Thu, 22 Jan 2015 13:21:57 +0100
Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6
michael@0 | 1 | /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- |
michael@0 | 2 | * vim: sw=2 ts=2 et lcs=trail\:.,tab\:>~ : |
michael@0 | 3 | * This Source Code Form is subject to the terms of the Mozilla Public |
michael@0 | 4 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
michael@0 | 5 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
michael@0 | 6 | |
michael@0 | 7 | #include "mozilla/ArrayUtils.h" |
michael@0 | 8 | |
michael@0 | 9 | #include "mozStorageSQLFunctions.h" |
michael@0 | 10 | #include "nsUnicharUtils.h" |
michael@0 | 11 | #include <algorithm> |
michael@0 | 12 | |
michael@0 | 13 | namespace mozilla { |
michael@0 | 14 | namespace storage { |
michael@0 | 15 | |
michael@0 | 16 | //////////////////////////////////////////////////////////////////////////////// |
michael@0 | 17 | //// Local Helper Functions |
michael@0 | 18 | |
michael@0 | 19 | namespace { |
michael@0 | 20 | |
michael@0 | 21 | /** |
michael@0 | 22 | * Performs the LIKE comparison of a string against a pattern. For more detail |
michael@0 | 23 | * see http://www.sqlite.org/lang_expr.html#like. |
michael@0 | 24 | * |
michael@0 | 25 | * @param aPatternItr |
michael@0 | 26 | * An iterator at the start of the pattern to check for. |
michael@0 | 27 | * @param aPatternEnd |
michael@0 | 28 | * An iterator at the end of the pattern to check for. |
michael@0 | 29 | * @param aStringItr |
michael@0 | 30 | * An iterator at the start of the string to check for the pattern. |
michael@0 | 31 | * @param aStringEnd |
michael@0 | 32 | * An iterator at the end of the string to check for the pattern. |
michael@0 | 33 | * @param aEscapeChar |
michael@0 | 34 | * The character to use for escaping symbols in the pattern. |
michael@0 | 35 | * @return 1 if the pattern is found, 0 otherwise. |
michael@0 | 36 | */ |
michael@0 | 37 | int |
michael@0 | 38 | likeCompare(nsAString::const_iterator aPatternItr, |
michael@0 | 39 | nsAString::const_iterator aPatternEnd, |
michael@0 | 40 | nsAString::const_iterator aStringItr, |
michael@0 | 41 | nsAString::const_iterator aStringEnd, |
michael@0 | 42 | char16_t aEscapeChar) |
michael@0 | 43 | { |
michael@0 | 44 | const char16_t MATCH_ALL('%'); |
michael@0 | 45 | const char16_t MATCH_ONE('_'); |
michael@0 | 46 | |
michael@0 | 47 | bool lastWasEscape = false; |
michael@0 | 48 | while (aPatternItr != aPatternEnd) { |
michael@0 | 49 | /** |
michael@0 | 50 | * What we do in here is take a look at each character from the input |
michael@0 | 51 | * pattern, and do something with it. There are 4 possibilities: |
michael@0 | 52 | * 1) character is an un-escaped match-all character |
michael@0 | 53 | * 2) character is an un-escaped match-one character |
michael@0 | 54 | * 3) character is an un-escaped escape character |
michael@0 | 55 | * 4) character is not any of the above |
michael@0 | 56 | */ |
michael@0 | 57 | if (!lastWasEscape && *aPatternItr == MATCH_ALL) { |
michael@0 | 58 | // CASE 1 |
michael@0 | 59 | /** |
michael@0 | 60 | * Now we need to skip any MATCH_ALL or MATCH_ONE characters that follow a |
michael@0 | 61 | * MATCH_ALL character. For each MATCH_ONE character, skip one character |
michael@0 | 62 | * in the pattern string. |
michael@0 | 63 | */ |
michael@0 | 64 | while (*aPatternItr == MATCH_ALL || *aPatternItr == MATCH_ONE) { |
michael@0 | 65 | if (*aPatternItr == MATCH_ONE) { |
michael@0 | 66 | // If we've hit the end of the string we are testing, no match |
michael@0 | 67 | if (aStringItr == aStringEnd) |
michael@0 | 68 | return 0; |
michael@0 | 69 | aStringItr++; |
michael@0 | 70 | } |
michael@0 | 71 | aPatternItr++; |
michael@0 | 72 | } |
michael@0 | 73 | |
michael@0 | 74 | // If we've hit the end of the pattern string, match |
michael@0 | 75 | if (aPatternItr == aPatternEnd) |
michael@0 | 76 | return 1; |
michael@0 | 77 | |
michael@0 | 78 | while (aStringItr != aStringEnd) { |
michael@0 | 79 | if (likeCompare(aPatternItr, aPatternEnd, aStringItr, aStringEnd, |
michael@0 | 80 | aEscapeChar)) { |
michael@0 | 81 | // we've hit a match, so indicate this |
michael@0 | 82 | return 1; |
michael@0 | 83 | } |
michael@0 | 84 | aStringItr++; |
michael@0 | 85 | } |
michael@0 | 86 | |
michael@0 | 87 | // No match |
michael@0 | 88 | return 0; |
michael@0 | 89 | } |
michael@0 | 90 | else if (!lastWasEscape && *aPatternItr == MATCH_ONE) { |
michael@0 | 91 | // CASE 2 |
michael@0 | 92 | if (aStringItr == aStringEnd) { |
michael@0 | 93 | // If we've hit the end of the string we are testing, no match |
michael@0 | 94 | return 0; |
michael@0 | 95 | } |
michael@0 | 96 | aStringItr++; |
michael@0 | 97 | lastWasEscape = false; |
michael@0 | 98 | } |
michael@0 | 99 | else if (!lastWasEscape && *aPatternItr == aEscapeChar) { |
michael@0 | 100 | // CASE 3 |
michael@0 | 101 | lastWasEscape = true; |
michael@0 | 102 | } |
michael@0 | 103 | else { |
michael@0 | 104 | // CASE 4 |
michael@0 | 105 | if (::ToUpperCase(*aStringItr) != ::ToUpperCase(*aPatternItr)) { |
michael@0 | 106 | // If we've hit a point where the strings don't match, there is no match |
michael@0 | 107 | return 0; |
michael@0 | 108 | } |
michael@0 | 109 | aStringItr++; |
michael@0 | 110 | lastWasEscape = false; |
michael@0 | 111 | } |
michael@0 | 112 | |
michael@0 | 113 | aPatternItr++; |
michael@0 | 114 | } |
michael@0 | 115 | |
michael@0 | 116 | return aStringItr == aStringEnd; |
michael@0 | 117 | } |
michael@0 | 118 | |
michael@0 | 119 | /** |
michael@0 | 120 | * This class manages a dynamic array. It can represent an array of any |
michael@0 | 121 | * reasonable size, but if the array is "N" elements or smaller, it will be |
michael@0 | 122 | * stored using fixed space inside the auto array itself. If the auto array |
michael@0 | 123 | * is a local variable, this internal storage will be allocated cheaply on the |
michael@0 | 124 | * stack, similar to nsAutoString. If a larger size is requested, the memory |
michael@0 | 125 | * will be dynamically allocated from the heap. Since the destructor will |
michael@0 | 126 | * free any heap-allocated memory, client code doesn't need to care where the |
michael@0 | 127 | * memory came from. |
michael@0 | 128 | */ |
michael@0 | 129 | template <class T, size_t N> class AutoArray |
michael@0 | 130 | { |
michael@0 | 131 | |
michael@0 | 132 | public: |
michael@0 | 133 | |
michael@0 | 134 | AutoArray(size_t size) |
michael@0 | 135 | : mBuffer(size <= N ? mAutoBuffer : new T[size]) |
michael@0 | 136 | { |
michael@0 | 137 | } |
michael@0 | 138 | |
michael@0 | 139 | ~AutoArray() |
michael@0 | 140 | { |
michael@0 | 141 | if (mBuffer != mAutoBuffer) |
michael@0 | 142 | delete[] mBuffer; |
michael@0 | 143 | } |
michael@0 | 144 | |
michael@0 | 145 | /** |
michael@0 | 146 | * Return the pointer to the allocated array. |
michael@0 | 147 | * @note If the array allocation failed, get() will return nullptr! |
michael@0 | 148 | * |
michael@0 | 149 | * @return the pointer to the allocated array |
michael@0 | 150 | */ |
michael@0 | 151 | T *get() |
michael@0 | 152 | { |
michael@0 | 153 | return mBuffer; |
michael@0 | 154 | } |
michael@0 | 155 | |
michael@0 | 156 | private: |
michael@0 | 157 | T *mBuffer; // Points to mAutoBuffer if we can use it, heap otherwise. |
michael@0 | 158 | T mAutoBuffer[N]; // The internal memory buffer that we use if we can. |
michael@0 | 159 | }; |
michael@0 | 160 | |
michael@0 | 161 | /** |
michael@0 | 162 | * Compute the Levenshtein Edit Distance between two strings. |
michael@0 | 163 | * |
michael@0 | 164 | * @param aStringS |
michael@0 | 165 | * a string |
michael@0 | 166 | * @param aStringT |
michael@0 | 167 | * another string |
michael@0 | 168 | * @param _result |
michael@0 | 169 | * an outparam that will receive the edit distance between the arguments |
michael@0 | 170 | * @return a Sqlite result code, e.g. SQLITE_OK, SQLITE_NOMEM, etc. |
michael@0 | 171 | */ |
michael@0 | 172 | int |
michael@0 | 173 | levenshteinDistance(const nsAString &aStringS, |
michael@0 | 174 | const nsAString &aStringT, |
michael@0 | 175 | int *_result) |
michael@0 | 176 | { |
michael@0 | 177 | // Set the result to a non-sensical value in case we encounter an error. |
michael@0 | 178 | *_result = -1; |
michael@0 | 179 | |
michael@0 | 180 | const uint32_t sLen = aStringS.Length(); |
michael@0 | 181 | const uint32_t tLen = aStringT.Length(); |
michael@0 | 182 | |
michael@0 | 183 | if (sLen == 0) { |
michael@0 | 184 | *_result = tLen; |
michael@0 | 185 | return SQLITE_OK; |
michael@0 | 186 | } |
michael@0 | 187 | if (tLen == 0) { |
michael@0 | 188 | *_result = sLen; |
michael@0 | 189 | return SQLITE_OK; |
michael@0 | 190 | } |
michael@0 | 191 | |
michael@0 | 192 | // Notionally, Levenshtein Distance is computed in a matrix. If we |
michael@0 | 193 | // assume s = "span" and t = "spam", the matrix would look like this: |
michael@0 | 194 | // s --> |
michael@0 | 195 | // t s p a n |
michael@0 | 196 | // | 0 1 2 3 4 |
michael@0 | 197 | // V s 1 * * * * |
michael@0 | 198 | // p 2 * * * * |
michael@0 | 199 | // a 3 * * * * |
michael@0 | 200 | // m 4 * * * * |
michael@0 | 201 | // |
michael@0 | 202 | // Note that the row width is sLen + 1 and the column height is tLen + 1, |
michael@0 | 203 | // where sLen is the length of the string "s" and tLen is the length of "t". |
michael@0 | 204 | // The first row and the first column are initialized as shown, and |
michael@0 | 205 | // the algorithm computes the remaining cells row-by-row, and |
michael@0 | 206 | // left-to-right within each row. The computation only requires that |
michael@0 | 207 | // we be able to see the current row and the previous one. |
michael@0 | 208 | |
michael@0 | 209 | // Allocate memory for two rows. Use AutoArray's to manage the memory |
michael@0 | 210 | // so we don't have to explicitly free it, and so we can avoid the expense |
michael@0 | 211 | // of memory allocations for relatively small strings. |
michael@0 | 212 | AutoArray<int, nsAutoString::kDefaultStorageSize> row1(sLen + 1); |
michael@0 | 213 | AutoArray<int, nsAutoString::kDefaultStorageSize> row2(sLen + 1); |
michael@0 | 214 | |
michael@0 | 215 | // Declare the raw pointers that will actually be used to access the memory. |
michael@0 | 216 | int *prevRow = row1.get(); |
michael@0 | 217 | NS_ENSURE_TRUE(prevRow, SQLITE_NOMEM); |
michael@0 | 218 | int *currRow = row2.get(); |
michael@0 | 219 | NS_ENSURE_TRUE(currRow, SQLITE_NOMEM); |
michael@0 | 220 | |
michael@0 | 221 | // Initialize the first row. |
michael@0 | 222 | for (uint32_t i = 0; i <= sLen; i++) |
michael@0 | 223 | prevRow[i] = i; |
michael@0 | 224 | |
michael@0 | 225 | const char16_t *s = aStringS.BeginReading(); |
michael@0 | 226 | const char16_t *t = aStringT.BeginReading(); |
michael@0 | 227 | |
michael@0 | 228 | // Compute the empty cells in the "matrix" row-by-row, starting with |
michael@0 | 229 | // the second row. |
michael@0 | 230 | for (uint32_t ti = 1; ti <= tLen; ti++) { |
michael@0 | 231 | |
michael@0 | 232 | // Initialize the first cell in this row. |
michael@0 | 233 | currRow[0] = ti; |
michael@0 | 234 | |
michael@0 | 235 | // Get the character from "t" that corresponds to this row. |
michael@0 | 236 | const char16_t tch = t[ti - 1]; |
michael@0 | 237 | |
michael@0 | 238 | // Compute the remaining cells in this row, left-to-right, |
michael@0 | 239 | // starting at the second column (and first character of "s"). |
michael@0 | 240 | for (uint32_t si = 1; si <= sLen; si++) { |
michael@0 | 241 | |
michael@0 | 242 | // Get the character from "s" that corresponds to this column, |
michael@0 | 243 | // compare it to the t-character, and compute the "cost". |
michael@0 | 244 | const char16_t sch = s[si - 1]; |
michael@0 | 245 | int cost = (sch == tch) ? 0 : 1; |
michael@0 | 246 | |
michael@0 | 247 | // ............ We want to calculate the value of cell "d" from |
michael@0 | 248 | // ...ab....... the previously calculated (or initialized) cells |
michael@0 | 249 | // ...cd....... "a", "b", and "c", where d = min(a', b', c'). |
michael@0 | 250 | // ............ |
michael@0 | 251 | int aPrime = prevRow[si - 1] + cost; |
michael@0 | 252 | int bPrime = prevRow[si] + 1; |
michael@0 | 253 | int cPrime = currRow[si - 1] + 1; |
michael@0 | 254 | currRow[si] = std::min(aPrime, std::min(bPrime, cPrime)); |
michael@0 | 255 | } |
michael@0 | 256 | |
michael@0 | 257 | // Advance to the next row. The current row becomes the previous |
michael@0 | 258 | // row and we recycle the old previous row as the new current row. |
michael@0 | 259 | // We don't need to re-initialize the new current row since we will |
michael@0 | 260 | // rewrite all of its cells anyway. |
michael@0 | 261 | int *oldPrevRow = prevRow; |
michael@0 | 262 | prevRow = currRow; |
michael@0 | 263 | currRow = oldPrevRow; |
michael@0 | 264 | } |
michael@0 | 265 | |
michael@0 | 266 | // The final result is the value of the last cell in the last row. |
michael@0 | 267 | // Note that that's now in the "previous" row, since we just swapped them. |
michael@0 | 268 | *_result = prevRow[sLen]; |
michael@0 | 269 | return SQLITE_OK; |
michael@0 | 270 | } |
michael@0 | 271 | |
michael@0 | 272 | // This struct is used only by registerFunctions below, but ISO C++98 forbids |
michael@0 | 273 | // instantiating a template dependent on a locally-defined type. Boo-urns! |
michael@0 | 274 | struct Functions { |
michael@0 | 275 | const char *zName; |
michael@0 | 276 | int nArg; |
michael@0 | 277 | int enc; |
michael@0 | 278 | void *pContext; |
michael@0 | 279 | void (*xFunc)(::sqlite3_context*, int, sqlite3_value**); |
michael@0 | 280 | }; |
michael@0 | 281 | |
michael@0 | 282 | } // anonymous namespace |
michael@0 | 283 | |
michael@0 | 284 | //////////////////////////////////////////////////////////////////////////////// |
michael@0 | 285 | //// Exposed Functions |
michael@0 | 286 | |
michael@0 | 287 | int |
michael@0 | 288 | registerFunctions(sqlite3 *aDB) |
michael@0 | 289 | { |
michael@0 | 290 | Functions functions[] = { |
michael@0 | 291 | {"lower", |
michael@0 | 292 | 1, |
michael@0 | 293 | SQLITE_UTF16, |
michael@0 | 294 | 0, |
michael@0 | 295 | caseFunction}, |
michael@0 | 296 | {"lower", |
michael@0 | 297 | 1, |
michael@0 | 298 | SQLITE_UTF8, |
michael@0 | 299 | 0, |
michael@0 | 300 | caseFunction}, |
michael@0 | 301 | {"upper", |
michael@0 | 302 | 1, |
michael@0 | 303 | SQLITE_UTF16, |
michael@0 | 304 | (void*)1, |
michael@0 | 305 | caseFunction}, |
michael@0 | 306 | {"upper", |
michael@0 | 307 | 1, |
michael@0 | 308 | SQLITE_UTF8, |
michael@0 | 309 | (void*)1, |
michael@0 | 310 | caseFunction}, |
michael@0 | 311 | |
michael@0 | 312 | {"like", |
michael@0 | 313 | 2, |
michael@0 | 314 | SQLITE_UTF16, |
michael@0 | 315 | 0, |
michael@0 | 316 | likeFunction}, |
michael@0 | 317 | {"like", |
michael@0 | 318 | 2, |
michael@0 | 319 | SQLITE_UTF8, |
michael@0 | 320 | 0, |
michael@0 | 321 | likeFunction}, |
michael@0 | 322 | {"like", |
michael@0 | 323 | 3, |
michael@0 | 324 | SQLITE_UTF16, |
michael@0 | 325 | 0, |
michael@0 | 326 | likeFunction}, |
michael@0 | 327 | {"like", |
michael@0 | 328 | 3, |
michael@0 | 329 | SQLITE_UTF8, |
michael@0 | 330 | 0, |
michael@0 | 331 | likeFunction}, |
michael@0 | 332 | |
michael@0 | 333 | {"levenshteinDistance", |
michael@0 | 334 | 2, |
michael@0 | 335 | SQLITE_UTF16, |
michael@0 | 336 | 0, |
michael@0 | 337 | levenshteinDistanceFunction}, |
michael@0 | 338 | {"levenshteinDistance", |
michael@0 | 339 | 2, |
michael@0 | 340 | SQLITE_UTF8, |
michael@0 | 341 | 0, |
michael@0 | 342 | levenshteinDistanceFunction}, |
michael@0 | 343 | }; |
michael@0 | 344 | |
michael@0 | 345 | int rv = SQLITE_OK; |
michael@0 | 346 | for (size_t i = 0; SQLITE_OK == rv && i < ArrayLength(functions); ++i) { |
michael@0 | 347 | struct Functions *p = &functions[i]; |
michael@0 | 348 | rv = ::sqlite3_create_function(aDB, p->zName, p->nArg, p->enc, p->pContext, |
michael@0 | 349 | p->xFunc, nullptr, nullptr); |
michael@0 | 350 | } |
michael@0 | 351 | |
michael@0 | 352 | return rv; |
michael@0 | 353 | } |
michael@0 | 354 | |
michael@0 | 355 | //////////////////////////////////////////////////////////////////////////////// |
michael@0 | 356 | //// SQL Functions |
michael@0 | 357 | |
michael@0 | 358 | void |
michael@0 | 359 | caseFunction(sqlite3_context *aCtx, |
michael@0 | 360 | int aArgc, |
michael@0 | 361 | sqlite3_value **aArgv) |
michael@0 | 362 | { |
michael@0 | 363 | NS_ASSERTION(1 == aArgc, "Invalid number of arguments!"); |
michael@0 | 364 | |
michael@0 | 365 | nsAutoString data(static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[0]))); |
michael@0 | 366 | bool toUpper = ::sqlite3_user_data(aCtx) ? true : false; |
michael@0 | 367 | |
michael@0 | 368 | if (toUpper) |
michael@0 | 369 | ::ToUpperCase(data); |
michael@0 | 370 | else |
michael@0 | 371 | ::ToLowerCase(data); |
michael@0 | 372 | |
michael@0 | 373 | // Set the result. |
michael@0 | 374 | ::sqlite3_result_text16(aCtx, data.get(), -1, SQLITE_TRANSIENT); |
michael@0 | 375 | } |
michael@0 | 376 | |
michael@0 | 377 | /** |
michael@0 | 378 | * This implements the like() SQL function. This is used by the LIKE operator. |
michael@0 | 379 | * The SQL statement 'A LIKE B' is implemented as 'like(B, A)', and if there is |
michael@0 | 380 | * an escape character, say E, it is implemented as 'like(B, A, E)'. |
michael@0 | 381 | */ |
michael@0 | 382 | void |
michael@0 | 383 | likeFunction(sqlite3_context *aCtx, |
michael@0 | 384 | int aArgc, |
michael@0 | 385 | sqlite3_value **aArgv) |
michael@0 | 386 | { |
michael@0 | 387 | NS_ASSERTION(2 == aArgc || 3 == aArgc, "Invalid number of arguments!"); |
michael@0 | 388 | |
michael@0 | 389 | if (::sqlite3_value_bytes(aArgv[0]) > SQLITE_MAX_LIKE_PATTERN_LENGTH) { |
michael@0 | 390 | ::sqlite3_result_error(aCtx, "LIKE or GLOB pattern too complex", |
michael@0 | 391 | SQLITE_TOOBIG); |
michael@0 | 392 | return; |
michael@0 | 393 | } |
michael@0 | 394 | |
michael@0 | 395 | if (!::sqlite3_value_text16(aArgv[0]) || !::sqlite3_value_text16(aArgv[1])) |
michael@0 | 396 | return; |
michael@0 | 397 | |
michael@0 | 398 | nsDependentString A(static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[1]))); |
michael@0 | 399 | nsDependentString B(static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[0]))); |
michael@0 | 400 | NS_ASSERTION(!B.IsEmpty(), "LIKE string must not be null!"); |
michael@0 | 401 | |
michael@0 | 402 | char16_t E = 0; |
michael@0 | 403 | if (3 == aArgc) |
michael@0 | 404 | E = static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[2]))[0]; |
michael@0 | 405 | |
michael@0 | 406 | nsAString::const_iterator itrString, endString; |
michael@0 | 407 | A.BeginReading(itrString); |
michael@0 | 408 | A.EndReading(endString); |
michael@0 | 409 | nsAString::const_iterator itrPattern, endPattern; |
michael@0 | 410 | B.BeginReading(itrPattern); |
michael@0 | 411 | B.EndReading(endPattern); |
michael@0 | 412 | ::sqlite3_result_int(aCtx, likeCompare(itrPattern, endPattern, itrString, |
michael@0 | 413 | endString, E)); |
michael@0 | 414 | } |
michael@0 | 415 | |
michael@0 | 416 | void levenshteinDistanceFunction(sqlite3_context *aCtx, |
michael@0 | 417 | int aArgc, |
michael@0 | 418 | sqlite3_value **aArgv) |
michael@0 | 419 | { |
michael@0 | 420 | NS_ASSERTION(2 == aArgc, "Invalid number of arguments!"); |
michael@0 | 421 | |
michael@0 | 422 | // If either argument is a SQL NULL, then return SQL NULL. |
michael@0 | 423 | if (::sqlite3_value_type(aArgv[0]) == SQLITE_NULL || |
michael@0 | 424 | ::sqlite3_value_type(aArgv[1]) == SQLITE_NULL) { |
michael@0 | 425 | ::sqlite3_result_null(aCtx); |
michael@0 | 426 | return; |
michael@0 | 427 | } |
michael@0 | 428 | |
michael@0 | 429 | int aLen = ::sqlite3_value_bytes16(aArgv[0]) / sizeof(char16_t); |
michael@0 | 430 | const char16_t *a = static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[0])); |
michael@0 | 431 | |
michael@0 | 432 | int bLen = ::sqlite3_value_bytes16(aArgv[1]) / sizeof(char16_t); |
michael@0 | 433 | const char16_t *b = static_cast<const char16_t *>(::sqlite3_value_text16(aArgv[1])); |
michael@0 | 434 | |
michael@0 | 435 | // Compute the Levenshtein Distance, and return the result (or error). |
michael@0 | 436 | int distance = -1; |
michael@0 | 437 | const nsDependentString A(a, aLen); |
michael@0 | 438 | const nsDependentString B(b, bLen); |
michael@0 | 439 | int status = levenshteinDistance(A, B, &distance); |
michael@0 | 440 | if (status == SQLITE_OK) { |
michael@0 | 441 | ::sqlite3_result_int(aCtx, distance); |
michael@0 | 442 | } |
michael@0 | 443 | else if (status == SQLITE_NOMEM) { |
michael@0 | 444 | ::sqlite3_result_error_nomem(aCtx); |
michael@0 | 445 | } |
michael@0 | 446 | else { |
michael@0 | 447 | ::sqlite3_result_error(aCtx, "User function returned error code", -1); |
michael@0 | 448 | } |
michael@0 | 449 | } |
michael@0 | 450 | |
michael@0 | 451 | } // namespace storage |
michael@0 | 452 | } // namespace mozilla |