Thu, 15 Jan 2015 21:03:48 +0100
Integrate friendly tips from Tor colleagues to make (or not) 4.5 alpha 3;
This includes removal of overloaded (but unused) methods, and addition of
a overlooked call to DataStruct::SetData(nsISupports, uint32_t, bool.)
michael@0 | 1 | |
michael@0 | 2 | /* |
michael@0 | 3 | * Copyright 2009 The Android Open Source Project |
michael@0 | 4 | * |
michael@0 | 5 | * Use of this source code is governed by a BSD-style license that can be |
michael@0 | 6 | * found in the LICENSE file. |
michael@0 | 7 | */ |
michael@0 | 8 | |
michael@0 | 9 | |
michael@0 | 10 | #include "SkEdgeClipper.h" |
michael@0 | 11 | #include "SkGeometry.h" |
michael@0 | 12 | |
michael@0 | 13 | static bool quick_reject(const SkRect& bounds, const SkRect& clip) { |
michael@0 | 14 | return bounds.fTop >= clip.fBottom || bounds.fBottom <= clip.fTop; |
michael@0 | 15 | } |
michael@0 | 16 | |
michael@0 | 17 | static inline void clamp_le(SkScalar& value, SkScalar max) { |
michael@0 | 18 | if (value > max) { |
michael@0 | 19 | value = max; |
michael@0 | 20 | } |
michael@0 | 21 | } |
michael@0 | 22 | |
michael@0 | 23 | static inline void clamp_ge(SkScalar& value, SkScalar min) { |
michael@0 | 24 | if (value < min) { |
michael@0 | 25 | value = min; |
michael@0 | 26 | } |
michael@0 | 27 | } |
michael@0 | 28 | |
michael@0 | 29 | /* src[] must be monotonic in Y. This routine copies src into dst, and sorts |
michael@0 | 30 | it to be increasing in Y. If it had to reverse the order of the points, |
michael@0 | 31 | it returns true, otherwise it returns false |
michael@0 | 32 | */ |
michael@0 | 33 | static bool sort_increasing_Y(SkPoint dst[], const SkPoint src[], int count) { |
michael@0 | 34 | // we need the data to be monotonically increasing in Y |
michael@0 | 35 | if (src[0].fY > src[count - 1].fY) { |
michael@0 | 36 | for (int i = 0; i < count; i++) { |
michael@0 | 37 | dst[i] = src[count - i - 1]; |
michael@0 | 38 | } |
michael@0 | 39 | return true; |
michael@0 | 40 | } else { |
michael@0 | 41 | memcpy(dst, src, count * sizeof(SkPoint)); |
michael@0 | 42 | return false; |
michael@0 | 43 | } |
michael@0 | 44 | } |
michael@0 | 45 | |
michael@0 | 46 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 47 | |
michael@0 | 48 | static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2, |
michael@0 | 49 | SkScalar target, SkScalar* t) { |
michael@0 | 50 | /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2 |
michael@0 | 51 | * We solve for t, using quadratic equation, hence we have to rearrange |
michael@0 | 52 | * our cooefficents to look like At^2 + Bt + C |
michael@0 | 53 | */ |
michael@0 | 54 | SkScalar A = c0 - c1 - c1 + c2; |
michael@0 | 55 | SkScalar B = 2*(c1 - c0); |
michael@0 | 56 | SkScalar C = c0 - target; |
michael@0 | 57 | |
michael@0 | 58 | SkScalar roots[2]; // we only expect one, but make room for 2 for safety |
michael@0 | 59 | int count = SkFindUnitQuadRoots(A, B, C, roots); |
michael@0 | 60 | if (count) { |
michael@0 | 61 | *t = roots[0]; |
michael@0 | 62 | return true; |
michael@0 | 63 | } |
michael@0 | 64 | return false; |
michael@0 | 65 | } |
michael@0 | 66 | |
michael@0 | 67 | static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) { |
michael@0 | 68 | return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t); |
michael@0 | 69 | } |
michael@0 | 70 | |
michael@0 | 71 | static bool chopMonoQuadAtX(SkPoint pts[3], SkScalar x, SkScalar* t) { |
michael@0 | 72 | return chopMonoQuadAt(pts[0].fX, pts[1].fX, pts[2].fX, x, t); |
michael@0 | 73 | } |
michael@0 | 74 | |
michael@0 | 75 | // Modify pts[] in place so that it is clipped in Y to the clip rect |
michael@0 | 76 | static void chop_quad_in_Y(SkPoint pts[3], const SkRect& clip) { |
michael@0 | 77 | SkScalar t; |
michael@0 | 78 | SkPoint tmp[5]; // for SkChopQuadAt |
michael@0 | 79 | |
michael@0 | 80 | // are we partially above |
michael@0 | 81 | if (pts[0].fY < clip.fTop) { |
michael@0 | 82 | if (chopMonoQuadAtY(pts, clip.fTop, &t)) { |
michael@0 | 83 | // take the 2nd chopped quad |
michael@0 | 84 | SkChopQuadAt(pts, tmp, t); |
michael@0 | 85 | // clamp to clean up imprecise numerics in the chop |
michael@0 | 86 | tmp[2].fY = clip.fTop; |
michael@0 | 87 | clamp_ge(tmp[3].fY, clip.fTop); |
michael@0 | 88 | |
michael@0 | 89 | pts[0] = tmp[2]; |
michael@0 | 90 | pts[1] = tmp[3]; |
michael@0 | 91 | } else { |
michael@0 | 92 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
michael@0 | 93 | // so we just clamp against the top |
michael@0 | 94 | for (int i = 0; i < 3; i++) { |
michael@0 | 95 | if (pts[i].fY < clip.fTop) { |
michael@0 | 96 | pts[i].fY = clip.fTop; |
michael@0 | 97 | } |
michael@0 | 98 | } |
michael@0 | 99 | } |
michael@0 | 100 | } |
michael@0 | 101 | |
michael@0 | 102 | // are we partially below |
michael@0 | 103 | if (pts[2].fY > clip.fBottom) { |
michael@0 | 104 | if (chopMonoQuadAtY(pts, clip.fBottom, &t)) { |
michael@0 | 105 | SkChopQuadAt(pts, tmp, t); |
michael@0 | 106 | // clamp to clean up imprecise numerics in the chop |
michael@0 | 107 | clamp_le(tmp[1].fY, clip.fBottom); |
michael@0 | 108 | tmp[2].fY = clip.fBottom; |
michael@0 | 109 | |
michael@0 | 110 | pts[1] = tmp[1]; |
michael@0 | 111 | pts[2] = tmp[2]; |
michael@0 | 112 | } else { |
michael@0 | 113 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
michael@0 | 114 | // so we just clamp against the bottom |
michael@0 | 115 | for (int i = 0; i < 3; i++) { |
michael@0 | 116 | if (pts[i].fY > clip.fBottom) { |
michael@0 | 117 | pts[i].fY = clip.fBottom; |
michael@0 | 118 | } |
michael@0 | 119 | } |
michael@0 | 120 | } |
michael@0 | 121 | } |
michael@0 | 122 | } |
michael@0 | 123 | |
michael@0 | 124 | // srcPts[] must be monotonic in X and Y |
michael@0 | 125 | void SkEdgeClipper::clipMonoQuad(const SkPoint srcPts[3], const SkRect& clip) { |
michael@0 | 126 | SkPoint pts[3]; |
michael@0 | 127 | bool reverse = sort_increasing_Y(pts, srcPts, 3); |
michael@0 | 128 | |
michael@0 | 129 | // are we completely above or below |
michael@0 | 130 | if (pts[2].fY <= clip.fTop || pts[0].fY >= clip.fBottom) { |
michael@0 | 131 | return; |
michael@0 | 132 | } |
michael@0 | 133 | |
michael@0 | 134 | // Now chop so that pts is contained within clip in Y |
michael@0 | 135 | chop_quad_in_Y(pts, clip); |
michael@0 | 136 | |
michael@0 | 137 | if (pts[0].fX > pts[2].fX) { |
michael@0 | 138 | SkTSwap<SkPoint>(pts[0], pts[2]); |
michael@0 | 139 | reverse = !reverse; |
michael@0 | 140 | } |
michael@0 | 141 | SkASSERT(pts[0].fX <= pts[1].fX); |
michael@0 | 142 | SkASSERT(pts[1].fX <= pts[2].fX); |
michael@0 | 143 | |
michael@0 | 144 | // Now chop in X has needed, and record the segments |
michael@0 | 145 | |
michael@0 | 146 | if (pts[2].fX <= clip.fLeft) { // wholly to the left |
michael@0 | 147 | this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse); |
michael@0 | 148 | return; |
michael@0 | 149 | } |
michael@0 | 150 | if (pts[0].fX >= clip.fRight) { // wholly to the right |
michael@0 | 151 | this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse); |
michael@0 | 152 | return; |
michael@0 | 153 | } |
michael@0 | 154 | |
michael@0 | 155 | SkScalar t; |
michael@0 | 156 | SkPoint tmp[5]; // for SkChopQuadAt |
michael@0 | 157 | |
michael@0 | 158 | // are we partially to the left |
michael@0 | 159 | if (pts[0].fX < clip.fLeft) { |
michael@0 | 160 | if (chopMonoQuadAtX(pts, clip.fLeft, &t)) { |
michael@0 | 161 | SkChopQuadAt(pts, tmp, t); |
michael@0 | 162 | this->appendVLine(clip.fLeft, tmp[0].fY, tmp[2].fY, reverse); |
michael@0 | 163 | // clamp to clean up imprecise numerics in the chop |
michael@0 | 164 | tmp[2].fX = clip.fLeft; |
michael@0 | 165 | clamp_ge(tmp[3].fX, clip.fLeft); |
michael@0 | 166 | |
michael@0 | 167 | pts[0] = tmp[2]; |
michael@0 | 168 | pts[1] = tmp[3]; |
michael@0 | 169 | } else { |
michael@0 | 170 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
michael@0 | 171 | // so we just clamp against the left |
michael@0 | 172 | this->appendVLine(clip.fLeft, pts[0].fY, pts[2].fY, reverse); |
michael@0 | 173 | return; |
michael@0 | 174 | } |
michael@0 | 175 | } |
michael@0 | 176 | |
michael@0 | 177 | // are we partially to the right |
michael@0 | 178 | if (pts[2].fX > clip.fRight) { |
michael@0 | 179 | if (chopMonoQuadAtX(pts, clip.fRight, &t)) { |
michael@0 | 180 | SkChopQuadAt(pts, tmp, t); |
michael@0 | 181 | // clamp to clean up imprecise numerics in the chop |
michael@0 | 182 | clamp_le(tmp[1].fX, clip.fRight); |
michael@0 | 183 | tmp[2].fX = clip.fRight; |
michael@0 | 184 | |
michael@0 | 185 | this->appendQuad(tmp, reverse); |
michael@0 | 186 | this->appendVLine(clip.fRight, tmp[2].fY, tmp[4].fY, reverse); |
michael@0 | 187 | } else { |
michael@0 | 188 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
michael@0 | 189 | // so we just clamp against the right |
michael@0 | 190 | this->appendVLine(clip.fRight, pts[0].fY, pts[2].fY, reverse); |
michael@0 | 191 | } |
michael@0 | 192 | } else { // wholly inside the clip |
michael@0 | 193 | this->appendQuad(pts, reverse); |
michael@0 | 194 | } |
michael@0 | 195 | } |
michael@0 | 196 | |
michael@0 | 197 | bool SkEdgeClipper::clipQuad(const SkPoint srcPts[3], const SkRect& clip) { |
michael@0 | 198 | fCurrPoint = fPoints; |
michael@0 | 199 | fCurrVerb = fVerbs; |
michael@0 | 200 | |
michael@0 | 201 | SkRect bounds; |
michael@0 | 202 | bounds.set(srcPts, 3); |
michael@0 | 203 | |
michael@0 | 204 | if (!quick_reject(bounds, clip)) { |
michael@0 | 205 | SkPoint monoY[5]; |
michael@0 | 206 | int countY = SkChopQuadAtYExtrema(srcPts, monoY); |
michael@0 | 207 | for (int y = 0; y <= countY; y++) { |
michael@0 | 208 | SkPoint monoX[5]; |
michael@0 | 209 | int countX = SkChopQuadAtXExtrema(&monoY[y * 2], monoX); |
michael@0 | 210 | for (int x = 0; x <= countX; x++) { |
michael@0 | 211 | this->clipMonoQuad(&monoX[x * 2], clip); |
michael@0 | 212 | SkASSERT(fCurrVerb - fVerbs < kMaxVerbs); |
michael@0 | 213 | SkASSERT(fCurrPoint - fPoints <= kMaxPoints); |
michael@0 | 214 | } |
michael@0 | 215 | } |
michael@0 | 216 | } |
michael@0 | 217 | |
michael@0 | 218 | *fCurrVerb = SkPath::kDone_Verb; |
michael@0 | 219 | fCurrPoint = fPoints; |
michael@0 | 220 | fCurrVerb = fVerbs; |
michael@0 | 221 | return SkPath::kDone_Verb != fVerbs[0]; |
michael@0 | 222 | } |
michael@0 | 223 | |
michael@0 | 224 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 225 | |
michael@0 | 226 | static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C, |
michael@0 | 227 | SkScalar D, SkScalar t) { |
michael@0 | 228 | return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); |
michael@0 | 229 | } |
michael@0 | 230 | |
michael@0 | 231 | /* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the |
michael@0 | 232 | t value such that cubic(t) = target |
michael@0 | 233 | */ |
michael@0 | 234 | static bool chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3, |
michael@0 | 235 | SkScalar target, SkScalar* t) { |
michael@0 | 236 | // SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3); |
michael@0 | 237 | SkASSERT(c0 < target && target < c3); |
michael@0 | 238 | |
michael@0 | 239 | SkScalar D = c0 - target; |
michael@0 | 240 | SkScalar A = c3 + 3*(c1 - c2) - c0; |
michael@0 | 241 | SkScalar B = 3*(c2 - c1 - c1 + c0); |
michael@0 | 242 | SkScalar C = 3*(c1 - c0); |
michael@0 | 243 | |
michael@0 | 244 | const SkScalar TOLERANCE = SK_Scalar1 / 4096; |
michael@0 | 245 | SkScalar minT = 0; |
michael@0 | 246 | SkScalar maxT = SK_Scalar1; |
michael@0 | 247 | SkScalar mid; |
michael@0 | 248 | |
michael@0 | 249 | // This is a lot of iterations. Is there a faster way? |
michael@0 | 250 | for (int i = 0; i < 24; i++) { |
michael@0 | 251 | mid = SkScalarAve(minT, maxT); |
michael@0 | 252 | SkScalar delta = eval_cubic_coeff(A, B, C, D, mid); |
michael@0 | 253 | if (delta < 0) { |
michael@0 | 254 | minT = mid; |
michael@0 | 255 | delta = -delta; |
michael@0 | 256 | } else { |
michael@0 | 257 | maxT = mid; |
michael@0 | 258 | } |
michael@0 | 259 | if (delta < TOLERANCE) { |
michael@0 | 260 | break; |
michael@0 | 261 | } |
michael@0 | 262 | } |
michael@0 | 263 | *t = mid; |
michael@0 | 264 | // SkDebugf("-- evalCubicAt %d delta %g\n", i, eval_cubic_coeff(A, B, C, D, *t)); |
michael@0 | 265 | return true; |
michael@0 | 266 | } |
michael@0 | 267 | |
michael@0 | 268 | static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) { |
michael@0 | 269 | return chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, t); |
michael@0 | 270 | } |
michael@0 | 271 | |
michael@0 | 272 | static bool chopMonoCubicAtX(SkPoint pts[4], SkScalar x, SkScalar* t) { |
michael@0 | 273 | return chopMonoCubicAt(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, x, t); |
michael@0 | 274 | } |
michael@0 | 275 | |
michael@0 | 276 | // Modify pts[] in place so that it is clipped in Y to the clip rect |
michael@0 | 277 | static void chop_cubic_in_Y(SkPoint pts[4], const SkRect& clip) { |
michael@0 | 278 | |
michael@0 | 279 | // are we partially above |
michael@0 | 280 | if (pts[0].fY < clip.fTop) { |
michael@0 | 281 | SkScalar t; |
michael@0 | 282 | if (chopMonoCubicAtY(pts, clip.fTop, &t)) { |
michael@0 | 283 | SkPoint tmp[7]; |
michael@0 | 284 | SkChopCubicAt(pts, tmp, t); |
michael@0 | 285 | |
michael@0 | 286 | // tmp[3, 4, 5].fY should all be to the below clip.fTop. |
michael@0 | 287 | // Since we can't trust the numerics of |
michael@0 | 288 | // the chopper, we force those conditions now |
michael@0 | 289 | tmp[3].fY = clip.fTop; |
michael@0 | 290 | clamp_ge(tmp[4].fY, clip.fTop); |
michael@0 | 291 | clamp_ge(tmp[5].fY, clip.fTop); |
michael@0 | 292 | |
michael@0 | 293 | pts[0] = tmp[3]; |
michael@0 | 294 | pts[1] = tmp[4]; |
michael@0 | 295 | pts[2] = tmp[5]; |
michael@0 | 296 | } else { |
michael@0 | 297 | // if chopMonoCubicAtY failed, then we may have hit inexact numerics |
michael@0 | 298 | // so we just clamp against the top |
michael@0 | 299 | for (int i = 0; i < 4; i++) { |
michael@0 | 300 | clamp_ge(pts[i].fY, clip.fTop); |
michael@0 | 301 | } |
michael@0 | 302 | } |
michael@0 | 303 | } |
michael@0 | 304 | |
michael@0 | 305 | // are we partially below |
michael@0 | 306 | if (pts[3].fY > clip.fBottom) { |
michael@0 | 307 | SkScalar t; |
michael@0 | 308 | if (chopMonoCubicAtY(pts, clip.fBottom, &t)) { |
michael@0 | 309 | SkPoint tmp[7]; |
michael@0 | 310 | SkChopCubicAt(pts, tmp, t); |
michael@0 | 311 | tmp[3].fY = clip.fBottom; |
michael@0 | 312 | clamp_le(tmp[2].fY, clip.fBottom); |
michael@0 | 313 | |
michael@0 | 314 | pts[1] = tmp[1]; |
michael@0 | 315 | pts[2] = tmp[2]; |
michael@0 | 316 | pts[3] = tmp[3]; |
michael@0 | 317 | } else { |
michael@0 | 318 | // if chopMonoCubicAtY failed, then we may have hit inexact numerics |
michael@0 | 319 | // so we just clamp against the bottom |
michael@0 | 320 | for (int i = 0; i < 4; i++) { |
michael@0 | 321 | clamp_le(pts[i].fY, clip.fBottom); |
michael@0 | 322 | } |
michael@0 | 323 | } |
michael@0 | 324 | } |
michael@0 | 325 | } |
michael@0 | 326 | |
michael@0 | 327 | // srcPts[] must be monotonic in X and Y |
michael@0 | 328 | void SkEdgeClipper::clipMonoCubic(const SkPoint src[4], const SkRect& clip) { |
michael@0 | 329 | SkPoint pts[4]; |
michael@0 | 330 | bool reverse = sort_increasing_Y(pts, src, 4); |
michael@0 | 331 | |
michael@0 | 332 | // are we completely above or below |
michael@0 | 333 | if (pts[3].fY <= clip.fTop || pts[0].fY >= clip.fBottom) { |
michael@0 | 334 | return; |
michael@0 | 335 | } |
michael@0 | 336 | |
michael@0 | 337 | // Now chop so that pts is contained within clip in Y |
michael@0 | 338 | chop_cubic_in_Y(pts, clip); |
michael@0 | 339 | |
michael@0 | 340 | if (pts[0].fX > pts[3].fX) { |
michael@0 | 341 | SkTSwap<SkPoint>(pts[0], pts[3]); |
michael@0 | 342 | SkTSwap<SkPoint>(pts[1], pts[2]); |
michael@0 | 343 | reverse = !reverse; |
michael@0 | 344 | } |
michael@0 | 345 | |
michael@0 | 346 | // Now chop in X has needed, and record the segments |
michael@0 | 347 | |
michael@0 | 348 | if (pts[3].fX <= clip.fLeft) { // wholly to the left |
michael@0 | 349 | this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse); |
michael@0 | 350 | return; |
michael@0 | 351 | } |
michael@0 | 352 | if (pts[0].fX >= clip.fRight) { // wholly to the right |
michael@0 | 353 | this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse); |
michael@0 | 354 | return; |
michael@0 | 355 | } |
michael@0 | 356 | |
michael@0 | 357 | // are we partially to the left |
michael@0 | 358 | if (pts[0].fX < clip.fLeft) { |
michael@0 | 359 | SkScalar t; |
michael@0 | 360 | if (chopMonoCubicAtX(pts, clip.fLeft, &t)) { |
michael@0 | 361 | SkPoint tmp[7]; |
michael@0 | 362 | SkChopCubicAt(pts, tmp, t); |
michael@0 | 363 | this->appendVLine(clip.fLeft, tmp[0].fY, tmp[3].fY, reverse); |
michael@0 | 364 | |
michael@0 | 365 | // tmp[3, 4, 5].fX should all be to the right of clip.fLeft. |
michael@0 | 366 | // Since we can't trust the numerics of |
michael@0 | 367 | // the chopper, we force those conditions now |
michael@0 | 368 | tmp[3].fX = clip.fLeft; |
michael@0 | 369 | clamp_ge(tmp[4].fX, clip.fLeft); |
michael@0 | 370 | clamp_ge(tmp[5].fX, clip.fLeft); |
michael@0 | 371 | |
michael@0 | 372 | pts[0] = tmp[3]; |
michael@0 | 373 | pts[1] = tmp[4]; |
michael@0 | 374 | pts[2] = tmp[5]; |
michael@0 | 375 | } else { |
michael@0 | 376 | // if chopMonocubicAtY failed, then we may have hit inexact numerics |
michael@0 | 377 | // so we just clamp against the left |
michael@0 | 378 | this->appendVLine(clip.fLeft, pts[0].fY, pts[3].fY, reverse); |
michael@0 | 379 | return; |
michael@0 | 380 | } |
michael@0 | 381 | } |
michael@0 | 382 | |
michael@0 | 383 | // are we partially to the right |
michael@0 | 384 | if (pts[3].fX > clip.fRight) { |
michael@0 | 385 | SkScalar t; |
michael@0 | 386 | if (chopMonoCubicAtX(pts, clip.fRight, &t)) { |
michael@0 | 387 | SkPoint tmp[7]; |
michael@0 | 388 | SkChopCubicAt(pts, tmp, t); |
michael@0 | 389 | tmp[3].fX = clip.fRight; |
michael@0 | 390 | clamp_le(tmp[2].fX, clip.fRight); |
michael@0 | 391 | clamp_le(tmp[1].fX, clip.fRight); |
michael@0 | 392 | |
michael@0 | 393 | this->appendCubic(tmp, reverse); |
michael@0 | 394 | this->appendVLine(clip.fRight, tmp[3].fY, tmp[6].fY, reverse); |
michael@0 | 395 | } else { |
michael@0 | 396 | // if chopMonoCubicAtX failed, then we may have hit inexact numerics |
michael@0 | 397 | // so we just clamp against the right |
michael@0 | 398 | this->appendVLine(clip.fRight, pts[0].fY, pts[3].fY, reverse); |
michael@0 | 399 | } |
michael@0 | 400 | } else { // wholly inside the clip |
michael@0 | 401 | this->appendCubic(pts, reverse); |
michael@0 | 402 | } |
michael@0 | 403 | } |
michael@0 | 404 | |
michael@0 | 405 | bool SkEdgeClipper::clipCubic(const SkPoint srcPts[4], const SkRect& clip) { |
michael@0 | 406 | fCurrPoint = fPoints; |
michael@0 | 407 | fCurrVerb = fVerbs; |
michael@0 | 408 | |
michael@0 | 409 | SkRect bounds; |
michael@0 | 410 | bounds.set(srcPts, 4); |
michael@0 | 411 | |
michael@0 | 412 | if (!quick_reject(bounds, clip)) { |
michael@0 | 413 | SkPoint monoY[10]; |
michael@0 | 414 | int countY = SkChopCubicAtYExtrema(srcPts, monoY); |
michael@0 | 415 | for (int y = 0; y <= countY; y++) { |
michael@0 | 416 | SkPoint monoX[10]; |
michael@0 | 417 | int countX = SkChopCubicAtXExtrema(&monoY[y * 3], monoX); |
michael@0 | 418 | for (int x = 0; x <= countX; x++) { |
michael@0 | 419 | this->clipMonoCubic(&monoX[x * 3], clip); |
michael@0 | 420 | SkASSERT(fCurrVerb - fVerbs < kMaxVerbs); |
michael@0 | 421 | SkASSERT(fCurrPoint - fPoints <= kMaxPoints); |
michael@0 | 422 | } |
michael@0 | 423 | } |
michael@0 | 424 | } |
michael@0 | 425 | |
michael@0 | 426 | *fCurrVerb = SkPath::kDone_Verb; |
michael@0 | 427 | fCurrPoint = fPoints; |
michael@0 | 428 | fCurrVerb = fVerbs; |
michael@0 | 429 | return SkPath::kDone_Verb != fVerbs[0]; |
michael@0 | 430 | } |
michael@0 | 431 | |
michael@0 | 432 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 433 | |
michael@0 | 434 | void SkEdgeClipper::appendVLine(SkScalar x, SkScalar y0, SkScalar y1, |
michael@0 | 435 | bool reverse) { |
michael@0 | 436 | *fCurrVerb++ = SkPath::kLine_Verb; |
michael@0 | 437 | |
michael@0 | 438 | if (reverse) { |
michael@0 | 439 | SkTSwap<SkScalar>(y0, y1); |
michael@0 | 440 | } |
michael@0 | 441 | fCurrPoint[0].set(x, y0); |
michael@0 | 442 | fCurrPoint[1].set(x, y1); |
michael@0 | 443 | fCurrPoint += 2; |
michael@0 | 444 | } |
michael@0 | 445 | |
michael@0 | 446 | void SkEdgeClipper::appendQuad(const SkPoint pts[3], bool reverse) { |
michael@0 | 447 | *fCurrVerb++ = SkPath::kQuad_Verb; |
michael@0 | 448 | |
michael@0 | 449 | if (reverse) { |
michael@0 | 450 | fCurrPoint[0] = pts[2]; |
michael@0 | 451 | fCurrPoint[2] = pts[0]; |
michael@0 | 452 | } else { |
michael@0 | 453 | fCurrPoint[0] = pts[0]; |
michael@0 | 454 | fCurrPoint[2] = pts[2]; |
michael@0 | 455 | } |
michael@0 | 456 | fCurrPoint[1] = pts[1]; |
michael@0 | 457 | fCurrPoint += 3; |
michael@0 | 458 | } |
michael@0 | 459 | |
michael@0 | 460 | void SkEdgeClipper::appendCubic(const SkPoint pts[4], bool reverse) { |
michael@0 | 461 | *fCurrVerb++ = SkPath::kCubic_Verb; |
michael@0 | 462 | |
michael@0 | 463 | if (reverse) { |
michael@0 | 464 | for (int i = 0; i < 4; i++) { |
michael@0 | 465 | fCurrPoint[i] = pts[3 - i]; |
michael@0 | 466 | } |
michael@0 | 467 | } else { |
michael@0 | 468 | memcpy(fCurrPoint, pts, 4 * sizeof(SkPoint)); |
michael@0 | 469 | } |
michael@0 | 470 | fCurrPoint += 4; |
michael@0 | 471 | } |
michael@0 | 472 | |
michael@0 | 473 | SkPath::Verb SkEdgeClipper::next(SkPoint pts[]) { |
michael@0 | 474 | SkPath::Verb verb = *fCurrVerb; |
michael@0 | 475 | |
michael@0 | 476 | switch (verb) { |
michael@0 | 477 | case SkPath::kLine_Verb: |
michael@0 | 478 | memcpy(pts, fCurrPoint, 2 * sizeof(SkPoint)); |
michael@0 | 479 | fCurrPoint += 2; |
michael@0 | 480 | fCurrVerb += 1; |
michael@0 | 481 | break; |
michael@0 | 482 | case SkPath::kQuad_Verb: |
michael@0 | 483 | memcpy(pts, fCurrPoint, 3 * sizeof(SkPoint)); |
michael@0 | 484 | fCurrPoint += 3; |
michael@0 | 485 | fCurrVerb += 1; |
michael@0 | 486 | break; |
michael@0 | 487 | case SkPath::kCubic_Verb: |
michael@0 | 488 | memcpy(pts, fCurrPoint, 4 * sizeof(SkPoint)); |
michael@0 | 489 | fCurrPoint += 4; |
michael@0 | 490 | fCurrVerb += 1; |
michael@0 | 491 | break; |
michael@0 | 492 | case SkPath::kDone_Verb: |
michael@0 | 493 | break; |
michael@0 | 494 | default: |
michael@0 | 495 | SkDEBUGFAIL("unexpected verb in quadclippper2 iter"); |
michael@0 | 496 | break; |
michael@0 | 497 | } |
michael@0 | 498 | return verb; |
michael@0 | 499 | } |
michael@0 | 500 | |
michael@0 | 501 | /////////////////////////////////////////////////////////////////////////////// |
michael@0 | 502 | |
michael@0 | 503 | #ifdef SK_DEBUG |
michael@0 | 504 | static void assert_monotonic(const SkScalar coord[], int count) { |
michael@0 | 505 | if (coord[0] > coord[(count - 1) * 2]) { |
michael@0 | 506 | for (int i = 1; i < count; i++) { |
michael@0 | 507 | SkASSERT(coord[2 * (i - 1)] >= coord[i * 2]); |
michael@0 | 508 | } |
michael@0 | 509 | } else if (coord[0] < coord[(count - 1) * 2]) { |
michael@0 | 510 | for (int i = 1; i < count; i++) { |
michael@0 | 511 | SkASSERT(coord[2 * (i - 1)] <= coord[i * 2]); |
michael@0 | 512 | } |
michael@0 | 513 | } else { |
michael@0 | 514 | for (int i = 1; i < count; i++) { |
michael@0 | 515 | SkASSERT(coord[2 * (i - 1)] == coord[i * 2]); |
michael@0 | 516 | } |
michael@0 | 517 | } |
michael@0 | 518 | } |
michael@0 | 519 | |
michael@0 | 520 | void sk_assert_monotonic_y(const SkPoint pts[], int count) { |
michael@0 | 521 | if (count > 1) { |
michael@0 | 522 | assert_monotonic(&pts[0].fY, count); |
michael@0 | 523 | } |
michael@0 | 524 | } |
michael@0 | 525 | |
michael@0 | 526 | void sk_assert_monotonic_x(const SkPoint pts[], int count) { |
michael@0 | 527 | if (count > 1) { |
michael@0 | 528 | assert_monotonic(&pts[0].fX, count); |
michael@0 | 529 | } |
michael@0 | 530 | } |
michael@0 | 531 | #endif |