }
michael@0 848 SECITEM_TO_MPINT(key->modulus, &n);
michael@0 849 SECITEM_TO_MPINT(key->publicExponent, &e);
michael@0 850 if (e.used > n.used) {
michael@0 851 /* exponent should not be greater than modulus */
michael@0 852 PORT_SetError(SEC_ERROR_INVALID_KEY);
michael@0 853 rv = SECFailure;
michael@0 854 goto cleanup;
michael@0 855 }
michael@0 856 /* 2. check input out of range (needs to be in range [0..n-1]) */
michael@0 857 offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
michael@0 858 if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
michael@0 859 PORT_SetError(SEC_ERROR_INPUT_LEN);
michael@0 860 rv = SECFailure;
michael@0 861 goto cleanup;
michael@0 862 }
michael@0 863 /* 2 bis. Represent message as integer in range [0..n-1] */
michael@0 864 CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) );
michael@0 865 /* 3. Compute c = m**e mod n */
michael@0 866 #ifdef USE_MPI_EXPT_D
michael@0 867 /* XXX see which is faster */
michael@0 868 if (MP_USED(&e) == 1) {
michael@0 869 CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) );
michael@0 870 } else
michael@0 871 #endif
michael@0 872 CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) );
michael@0 873 /* 4. result c is ciphertext */
michael@0 874 err = mp_to_fixlen_octets(&c, output, modLen);
michael@0 875 if (err >= 0) err = MP_OKAY;
michael@0 876 cleanup:
michael@0 877 mp_clear(&n);
michael@0 878 mp_clear(&e);
michael@0 879 mp_clear(&m);
michael@0 880 mp_clear(&c);
michael@0 881 if (err) {
michael@0 882 MP_TO_SEC_ERROR(err);
michael@0 883 rv = SECFailure;
michael@0 884 }
michael@0 885 return rv;
michael@0 886 }
michael@0 887
michael@0 888 /*
michael@0 889 ** RSA Private key operation (no CRT).
michael@0 890 */
michael@0 891 static SECStatus
michael@0 892 rsa_PrivateKeyOpNoCRT(RSAPrivateKey *key, mp_int *m, mp_int *c, mp_int *n,
michael@0 893 unsigned int modLen)
michael@0 894 {
michael@0 895 mp_int d;
michael@0 896 mp_err err = MP_OKAY;
michael@0 897 SECStatus rv = SECSuccess;
michael@0 898 MP_DIGITS(&d) = 0;
michael@0 899 CHECK_MPI_OK( mp_init(&d) );
michael@0 900 SECITEM_TO_MPINT(key->privateExponent, &d);
michael@0 901 /* 1. m = c**d mod n */
michael@0 902 CHECK_MPI_OK( mp_exptmod(c, &d, n, m) );
michael@0 903 cleanup:
michael@0 904 mp_clear(&d);
michael@0 905 if (err) {
michael@0 906 MP_TO_SEC_ERROR(err);
michael@0 907 rv = SECFailure;
michael@0 908 }
michael@0 909 return rv;
michael@0 910 }
michael@0 911
michael@0 912 /*
michael@0 913 ** RSA Private key operation using CRT.
michael@0 914 */
michael@0 915 static SECStatus
michael@0 916 rsa_PrivateKeyOpCRTNoCheck(RSAPrivateKey *key, mp_int *m, mp_int *c)
michael@0 917 {
michael@0 918 mp_int p, q, d_p, d_q, qInv;
michael@0 919 mp_int m1, m2, h, ctmp;
michael@0 920 mp_err err = MP_OKAY;
michael@0 921 SECStatus rv = SECSuccess;
michael@0 922 MP_DIGITS(&p) = 0;
michael@0 923 MP_DIGITS(&q) = 0;
michael@0 924 MP_DIGITS(&d_p) = 0;
michael@0 925 MP_DIGITS(&d_q) = 0;
michael@0 926 MP_DIGITS(&qInv) = 0;
michael@0 927 MP_DIGITS(&m1) = 0;
michael@0 928 MP_DIGITS(&m2) = 0;
michael@0 929 MP_DIGITS(&h) = 0;
michael@0 930 MP_DIGITS(&ctmp) = 0;
michael@0 931 CHECK_MPI_OK( mp_init(&p) );
michael@0 932 CHECK_MPI_OK( mp_init(&q) );
michael@0 933 CHECK_MPI_OK( mp_init(&d_p) );
michael@0 934 CHECK_MPI_OK( mp_init(&d_q) );
michael@0 935 CHECK_MPI_OK( mp_init(&qInv) );
michael@0 936 CHECK_MPI_OK( mp_init(&m1) );
michael@0 937 CHECK_MPI_OK( mp_init(&m2) );
michael@0 938 CHECK_MPI_OK( mp_init(&h) );
michael@0 939 CHECK_MPI_OK( mp_init(&ctmp) );
michael@0 940 /* copy private key parameters into mp integers */
michael@0 941 SECITEM_TO_MPINT(key->prime1, &p); /* p */
michael@0 942 SECITEM_TO_MPINT(key->prime2, &q); /* q */
michael@0 943 SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */
michael@0 944 SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_q = d mod (q-1) */
michael@0 945 SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */
michael@0 946 /* 1. m1 = c**d_p mod p */
michael@0 947 CHECK_MPI_OK( mp_mod(c, &p, &ctmp) );
michael@0 948 CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) );
michael@0 949 /* 2. m2 = c**d_q mod q */
michael@0 950 CHECK_MPI_OK( mp_mod(c, &q, &ctmp) );
michael@0 951 CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) );
michael@0 952 /* 3. h = (m1 - m2) * qInv mod p */
michael@0 953 CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) );
michael@0 954 CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) );
michael@0 955 /* 4. m = m2 + h * q */
michael@0 956 CHECK_MPI_OK( mp_mul(&h, &q, m) );
michael@0 957 CHECK_MPI_OK( mp_add(m, &m2, m) );
michael@0 958 cleanup:
michael@0 959 mp_clear(&p);
michael@0 960 mp_clear(&q);
michael@0 961 mp_clear(&d_p);
michael@0 962 mp_clear(&d_q);
michael@0 963 mp_clear(&qInv);
michael@0 964 mp_clear(&m1);
michael@0 965 mp_clear(&m2);
michael@0 966 mp_clear(&h);
michael@0 967 mp_clear(&ctmp);
michael@0 968 if (err) {
michael@0 969 MP_TO_SEC_ERROR(err);
michael@0 970 rv = SECFailure;
michael@0 971 }
michael@0 972 return rv;
michael@0 973 }
michael@0 974
michael@0 975 /*
michael@0 976 ** An attack against RSA CRT was described by Boneh, DeMillo, and Lipton in:
michael@0 977 ** "On the Importance of Eliminating Errors in Cryptographic Computations",
michael@0 978 ** http://theory.stanford.edu/~dabo/papers/faults.ps.gz
michael@0 979 **
michael@0 980 ** As a defense against the attack, carry out the private key operation,
michael@0 981 ** followed up with a public key operation to invert the result.
michael@0 982 ** Verify that result against the input.
michael@0 983 */
michael@0 984 static SECStatus
michael@0 985 rsa_PrivateKeyOpCRTCheckedPubKey(RSAPrivateKey *key, mp_int *m, mp_int *c)
michael@0 986 {
michael@0 987 mp_int n, e, v;
michael@0 988 mp_err err = MP_OKAY;
michael@0 989 SECStatus rv = SECSuccess;
michael@0 990 MP_DIGITS(&n) = 0;
michael@0 991 MP_DIGITS(&e) = 0;
michael@0 992 MP_DIGITS(&v) = 0;
michael@0 993 CHECK_MPI_OK( mp_init(&n) );
michael@0 994 CHECK_MPI_OK( mp_init(&e) );
michael@0 995 CHECK_MPI_OK( mp_init(&v) );
michael@0 996 CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, m, c) );
michael@0 997 SECITEM_TO_MPINT(key->modulus, &n);
michael@0 998 SECITEM_TO_MPINT(key->publicExponent, &e);
michael@0 999 /* Perform a public key operation v = m ** e mod n */
michael@0 1000 CHECK_MPI_OK( mp_exptmod(m, &e, &n, &v) );
michael@0 1001 if (mp_cmp(&v, c) != 0) {
michael@0 1002 rv = SECFailure;
michael@0 1003 }
michael@0 1004 cleanup:
michael@0 1005 mp_clear(&n);
michael@0 1006 mp_clear(&e);
michael@0 1007 mp_clear(&v);
michael@0 1008 if (err) {
michael@0 1009 MP_TO_SEC_ERROR(err);
michael@0 1010 rv = SECFailure;
michael@0 1011 }
michael@0 1012 return rv;
michael@0 1013 }
michael@0 1014
michael@0 1015 static PRCallOnceType coBPInit = { 0, 0, 0 };
michael@0 1016 static PRStatus
michael@0 1017 init_blinding_params_list(void)
michael@0 1018 {
michael@0 1019 blindingParamsList.lock = PZ_NewLock(nssILockOther);
michael@0 1020 if (!blindingParamsList.lock) {
michael@0 1021 PORT_SetError(SEC_ERROR_NO_MEMORY);
michael@0 1022 return PR_FAILURE;
michael@0 1023 }
michael@0 1024 blindingParamsList.cVar = PR_NewCondVar( blindingParamsList.lock );
michael@0 1025 if (!blindingParamsList.cVar) {
michael@0 1026 PORT_SetError(SEC_ERROR_NO_MEMORY);
michael@0 1027 return PR_FAILURE;
michael@0 1028 }
michael@0 1029 blindingParamsList.waitCount = 0;
michael@0 1030 PR_INIT_CLIST(&blindingParamsList.head);
michael@0 1031 return PR_SUCCESS;
michael@0 1032 }
michael@0 1033
michael@0 1034 static SECStatus
michael@0 1035 generate_blinding_params(RSAPrivateKey *key, mp_int* f, mp_int* g, mp_int *n,
michael@0 1036 unsigned int modLen)
michael@0 1037 {
michael@0 1038 SECStatus rv = SECSuccess;
michael@0 1039 mp_int e, k;
michael@0 1040 mp_err err = MP_OKAY;
michael@0 1041 unsigned char *kb = NULL;
michael@0 1042
michael@0 1043 MP_DIGITS(&e) = 0;
michael@0 1044 MP_DIGITS(&k) = 0;
michael@0 1045 CHECK_MPI_OK( mp_init(&e) );
michael@0 1046 CHECK_MPI_OK( mp_init(&k) );
michael@0 1047 SECITEM_TO_MPINT(key->publicExponent, &e);
michael@0 1048 /* generate random k < n */
michael@0 1049 kb = PORT_Alloc(modLen);
michael@0 1050 if (!kb) {
michael@0 1051 PORT_SetError(SEC_ERROR_NO_MEMORY);
michael@0 1052 goto cleanup;
michael@0 1053 }
michael@0 1054 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(kb, modLen) );
michael@0 1055 CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, modLen) );
michael@0 1056 /* k < n */
michael@0 1057 CHECK_MPI_OK( mp_mod(&k, n, &k) );
michael@0 1058 /* f = k**e mod n */
michael@0 1059 CHECK_MPI_OK( mp_exptmod(&k, &e, n, f) );
michael@0 1060 /* g = k**-1 mod n */
michael@0 1061 CHECK_MPI_OK( mp_invmod(&k, n, g) );
michael@0 1062 cleanup:
michael@0 1063 if (kb)
michael@0 1064 PORT_ZFree(kb, modLen);
michael@0 1065 mp_clear(&k);
michael@0 1066 mp_clear(&e);
michael@0 1067 if (err) {
michael@0 1068 MP_TO_SEC_ERROR(err);
michael@0 1069 rv = SECFailure;
michael@0 1070 }
michael@0 1071 return rv;
michael@0 1072 }
michael@0 1073
michael@0 1074 static SECStatus
michael@0 1075 init_blinding_params(RSABlindingParams *rsabp, RSAPrivateKey *key,
michael@0 1076 mp_int *n, unsigned int modLen)
michael@0 1077 {
michael@0 1078 blindingParams * bp = rsabp->array;
michael@0 1079 int i = 0;
michael@0 1080
michael@0 1081 /* Initialize the list pointer for the element */
michael@0 1082 PR_INIT_CLIST(&rsabp->link);
michael@0 1083 for (i = 0; i < RSA_BLINDING_PARAMS_MAX_CACHE_SIZE; ++i, ++bp) {
michael@0 1084 bp->next = bp + 1;
michael@0 1085 MP_DIGITS(&bp->f) = 0;
michael@0 1086 MP_DIGITS(&bp->g) = 0;
michael@0 1087 bp->counter = 0;
michael@0 1088 }
michael@0 1089 /* The last bp->next value was initialized with out
michael@0 1090 * of rsabp->array pointer and must be set to NULL
michael@0 1091 */
michael@0 1092 rsabp->array[RSA_BLINDING_PARAMS_MAX_CACHE_SIZE - 1].next = NULL;
michael@0 1093
michael@0 1094 bp = rsabp->array;
michael@0 1095 rsabp->bp = NULL;
michael@0 1096 rsabp->free = bp;
michael@0 1097
michael@0 1098 /* List elements are keyed using the modulus */
michael@0 1099 SECITEM_CopyItem(NULL, &rsabp->modulus, &key->modulus);
michael@0 1100
michael@0 1101 return SECSuccess;
michael@0 1102 }
michael@0 1103
michael@0 1104 static SECStatus
michael@0 1105 get_blinding_params(RSAPrivateKey *key, mp_int *n, unsigned int modLen,
michael@0 1106 mp_int *f, mp_int *g)
michael@0 1107 {
michael@0 1108 RSABlindingParams *rsabp = NULL;
michael@0 1109 blindingParams *bpUnlinked = NULL;
michael@0 1110 blindingParams *bp;
michael@0 1111 PRCList *el;
michael@0 1112 SECStatus rv = SECSuccess;
michael@0 1113 mp_err err = MP_OKAY;
michael@0 1114 int cmp = -1;
michael@0 1115 PRBool holdingLock = PR_FALSE;
michael@0 1116
michael@0 1117 do {
michael@0 1118 if (blindingParamsList.lock == NULL) {
michael@0 1119 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
michael@0 1120 return SECFailure;
michael@0 1121 }
michael@0 1122 /* Acquire the list lock */
michael@0 1123 PZ_Lock(blindingParamsList.lock);
michael@0 1124 holdingLock = PR_TRUE;
michael@0 1125
michael@0 1126 /* Walk the list looking for the private key */
michael@0 1127 for (el = PR_NEXT_LINK(&blindingParamsList.head);
michael@0 1128 el != &blindingParamsList.head;
michael@0 1129 el = PR_NEXT_LINK(el)) {
michael@0 1130 rsabp = (RSABlindingParams *)el;
michael@0 1131 cmp = SECITEM_CompareItem(&rsabp->modulus, &key->modulus);
michael@0 1132 if (cmp >= 0) {
michael@0 1133 /* The key is found or not in the list. */
michael@0 1134 break;
michael@0 1135 }
michael@0 1136 }
michael@0 1137
michael@0 1138 if (cmp) {
michael@0 1139 /* At this point, the key is not in the list. el should point to
michael@0 1140 ** the list element before which this key should be inserted.
michael@0 1141 */
michael@0 1142 rsabp = PORT_ZNew(RSABlindingParams);
michael@0 1143 if (!rsabp) {
michael@0 1144 PORT_SetError(SEC_ERROR_NO_MEMORY);
michael@0 1145 goto cleanup;
michael@0 1146 }
michael@0 1147
michael@0 1148 rv = init_blinding_params(rsabp, key, n, modLen);
michael@0 1149 if (rv != SECSuccess) {
michael@0 1150 PORT_ZFree(rsabp, sizeof(RSABlindingParams));
michael@0 1151 goto cleanup;
michael@0 1152 }
michael@0 1153
michael@0 1154 /* Insert the new element into the list
michael@0 1155 ** If inserting in the middle of the list, el points to the link
michael@0 1156 ** to insert before. Otherwise, the link needs to be appended to
michael@0 1157 ** the end of the list, which is the same as inserting before the
michael@0 1158 ** head (since el would have looped back to the head).
michael@0 1159 */
michael@0 1160 PR_INSERT_BEFORE(&rsabp->link, el);
michael@0 1161 }
michael@0 1162
michael@0 1163 /* We've found (or created) the RSAblindingParams struct for this key.
michael@0 1164 * Now, search its list of ready blinding params for a usable one.
michael@0 1165 */
michael@0 1166 while (0 != (bp = rsabp->bp)) {
michael@0 1167 if (--(bp->counter) > 0) {
michael@0 1168 /* Found a match and there are still remaining uses left */
michael@0 1169 /* Return the parameters */
michael@0 1170 CHECK_MPI_OK( mp_copy(&bp->f, f) );
michael@0 1171 CHECK_MPI_OK( mp_copy(&bp->g, g) );
michael@0 1172
michael@0 1173 PZ_Unlock(blindingParamsList.lock);
michael@0 1174 return SECSuccess;
michael@0 1175 }
michael@0 1176 /* exhausted this one, give its values to caller, and
michael@0 1177 * then retire it.
michael@0 1178 */
michael@0 1179 mp_exch(&bp->f, f);
michael@0 1180 mp_exch(&bp->g, g);
michael@0 1181 mp_clear( &bp->f );
michael@0 1182 mp_clear( &bp->g );
michael@0 1183 bp->counter = 0;
michael@0 1184 /* Move to free list */
michael@0 1185 rsabp->bp = bp->next;
michael@0 1186 bp->next = rsabp->free;
michael@0 1187 rsabp->free = bp;
michael@0 1188 /* In case there're threads waiting for new blinding
michael@0 1189 * value - notify 1 thread the value is ready
michael@0 1190 */
michael@0 1191 if (blindingParamsList.waitCount > 0) {
michael@0 1192 PR_NotifyCondVar( blindingParamsList.cVar );
michael@0 1193 blindingParamsList.waitCount--;
michael@0 1194 }
michael@0 1195 PZ_Unlock(blindingParamsList.lock);
michael@0 1196 return SECSuccess;
michael@0 1197 }
michael@0 1198 /* We did not find a usable set of blinding params. Can we make one? */
michael@0 1199 /* Find a free bp struct. */
michael@0 1200 if ((bp = rsabp->free) != NULL) {
michael@0 1201 /* unlink this bp */
michael@0 1202 rsabp->free = bp->next;
michael@0 1203 bp->next = NULL;
michael@0 1204 bpUnlinked = bp; /* In case we fail */
michael@0 1205
michael@0 1206 PZ_Unlock(blindingParamsList.lock);
michael@0 1207 holdingLock = PR_FALSE;
michael@0 1208 /* generate blinding parameter values for the current thread */
michael@0 1209 CHECK_SEC_OK( generate_blinding_params(key, f, g, n, modLen ) );
michael@0 1210
michael@0 1211 /* put the blinding parameter values into cache */
michael@0 1212 CHECK_MPI_OK( mp_init( &bp->f) );
michael@0 1213 CHECK_MPI_OK( mp_init( &bp->g) );
michael@0 1214 CHECK_MPI_OK( mp_copy( f, &bp->f) );
michael@0 1215 CHECK_MPI_OK( mp_copy( g, &bp->g) );
michael@0 1216
michael@0 1217 /* Put this at head of queue of usable params. */
michael@0 1218 PZ_Lock(blindingParamsList.lock);
michael@0 1219 holdingLock = PR_TRUE;
michael@0 1220 /* initialize RSABlindingParamsStr */
michael@0 1221 bp->counter = RSA_BLINDING_PARAMS_MAX_REUSE;
michael@0 1222 bp->next = rsabp->bp;
michael@0 1223 rsabp->bp = bp;
michael@0 1224 bpUnlinked = NULL;
michael@0 1225 /* In case there're threads waiting for new blinding value
michael@0 1226 * just notify them the value is ready
michael@0 1227 */
michael@0 1228 if (blindingParamsList.waitCount > 0) {
michael@0 1229 PR_NotifyAllCondVar( blindingParamsList.cVar );
michael@0 1230 blindingParamsList.waitCount = 0;
michael@0 1231 }
michael@0 1232 PZ_Unlock(blindingParamsList.lock);
michael@0 1233 return SECSuccess;
michael@0 1234 }
michael@0 1235 /* Here, there are no usable blinding parameters available,
michael@0 1236 * and no free bp blocks, presumably because they're all
michael@0 1237 * actively having parameters generated for them.
michael@0 1238 * So, we need to wait here and not eat up CPU until some
michael@0 1239 * change happens.
michael@0 1240 */
michael@0 1241 blindingParamsList.waitCount++;
michael@0 1242 PR_WaitCondVar( blindingParamsList.cVar, PR_INTERVAL_NO_TIMEOUT );
michael@0 1243 PZ_Unlock(blindingParamsList.lock);
michael@0 1244 holdingLock = PR_FALSE;
michael@0 1245 } while (1);
michael@0 1246
michael@0 1247 cleanup:
michael@0 1248 /* It is possible to reach this after the lock is already released. */
michael@0 1249 if (bpUnlinked) {
michael@0 1250 if (!holdingLock) {
michael@0 1251 PZ_Lock(blindingParamsList.lock);
michael@0 1252 holdingLock = PR_TRUE;
michael@0 1253 }
michael@0 1254 bp = bpUnlinked;
michael@0 1255 mp_clear( &bp->f );
michael@0 1256 mp_clear( &bp->g );
michael@0 1257 bp->counter = 0;
michael@0 1258 /* Must put the unlinked bp back on the free list */
michael@0 1259 bp->next = rsabp->free;
michael@0 1260 rsabp->free = bp;
michael@0 1261 }
michael@0 1262 if (holdingLock) {
michael@0 1263 PZ_Unlock(blindingParamsList.lock);
michael@0 1264 holdingLock = PR_FALSE;
michael@0 1265 }
michael@0 1266 if (err) {
michael@0 1267 MP_TO_SEC_ERROR(err);
michael@0 1268 }
michael@0 1269 return SECFailure;
michael@0 1270 }
michael@0 1271
michael@0 1272 /*
michael@0 1273 ** Perform a raw private-key operation
michael@0 1274 ** Length of input and output buffers are equal to key's modulus len.
michael@0 1275 */
michael@0 1276 static SECStatus
michael@0 1277 rsa_PrivateKeyOp(RSAPrivateKey *key,
michael@0 1278 unsigned char *output,
michael@0 1279 const unsigned char *input,
michael@0 1280 PRBool check)
michael@0 1281 {
michael@0 1282 unsigned int modLen;
michael@0 1283 unsigned int offset;
michael@0 1284 SECStatus rv = SECSuccess;
michael@0 1285 mp_err err;
michael@0 1286 mp_int n, c, m;
michael@0 1287 mp_int f, g;
michael@0 1288 if (!key || !output || !input) {
michael@0 1289 PORT_SetError(SEC_ERROR_INVALID_ARGS);
michael@0 1290 return SECFailure;
michael@0 1291 }
michael@0 1292 /* check input out of range (needs to be in range [0..n-1]) */
michael@0 1293 modLen = rsa_modulusLen(&key->modulus);
michael@0 1294 offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
michael@0 1295 if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
michael@0 1296 PORT_SetError(SEC_ERROR_INVALID_ARGS);
michael@0 1297 return SECFailure;
michael@0 1298 }
michael@0 1299 MP_DIGITS(&n) = 0;
michael@0 1300 MP_DIGITS(&c) = 0;
michael@0 1301 MP_DIGITS(&m) = 0;
michael@0 1302 MP_DIGITS(&f) = 0;
michael@0 1303 MP_DIGITS(&g) = 0;
michael@0 1304 CHECK_MPI_OK( mp_init(&n) );
michael@0 1305 CHECK_MPI_OK( mp_init(&c) );
michael@0 1306 CHECK_MPI_OK( mp_init(&m) );
michael@0 1307 CHECK_MPI_OK( mp_init(&f) );
michael@0 1308 CHECK_MPI_OK( mp_init(&g) );
michael@0 1309 SECITEM_TO_MPINT(key->modulus, &n);
michael@0 1310 OCTETS_TO_MPINT(input, &c, modLen);
michael@0 1311 /* If blinding, compute pre-image of ciphertext by multiplying by
michael@0 1312 ** blinding factor
michael@0 1313 */
michael@0 1314 if (nssRSAUseBlinding) {
michael@0 1315 CHECK_SEC_OK( get_blinding_params(key, &n, modLen, &f, &g) );
michael@0 1316 /* c' = c*f mod n */
michael@0 1317 CHECK_MPI_OK( mp_mulmod(&c, &f, &n, &c) );
michael@0 1318 }
michael@0 1319 /* Do the private key operation m = c**d mod n */
michael@0 1320 if ( key->prime1.len == 0 ||
michael@0 1321 key->prime2.len == 0 ||
michael@0 1322 key->exponent1.len == 0 ||
michael@0 1323 key->exponent2.len == 0 ||
michael@0 1324 key->coefficient.len == 0) {
michael@0 1325 CHECK_SEC_OK( rsa_PrivateKeyOpNoCRT(key, &m, &c, &n, modLen) );
michael@0 1326 } else if (check) {
michael@0 1327 CHECK_SEC_OK( rsa_PrivateKeyOpCRTCheckedPubKey(key, &m, &c) );
michael@0 1328 } else {
michael@0 1329 CHECK_SEC_OK( rsa_PrivateKeyOpCRTNoCheck(key, &m, &c) );
michael@0 1330 }
michael@0 1331 /* If blinding, compute post-image of plaintext by multiplying by
michael@0 1332 ** blinding factor
michael@0 1333 */
michael@0 1334 if (nssRSAUseBlinding) {
michael@0 1335 /* m = m'*g mod n */
michael@0 1336 CHECK_MPI_OK( mp_mulmod(&m, &g, &n, &m) );
michael@0 1337 }
michael@0 1338 err = mp_to_fixlen_octets(&m, output, modLen);
michael@0 1339 if (err >= 0) err = MP_OKAY;
michael@0 1340 cleanup:
michael@0 1341 mp_clear(&n);
michael@0 1342 mp_clear(&c);
michael@0 1343 mp_clear(&m);
michael@0 1344 mp_clear(&f);
michael@0 1345 mp_clear(&g);
michael@0 1346 if (err) {
michael@0 1347 MP_TO_SEC_ERROR(err);
michael@0 1348 rv = SECFailure;
michael@0 1349 }
michael@0 1350 return rv;
michael@0 1351 }
michael@0 1352
michael@0 1353 SECStatus
michael@0 1354 RSA_PrivateKeyOp(RSAPrivateKey *key,
michael@0 1355 unsigned char *output,
michael@0 1356 const unsigned char *input)
michael@0 1357 {
michael@0 1358 return rsa_PrivateKeyOp(key, output, input, PR_FALSE);
michael@0 1359 }
michael@0 1360
michael@0 1361 SECStatus
michael@0 1362 RSA_PrivateKeyOpDoubleChecked(RSAPrivateKey *key,
michael@0 1363 unsigned char *output,
michael@0 1364 const unsigned char *input)
michael@0 1365 {
michael@0 1366 return rsa_PrivateKeyOp(key, output, input, PR_TRUE);
michael@0 1367 }
michael@0 1368
michael@0 1369 SECStatus
michael@0 1370 RSA_PrivateKeyCheck(const RSAPrivateKey *key)
michael@0 1371 {
michael@0 1372 mp_int p, q, n, psub1, qsub1, e, d, d_p, d_q, qInv, res;
michael@0 1373 mp_err err = MP_OKAY;
michael@0 1374 SECStatus rv = SECSuccess;
michael@0 1375 MP_DIGITS(&p) = 0;
michael@0 1376 MP_DIGITS(&q) = 0;
michael@0 1377 MP_DIGITS(&n) = 0;
michael@0 1378 MP_DIGITS(&psub1)= 0;
michael@0 1379 MP_DIGITS(&qsub1)= 0;
michael@0 1380 MP_DIGITS(&e) = 0;
michael@0 1381 MP_DIGITS(&d) = 0;
michael@0 1382 MP_DIGITS(&d_p) = 0;
michael@0 1383 MP_DIGITS(&d_q) = 0;
michael@0 1384 MP_DIGITS(&qInv) = 0;
michael@0 1385 MP_DIGITS(&res) = 0;
michael@0 1386 CHECK_MPI_OK( mp_init(&p) );
michael@0 1387 CHECK_MPI_OK( mp_init(&q) );
michael@0 1388 CHECK_MPI_OK( mp_init(&n) );
michael@0 1389 CHECK_MPI_OK( mp_init(&psub1));
michael@0 1390 CHECK_MPI_OK( mp_init(&qsub1));
michael@0 1391 CHECK_MPI_OK( mp_init(&e) );
michael@0 1392 CHECK_MPI_OK( mp_init(&d) );
michael@0 1393 CHECK_MPI_OK( mp_init(&d_p) );
michael@0 1394 CHECK_MPI_OK( mp_init(&d_q) );
michael@0 1395 CHECK_MPI_OK( mp_init(&qInv) );
michael@0 1396 CHECK_MPI_OK( mp_init(&res) );
michael@0 1397
michael@0 1398 if (!key->modulus.data || !key->prime1.data || !key->prime2.data ||
michael@0 1399 !key->publicExponent.data || !key->privateExponent.data ||
michael@0 1400 !key->exponent1.data || !key->exponent2.data ||
michael@0 1401 !key->coefficient.data) {
michael@0 1402 /* call RSA_PopulatePrivateKey first, if the application wishes to
michael@0 1403 * recover these parameters */
michael@0 1404 err = MP_BADARG;
michael@0 1405 goto cleanup;
michael@0 1406 }
michael@0 1407
michael@0 1408 SECITEM_TO_MPINT(key->modulus, &n);
michael@0 1409 SECITEM_TO_MPINT(key->prime1, &p);
michael@0 1410 SECITEM_TO_MPINT(key->prime2, &q);
michael@0 1411 SECITEM_TO_MPINT(key->publicExponent, &e);
michael@0 1412 SECITEM_TO_MPINT(key->privateExponent, &d);
michael@0 1413 SECITEM_TO_MPINT(key->exponent1, &d_p);
michael@0 1414 SECITEM_TO_MPINT(key->exponent2, &d_q);
michael@0 1415 SECITEM_TO_MPINT(key->coefficient, &qInv);
michael@0 1416 /* p and q must be distinct. */
michael@0 1417 if (mp_cmp(&p, &q) == 0) {
michael@0 1418 rv = SECFailure;
michael@0 1419 goto cleanup;
michael@0 1420 }
michael@0 1421 #define VERIFY_MPI_EQUAL(m1, m2) \
michael@0 1422 if (mp_cmp(m1, m2) != 0) { \
michael@0 1423 rv = SECFailure; \
michael@0 1424 goto cleanup; \
michael@0 1425 }
michael@0 1426 #define VERIFY_MPI_EQUAL_1(m) \
michael@0 1427 if (mp_cmp_d(m, 1) != 0) { \
michael@0 1428 rv = SECFailure; \
michael@0 1429 goto cleanup; \
michael@0 1430 }
michael@0 1431 /* n == p * q */
michael@0 1432 CHECK_MPI_OK( mp_mul(&p, &q, &res) );
michael@0 1433 VERIFY_MPI_EQUAL(&res, &n);
michael@0 1434 /* gcd(e, p-1) == 1 */
michael@0 1435 CHECK_MPI_OK( mp_sub_d(&p, 1, &psub1) );
michael@0 1436 CHECK_MPI_OK( mp_gcd(&e, &psub1, &res) );
michael@0 1437 VERIFY_MPI_EQUAL_1(&res);
michael@0 1438 /* gcd(e, q-1) == 1 */
michael@0 1439 CHECK_MPI_OK( mp_sub_d(&q, 1, &qsub1) );
michael@0 1440 CHECK_MPI_OK( mp_gcd(&e, &qsub1, &res) );
michael@0 1441 VERIFY_MPI_EQUAL_1(&res);
michael@0 1442 /* d*e == 1 mod p-1 */
michael@0 1443 CHECK_MPI_OK( mp_mulmod(&d, &e, &psub1, &res) );
michael@0 1444 VERIFY_MPI_EQUAL_1(&res);
michael@0 1445 /* d*e == 1 mod q-1 */
michael@0 1446 CHECK_MPI_OK( mp_mulmod(&d, &e, &qsub1, &res) );
michael@0 1447 VERIFY_MPI_EQUAL_1(&res);
michael@0 1448 /* d_p == d mod p-1 */
michael@0 1449 CHECK_MPI_OK( mp_mod(&d, &psub1, &res) );
michael@0 1450 VERIFY_MPI_EQUAL(&res, &d_p);
michael@0 1451 /* d_q == d mod q-1 */
michael@0 1452 CHECK_MPI_OK( mp_mod(&d, &qsub1, &res) );
michael@0 1453 VERIFY_MPI_EQUAL(&res, &d_q);
michael@0 1454 /* q * q**-1 == 1 mod p */
michael@0 1455 CHECK_MPI_OK( mp_mulmod(&q, &qInv, &p, &res) );
michael@0 1456 VERIFY_MPI_EQUAL_1(&res);
michael@0 1457
michael@0 1458 cleanup:
michael@0 1459 mp_clear(&n);
michael@0 1460 mp_clear(&p);
michael@0 1461 mp_clear(&q);
michael@0 1462 mp_clear(&psub1);
michael@0 1463 mp_clear(&qsub1);
michael@0 1464 mp_clear(&e);
michael@0 1465 mp_clear(&d);
michael@0 1466 mp_clear(&d_p);
michael@0 1467 mp_clear(&d_q);
michael@0 1468 mp_clear(&qInv);
michael@0 1469 mp_clear(&res);
michael@0 1470 if (err) {
michael@0 1471 MP_TO_SEC_ERROR(err);
michael@0 1472 rv = SECFailure;
michael@0 1473 }
michael@0 1474 return rv;
michael@0 1475 }
michael@0 1476
michael@0 1477 static SECStatus RSA_Init(void)
michael@0 1478 {
michael@0 1479 if (PR_CallOnce(&coBPInit, init_blinding_params_list) != PR_SUCCESS) {
michael@0 1480 PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
michael@0 1481 return SECFailure;
michael@0 1482 }
michael@0 1483 return SECSuccess;
michael@0 1484 }
michael@0 1485
michael@0 1486 SECStatus BL_Init(void)
michael@0 1487 {
michael@0 1488 return RSA_Init();
michael@0 1489 }
michael@0 1490
michael@0 1491 /* cleanup at shutdown */
michael@0 1492 void RSA_Cleanup(void)
michael@0 1493 {
michael@0 1494 blindingParams * bp = NULL;
michael@0 1495 if (!coBPInit.initialized)
michael@0 1496 return;
michael@0 1497
michael@0 1498 while (!PR_CLIST_IS_EMPTY(&blindingParamsList.head)) {
michael@0 1499 RSABlindingParams *rsabp =
michael@0 1500 (RSABlindingParams *)PR_LIST_HEAD(&blindingParamsList.head);
michael@0 1501 PR_REMOVE_LINK(&rsabp->link);
michael@0 1502 /* clear parameters cache */
michael@0 1503 while (rsabp->bp != NULL) {
michael@0 1504 bp = rsabp->bp;
michael@0 1505 rsabp->bp = rsabp->bp->next;
michael@0 1506 mp_clear( &bp->f );
michael@0 1507 mp_clear( &bp->g );
michael@0 1508 }
michael@0 1509 SECITEM_FreeItem(&rsabp->modulus,PR_FALSE);
michael@0 1510 PORT_Free(rsabp);
michael@0 1511 }
michael@0 1512
michael@0 1513 if (blindingParamsList.cVar) {
michael@0 1514 PR_DestroyCondVar(blindingParamsList.cVar);
michael@0 1515 blindingParamsList.cVar = NULL;
michael@0 1516 }
michael@0 1517
michael@0 1518 if (blindingParamsList.lock) {
michael@0 1519 SKIP_AFTER_FORK(PZ_DestroyLock(blindingParamsList.lock));
michael@0 1520 blindingParamsList.lock = NULL;
michael@0 1521 }
michael@0 1522
michael@0 1523 coBPInit.initialized = 0;
michael@0 1524 coBPInit.inProgress = 0;
michael@0 1525 coBPInit.status = 0;
michael@0 1526 }
michael@0 1527
michael@0 1528 /*
michael@0 1529 * need a central place for this function to free up all the memory that
michael@0 1530 * free_bl may have allocated along the way. Currently only RSA does this,
michael@0 1531 * so I've put it here for now.
michael@0 1532 */
michael@0 1533 void BL_Cleanup(void)
michael@0 1534 {
michael@0 1535 RSA_Cleanup();
michael@0 1536 }
michael@0 1537
michael@0 1538 PRBool bl_parentForkedAfterC_Initialize;
michael@0 1539
michael@0 1540 /*
michael@0 1541 * Set fork flag so it can be tested in SKIP_AFTER_FORK on relevant platforms.
michael@0 1542 */
michael@0 1543 void BL_SetForkState(PRBool forked)
michael@0 1544 {
michael@0 1545 bl_parentForkedAfterC_Initialize = forked;
michael@0 1546 }
michael@0 1547

mercurial