intl/icu/source/common/rbbiscan.cpp

Wed, 31 Dec 2014 07:22:50 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 07:22:50 +0100
branch
TOR_BUG_3246
changeset 4
fc2d59ddac77
permissions
-rw-r--r--

Correct previous dual key logic pending first delivery installment.

michael@0 1
michael@0 2 //
michael@0 3 // file: rbbiscan.cpp
michael@0 4 //
michael@0 5 // Copyright (C) 2002-2012, International Business Machines Corporation and others.
michael@0 6 // All Rights Reserved.
michael@0 7 //
michael@0 8 // This file contains the Rule Based Break Iterator Rule Builder functions for
michael@0 9 // scanning the rules and assembling a parse tree. This is the first phase
michael@0 10 // of compiling the rules.
michael@0 11 //
michael@0 12 // The overall of the rules is managed by class RBBIRuleBuilder, which will
michael@0 13 // create and use an instance of this class as part of the process.
michael@0 14 //
michael@0 15
michael@0 16 #include "unicode/utypes.h"
michael@0 17
michael@0 18 #if !UCONFIG_NO_BREAK_ITERATION
michael@0 19
michael@0 20 #include "unicode/unistr.h"
michael@0 21 #include "unicode/uniset.h"
michael@0 22 #include "unicode/uchar.h"
michael@0 23 #include "unicode/uchriter.h"
michael@0 24 #include "unicode/parsepos.h"
michael@0 25 #include "unicode/parseerr.h"
michael@0 26 #include "cmemory.h"
michael@0 27 #include "cstring.h"
michael@0 28
michael@0 29 #include "rbbirpt.h" // Contains state table for the rbbi rules parser.
michael@0 30 // generated by a Perl script.
michael@0 31 #include "rbbirb.h"
michael@0 32 #include "rbbinode.h"
michael@0 33 #include "rbbiscan.h"
michael@0 34 #include "rbbitblb.h"
michael@0 35
michael@0 36 #include "uassert.h"
michael@0 37
michael@0 38 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
michael@0 39
michael@0 40 //------------------------------------------------------------------------------
michael@0 41 //
michael@0 42 // Unicode Set init strings for each of the character classes needed for parsing a rule file.
michael@0 43 // (Initialized with hex values for portability to EBCDIC based machines.
michael@0 44 // Really ugly, but there's no good way to avoid it.)
michael@0 45 //
michael@0 46 // The sets are referred to by name in the rbbirpt.txt, which is the
michael@0 47 // source form of the state transition table for the RBBI rule parser.
michael@0 48 //
michael@0 49 //------------------------------------------------------------------------------
michael@0 50 static const UChar gRuleSet_rule_char_pattern[] = {
michael@0 51 // [ ^ [ \ p { Z } \ u 0 0 2 0
michael@0 52 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30,
michael@0 53 // - \ u 0 0 7 f ] - [ \ p
michael@0 54 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70,
michael@0 55 // { L } ] - [ \ p { N } ] ]
michael@0 56 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0};
michael@0 57
michael@0 58 static const UChar gRuleSet_name_char_pattern[] = {
michael@0 59 // [ _ \ p { L } \ p { N } ]
michael@0 60 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};
michael@0 61
michael@0 62 static const UChar gRuleSet_digit_char_pattern[] = {
michael@0 63 // [ 0 - 9 ]
michael@0 64 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
michael@0 65
michael@0 66 static const UChar gRuleSet_name_start_char_pattern[] = {
michael@0 67 // [ _ \ p { L } ]
michael@0 68 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };
michael@0 69
michael@0 70 static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any"
michael@0 71
michael@0 72
michael@0 73 U_CDECL_BEGIN
michael@0 74 static void U_CALLCONV RBBISetTable_deleter(void *p) {
michael@0 75 icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p;
michael@0 76 delete px->key;
michael@0 77 // Note: px->val is owned by the linked list "fSetsListHead" in scanner.
michael@0 78 // Don't delete the value nodes here.
michael@0 79 uprv_free(px);
michael@0 80 }
michael@0 81 U_CDECL_END
michael@0 82
michael@0 83 U_NAMESPACE_BEGIN
michael@0 84
michael@0 85 //------------------------------------------------------------------------------
michael@0 86 //
michael@0 87 // Constructor.
michael@0 88 //
michael@0 89 //------------------------------------------------------------------------------
michael@0 90 RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb)
michael@0 91 {
michael@0 92 fRB = rb;
michael@0 93 fStackPtr = 0;
michael@0 94 fStack[fStackPtr] = 0;
michael@0 95 fNodeStackPtr = 0;
michael@0 96 fRuleNum = 0;
michael@0 97 fNodeStack[0] = NULL;
michael@0 98
michael@0 99 fSymbolTable = NULL;
michael@0 100 fSetTable = NULL;
michael@0 101
michael@0 102 fScanIndex = 0;
michael@0 103 fNextIndex = 0;
michael@0 104
michael@0 105 fReverseRule = FALSE;
michael@0 106 fLookAheadRule = FALSE;
michael@0 107
michael@0 108 fLineNum = 1;
michael@0 109 fCharNum = 0;
michael@0 110 fQuoteMode = FALSE;
michael@0 111
michael@0 112 // Do not check status until after all critical fields are sufficiently initialized
michael@0 113 // that the destructor can run cleanly.
michael@0 114 if (U_FAILURE(*rb->fStatus)) {
michael@0 115 return;
michael@0 116 }
michael@0 117
michael@0 118 //
michael@0 119 // Set up the constant Unicode Sets.
michael@0 120 // Note: These could be made static, lazily initialized, and shared among
michael@0 121 // all instances of RBBIRuleScanners. BUT this is quite a bit simpler,
michael@0 122 // and the time to build these few sets should be small compared to a
michael@0 123 // full break iterator build.
michael@0 124 fRuleSets[kRuleSet_rule_char-128]
michael@0 125 = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern), *rb->fStatus);
michael@0 126 // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:]
michael@0 127 fRuleSets[kRuleSet_white_space-128].
michael@0 128 add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029);
michael@0 129 fRuleSets[kRuleSet_name_char-128]
michael@0 130 = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern), *rb->fStatus);
michael@0 131 fRuleSets[kRuleSet_name_start_char-128]
michael@0 132 = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus);
michael@0 133 fRuleSets[kRuleSet_digit_char-128]
michael@0 134 = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern), *rb->fStatus);
michael@0 135 if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) {
michael@0 136 // This case happens if ICU's data is missing. UnicodeSet tries to look up property
michael@0 137 // names from the init string, can't find them, and claims an illegal argument.
michael@0 138 // Change the error so that the actual problem will be clearer to users.
michael@0 139 *rb->fStatus = U_BRK_INIT_ERROR;
michael@0 140 }
michael@0 141 if (U_FAILURE(*rb->fStatus)) {
michael@0 142 return;
michael@0 143 }
michael@0 144
michael@0 145 fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus);
michael@0 146 if (fSymbolTable == NULL) {
michael@0 147 *rb->fStatus = U_MEMORY_ALLOCATION_ERROR;
michael@0 148 return;
michael@0 149 }
michael@0 150 fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus);
michael@0 151 if (U_FAILURE(*rb->fStatus)) {
michael@0 152 return;
michael@0 153 }
michael@0 154 uhash_setValueDeleter(fSetTable, RBBISetTable_deleter);
michael@0 155 }
michael@0 156
michael@0 157
michael@0 158
michael@0 159 //------------------------------------------------------------------------------
michael@0 160 //
michael@0 161 // Destructor
michael@0 162 //
michael@0 163 //------------------------------------------------------------------------------
michael@0 164 RBBIRuleScanner::~RBBIRuleScanner() {
michael@0 165 delete fSymbolTable;
michael@0 166 if (fSetTable != NULL) {
michael@0 167 uhash_close(fSetTable);
michael@0 168 fSetTable = NULL;
michael@0 169
michael@0 170 }
michael@0 171
michael@0 172
michael@0 173 // Node Stack.
michael@0 174 // Normally has one entry, which is the entire parse tree for the rules.
michael@0 175 // If errors occured, there may be additional subtrees left on the stack.
michael@0 176 while (fNodeStackPtr > 0) {
michael@0 177 delete fNodeStack[fNodeStackPtr];
michael@0 178 fNodeStackPtr--;
michael@0 179 }
michael@0 180
michael@0 181 }
michael@0 182
michael@0 183 //------------------------------------------------------------------------------
michael@0 184 //
michael@0 185 // doParseAction Do some action during rule parsing.
michael@0 186 // Called by the parse state machine.
michael@0 187 // Actions build the parse tree and Unicode Sets,
michael@0 188 // and maintain the parse stack for nested expressions.
michael@0 189 //
michael@0 190 // TODO: unify EParseAction and RBBI_RuleParseAction enum types.
michael@0 191 // They represent exactly the same thing. They're separate
michael@0 192 // only to work around enum forward declaration restrictions
michael@0 193 // in some compilers, while at the same time avoiding multiple
michael@0 194 // definitions problems. I'm sure that there's a better way.
michael@0 195 //
michael@0 196 //------------------------------------------------------------------------------
michael@0 197 UBool RBBIRuleScanner::doParseActions(int32_t action)
michael@0 198 {
michael@0 199 RBBINode *n = NULL;
michael@0 200
michael@0 201 UBool returnVal = TRUE;
michael@0 202
michael@0 203 switch (action) {
michael@0 204
michael@0 205 case doExprStart:
michael@0 206 pushNewNode(RBBINode::opStart);
michael@0 207 fRuleNum++;
michael@0 208 break;
michael@0 209
michael@0 210
michael@0 211 case doExprOrOperator:
michael@0 212 {
michael@0 213 fixOpStack(RBBINode::precOpCat);
michael@0 214 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
michael@0 215 RBBINode *orNode = pushNewNode(RBBINode::opOr);
michael@0 216 orNode->fLeftChild = operandNode;
michael@0 217 operandNode->fParent = orNode;
michael@0 218 }
michael@0 219 break;
michael@0 220
michael@0 221 case doExprCatOperator:
michael@0 222 // concatenation operator.
michael@0 223 // For the implicit concatenation of adjacent terms in an expression that are
michael@0 224 // not separated by any other operator. Action is invoked between the
michael@0 225 // actions for the two terms.
michael@0 226 {
michael@0 227 fixOpStack(RBBINode::precOpCat);
michael@0 228 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
michael@0 229 RBBINode *catNode = pushNewNode(RBBINode::opCat);
michael@0 230 catNode->fLeftChild = operandNode;
michael@0 231 operandNode->fParent = catNode;
michael@0 232 }
michael@0 233 break;
michael@0 234
michael@0 235 case doLParen:
michael@0 236 // Open Paren.
michael@0 237 // The openParen node is a dummy operation type with a low precedence,
michael@0 238 // which has the affect of ensuring that any real binary op that
michael@0 239 // follows within the parens binds more tightly to the operands than
michael@0 240 // stuff outside of the parens.
michael@0 241 pushNewNode(RBBINode::opLParen);
michael@0 242 break;
michael@0 243
michael@0 244 case doExprRParen:
michael@0 245 fixOpStack(RBBINode::precLParen);
michael@0 246 break;
michael@0 247
michael@0 248 case doNOP:
michael@0 249 break;
michael@0 250
michael@0 251 case doStartAssign:
michael@0 252 // We've just scanned "$variable = "
michael@0 253 // The top of the node stack has the $variable ref node.
michael@0 254
michael@0 255 // Save the start position of the RHS text in the StartExpression node
michael@0 256 // that precedes the $variableReference node on the stack.
michael@0 257 // This will eventually be used when saving the full $variable replacement
michael@0 258 // text as a string.
michael@0 259 n = fNodeStack[fNodeStackPtr-1];
michael@0 260 n->fFirstPos = fNextIndex; // move past the '='
michael@0 261
michael@0 262 // Push a new start-of-expression node; needed to keep parse of the
michael@0 263 // RHS expression happy.
michael@0 264 pushNewNode(RBBINode::opStart);
michael@0 265 break;
michael@0 266
michael@0 267
michael@0 268
michael@0 269
michael@0 270 case doEndAssign:
michael@0 271 {
michael@0 272 // We have reached the end of an assignement statement.
michael@0 273 // Current scan char is the ';' that terminates the assignment.
michael@0 274
michael@0 275 // Terminate expression, leaves expression parse tree rooted in TOS node.
michael@0 276 fixOpStack(RBBINode::precStart);
michael@0 277
michael@0 278 RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2];
michael@0 279 RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1];
michael@0 280 RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr];
michael@0 281
michael@0 282 // Save original text of right side of assignment, excluding the terminating ';'
michael@0 283 // in the root of the node for the right-hand-side expression.
michael@0 284 RHSExprNode->fFirstPos = startExprNode->fFirstPos;
michael@0 285 RHSExprNode->fLastPos = fScanIndex;
michael@0 286 fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText);
michael@0 287
michael@0 288 // Expression parse tree becomes l. child of the $variable reference node.
michael@0 289 varRefNode->fLeftChild = RHSExprNode;
michael@0 290 RHSExprNode->fParent = varRefNode;
michael@0 291
michael@0 292 // Make a symbol table entry for the $variableRef node.
michael@0 293 fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus);
michael@0 294 if (U_FAILURE(*fRB->fStatus)) {
michael@0 295 // This is a round-about way to get the parse position set
michael@0 296 // so that duplicate symbols error messages include a line number.
michael@0 297 UErrorCode t = *fRB->fStatus;
michael@0 298 *fRB->fStatus = U_ZERO_ERROR;
michael@0 299 error(t);
michael@0 300 }
michael@0 301
michael@0 302 // Clean up the stack.
michael@0 303 delete startExprNode;
michael@0 304 fNodeStackPtr-=3;
michael@0 305 break;
michael@0 306 }
michael@0 307
michael@0 308 case doEndOfRule:
michael@0 309 {
michael@0 310 fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression
michael@0 311 if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node.
michael@0 312 break;
michael@0 313 }
michael@0 314 #ifdef RBBI_DEBUG
michael@0 315 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");}
michael@0 316 #endif
michael@0 317 U_ASSERT(fNodeStackPtr == 1);
michael@0 318
michael@0 319 // If this rule includes a look-ahead '/', add a endMark node to the
michael@0 320 // expression tree.
michael@0 321 if (fLookAheadRule) {
michael@0 322 RBBINode *thisRule = fNodeStack[fNodeStackPtr];
michael@0 323 RBBINode *endNode = pushNewNode(RBBINode::endMark);
michael@0 324 RBBINode *catNode = pushNewNode(RBBINode::opCat);
michael@0 325 fNodeStackPtr -= 2;
michael@0 326 catNode->fLeftChild = thisRule;
michael@0 327 catNode->fRightChild = endNode;
michael@0 328 fNodeStack[fNodeStackPtr] = catNode;
michael@0 329 endNode->fVal = fRuleNum;
michael@0 330 endNode->fLookAheadEnd = TRUE;
michael@0 331 }
michael@0 332
michael@0 333 // All rule expressions are ORed together.
michael@0 334 // The ';' that terminates an expression really just functions as a '|' with
michael@0 335 // a low operator prededence.
michael@0 336 //
michael@0 337 // Each of the four sets of rules are collected separately.
michael@0 338 // (forward, reverse, safe_forward, safe_reverse)
michael@0 339 // OR this rule into the appropriate group of them.
michael@0 340 //
michael@0 341 RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree);
michael@0 342
michael@0 343 if (*destRules != NULL) {
michael@0 344 // This is not the first rule encounted.
michael@0 345 // OR previous stuff (from *destRules)
michael@0 346 // with the current rule expression (on the Node Stack)
michael@0 347 // with the resulting OR expression going to *destRules
michael@0 348 //
michael@0 349 RBBINode *thisRule = fNodeStack[fNodeStackPtr];
michael@0 350 RBBINode *prevRules = *destRules;
michael@0 351 RBBINode *orNode = pushNewNode(RBBINode::opOr);
michael@0 352 orNode->fLeftChild = prevRules;
michael@0 353 prevRules->fParent = orNode;
michael@0 354 orNode->fRightChild = thisRule;
michael@0 355 thisRule->fParent = orNode;
michael@0 356 *destRules = orNode;
michael@0 357 }
michael@0 358 else
michael@0 359 {
michael@0 360 // This is the first rule encountered (for this direction).
michael@0 361 // Just move its parse tree from the stack to *destRules.
michael@0 362 *destRules = fNodeStack[fNodeStackPtr];
michael@0 363 }
michael@0 364 fReverseRule = FALSE; // in preparation for the next rule.
michael@0 365 fLookAheadRule = FALSE;
michael@0 366 fNodeStackPtr = 0;
michael@0 367 }
michael@0 368 break;
michael@0 369
michael@0 370
michael@0 371 case doRuleError:
michael@0 372 error(U_BRK_RULE_SYNTAX);
michael@0 373 returnVal = FALSE;
michael@0 374 break;
michael@0 375
michael@0 376
michael@0 377 case doVariableNameExpectedErr:
michael@0 378 error(U_BRK_RULE_SYNTAX);
michael@0 379 break;
michael@0 380
michael@0 381
michael@0 382 //
michael@0 383 // Unary operands + ? *
michael@0 384 // These all appear after the operand to which they apply.
michael@0 385 // When we hit one, the operand (may be a whole sub expression)
michael@0 386 // will be on the top of the stack.
michael@0 387 // Unary Operator becomes TOS, with the old TOS as its one child.
michael@0 388 case doUnaryOpPlus:
michael@0 389 {
michael@0 390 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
michael@0 391 RBBINode *plusNode = pushNewNode(RBBINode::opPlus);
michael@0 392 plusNode->fLeftChild = operandNode;
michael@0 393 operandNode->fParent = plusNode;
michael@0 394 }
michael@0 395 break;
michael@0 396
michael@0 397 case doUnaryOpQuestion:
michael@0 398 {
michael@0 399 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
michael@0 400 RBBINode *qNode = pushNewNode(RBBINode::opQuestion);
michael@0 401 qNode->fLeftChild = operandNode;
michael@0 402 operandNode->fParent = qNode;
michael@0 403 }
michael@0 404 break;
michael@0 405
michael@0 406 case doUnaryOpStar:
michael@0 407 {
michael@0 408 RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
michael@0 409 RBBINode *starNode = pushNewNode(RBBINode::opStar);
michael@0 410 starNode->fLeftChild = operandNode;
michael@0 411 operandNode->fParent = starNode;
michael@0 412 }
michael@0 413 break;
michael@0 414
michael@0 415 case doRuleChar:
michael@0 416 // A "Rule Character" is any single character that is a literal part
michael@0 417 // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]"
michael@0 418 // These are pretty uncommon in break rules; the terms are more commonly
michael@0 419 // sets. To keep things uniform, treat these characters like as
michael@0 420 // sets that just happen to contain only one character.
michael@0 421 {
michael@0 422 n = pushNewNode(RBBINode::setRef);
michael@0 423 findSetFor(UnicodeString(fC.fChar), n);
michael@0 424 n->fFirstPos = fScanIndex;
michael@0 425 n->fLastPos = fNextIndex;
michael@0 426 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
michael@0 427 break;
michael@0 428 }
michael@0 429
michael@0 430 case doDotAny:
michael@0 431 // scanned a ".", meaning match any single character.
michael@0 432 {
michael@0 433 n = pushNewNode(RBBINode::setRef);
michael@0 434 findSetFor(UnicodeString(TRUE, kAny, 3), n);
michael@0 435 n->fFirstPos = fScanIndex;
michael@0 436 n->fLastPos = fNextIndex;
michael@0 437 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
michael@0 438 break;
michael@0 439 }
michael@0 440
michael@0 441 case doSlash:
michael@0 442 // Scanned a '/', which identifies a look-ahead break position in a rule.
michael@0 443 n = pushNewNode(RBBINode::lookAhead);
michael@0 444 n->fVal = fRuleNum;
michael@0 445 n->fFirstPos = fScanIndex;
michael@0 446 n->fLastPos = fNextIndex;
michael@0 447 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
michael@0 448 fLookAheadRule = TRUE;
michael@0 449 break;
michael@0 450
michael@0 451
michael@0 452 case doStartTagValue:
michael@0 453 // Scanned a '{', the opening delimiter for a tag value within a rule.
michael@0 454 n = pushNewNode(RBBINode::tag);
michael@0 455 n->fVal = 0;
michael@0 456 n->fFirstPos = fScanIndex;
michael@0 457 n->fLastPos = fNextIndex;
michael@0 458 break;
michael@0 459
michael@0 460 case doTagDigit:
michael@0 461 // Just scanned a decimal digit that's part of a tag value
michael@0 462 {
michael@0 463 n = fNodeStack[fNodeStackPtr];
michael@0 464 uint32_t v = u_charDigitValue(fC.fChar);
michael@0 465 U_ASSERT(v < 10);
michael@0 466 n->fVal = n->fVal*10 + v;
michael@0 467 break;
michael@0 468 }
michael@0 469
michael@0 470 case doTagValue:
michael@0 471 n = fNodeStack[fNodeStackPtr];
michael@0 472 n->fLastPos = fNextIndex;
michael@0 473 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
michael@0 474 break;
michael@0 475
michael@0 476 case doTagExpectedError:
michael@0 477 error(U_BRK_MALFORMED_RULE_TAG);
michael@0 478 returnVal = FALSE;
michael@0 479 break;
michael@0 480
michael@0 481 case doOptionStart:
michael@0 482 // Scanning a !!option. At the start of string.
michael@0 483 fOptionStart = fScanIndex;
michael@0 484 break;
michael@0 485
michael@0 486 case doOptionEnd:
michael@0 487 {
michael@0 488 UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart);
michael@0 489 if (opt == UNICODE_STRING("chain", 5)) {
michael@0 490 fRB->fChainRules = TRUE;
michael@0 491 } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) {
michael@0 492 fRB->fLBCMNoChain = TRUE;
michael@0 493 } else if (opt == UNICODE_STRING("forward", 7)) {
michael@0 494 fRB->fDefaultTree = &fRB->fForwardTree;
michael@0 495 } else if (opt == UNICODE_STRING("reverse", 7)) {
michael@0 496 fRB->fDefaultTree = &fRB->fReverseTree;
michael@0 497 } else if (opt == UNICODE_STRING("safe_forward", 12)) {
michael@0 498 fRB->fDefaultTree = &fRB->fSafeFwdTree;
michael@0 499 } else if (opt == UNICODE_STRING("safe_reverse", 12)) {
michael@0 500 fRB->fDefaultTree = &fRB->fSafeRevTree;
michael@0 501 } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) {
michael@0 502 fRB->fLookAheadHardBreak = TRUE;
michael@0 503 } else {
michael@0 504 error(U_BRK_UNRECOGNIZED_OPTION);
michael@0 505 }
michael@0 506 }
michael@0 507 break;
michael@0 508
michael@0 509 case doReverseDir:
michael@0 510 fReverseRule = TRUE;
michael@0 511 break;
michael@0 512
michael@0 513 case doStartVariableName:
michael@0 514 n = pushNewNode(RBBINode::varRef);
michael@0 515 if (U_FAILURE(*fRB->fStatus)) {
michael@0 516 break;
michael@0 517 }
michael@0 518 n->fFirstPos = fScanIndex;
michael@0 519 break;
michael@0 520
michael@0 521 case doEndVariableName:
michael@0 522 n = fNodeStack[fNodeStackPtr];
michael@0 523 if (n==NULL || n->fType != RBBINode::varRef) {
michael@0 524 error(U_BRK_INTERNAL_ERROR);
michael@0 525 break;
michael@0 526 }
michael@0 527 n->fLastPos = fScanIndex;
michael@0 528 fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText);
michael@0 529 // Look the newly scanned name up in the symbol table
michael@0 530 // If there's an entry, set the l. child of the var ref to the replacement expression.
michael@0 531 // (We also pass through here when scanning assignments, but no harm is done, other
michael@0 532 // than a slight wasted effort that seems hard to avoid. Lookup will be null)
michael@0 533 n->fLeftChild = fSymbolTable->lookupNode(n->fText);
michael@0 534 break;
michael@0 535
michael@0 536 case doCheckVarDef:
michael@0 537 n = fNodeStack[fNodeStackPtr];
michael@0 538 if (n->fLeftChild == NULL) {
michael@0 539 error(U_BRK_UNDEFINED_VARIABLE);
michael@0 540 returnVal = FALSE;
michael@0 541 }
michael@0 542 break;
michael@0 543
michael@0 544 case doExprFinished:
michael@0 545 break;
michael@0 546
michael@0 547 case doRuleErrorAssignExpr:
michael@0 548 error(U_BRK_ASSIGN_ERROR);
michael@0 549 returnVal = FALSE;
michael@0 550 break;
michael@0 551
michael@0 552 case doExit:
michael@0 553 returnVal = FALSE;
michael@0 554 break;
michael@0 555
michael@0 556 case doScanUnicodeSet:
michael@0 557 scanSet();
michael@0 558 break;
michael@0 559
michael@0 560 default:
michael@0 561 error(U_BRK_INTERNAL_ERROR);
michael@0 562 returnVal = FALSE;
michael@0 563 break;
michael@0 564 }
michael@0 565 return returnVal;
michael@0 566 }
michael@0 567
michael@0 568
michael@0 569
michael@0 570
michael@0 571 //------------------------------------------------------------------------------
michael@0 572 //
michael@0 573 // Error Report a rule parse error.
michael@0 574 // Only report it if no previous error has been recorded.
michael@0 575 //
michael@0 576 //------------------------------------------------------------------------------
michael@0 577 void RBBIRuleScanner::error(UErrorCode e) {
michael@0 578 if (U_SUCCESS(*fRB->fStatus)) {
michael@0 579 *fRB->fStatus = e;
michael@0 580 if (fRB->fParseError) {
michael@0 581 fRB->fParseError->line = fLineNum;
michael@0 582 fRB->fParseError->offset = fCharNum;
michael@0 583 fRB->fParseError->preContext[0] = 0;
michael@0 584 fRB->fParseError->preContext[0] = 0;
michael@0 585 }
michael@0 586 }
michael@0 587 }
michael@0 588
michael@0 589
michael@0 590
michael@0 591
michael@0 592 //------------------------------------------------------------------------------
michael@0 593 //
michael@0 594 // fixOpStack The parse stack holds partially assembled chunks of the parse tree.
michael@0 595 // An entry on the stack may be as small as a single setRef node,
michael@0 596 // or as large as the parse tree
michael@0 597 // for an entire expression (this will be the one item left on the stack
michael@0 598 // when the parsing of an RBBI rule completes.
michael@0 599 //
michael@0 600 // This function is called when a binary operator is encountered.
michael@0 601 // It looks back up the stack for operators that are not yet associated
michael@0 602 // with a right operand, and if the precedence of the stacked operator >=
michael@0 603 // the precedence of the current operator, binds the operand left,
michael@0 604 // to the previously encountered operator.
michael@0 605 //
michael@0 606 //------------------------------------------------------------------------------
michael@0 607 void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) {
michael@0 608 RBBINode *n;
michael@0 609 // printNodeStack("entering fixOpStack()");
michael@0 610 for (;;) {
michael@0 611 n = fNodeStack[fNodeStackPtr-1]; // an operator node
michael@0 612 if (n->fPrecedence == 0) {
michael@0 613 RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node");
michael@0 614 error(U_BRK_INTERNAL_ERROR);
michael@0 615 return;
michael@0 616 }
michael@0 617
michael@0 618 if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) {
michael@0 619 // The most recent operand goes with the current operator,
michael@0 620 // not with the previously stacked one.
michael@0 621 break;
michael@0 622 }
michael@0 623 // Stack operator is a binary op ( '|' or concatenation)
michael@0 624 // TOS operand becomes right child of this operator.
michael@0 625 // Resulting subexpression becomes the TOS operand.
michael@0 626 n->fRightChild = fNodeStack[fNodeStackPtr];
michael@0 627 fNodeStack[fNodeStackPtr]->fParent = n;
michael@0 628 fNodeStackPtr--;
michael@0 629 // printNodeStack("looping in fixOpStack() ");
michael@0 630 }
michael@0 631
michael@0 632 if (p <= RBBINode::precLParen) {
michael@0 633 // Scan is at a right paren or end of expression.
michael@0 634 // The scanned item must match the stack, or else there was an error.
michael@0 635 // Discard the left paren (or start expr) node from the stack,
michael@0 636 // leaving the completed (sub)expression as TOS.
michael@0 637 if (n->fPrecedence != p) {
michael@0 638 // Right paren encountered matched start of expression node, or
michael@0 639 // end of expression matched with a left paren node.
michael@0 640 error(U_BRK_MISMATCHED_PAREN);
michael@0 641 }
michael@0 642 fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr];
michael@0 643 fNodeStackPtr--;
michael@0 644 // Delete the now-discarded LParen or Start node.
michael@0 645 delete n;
michael@0 646 }
michael@0 647 // printNodeStack("leaving fixOpStack()");
michael@0 648 }
michael@0 649
michael@0 650
michael@0 651
michael@0 652
michael@0 653 //------------------------------------------------------------------------------
michael@0 654 //
michael@0 655 // findSetFor given a UnicodeString,
michael@0 656 // - find the corresponding Unicode Set (uset node)
michael@0 657 // (create one if necessary)
michael@0 658 // - Set fLeftChild of the caller's node (should be a setRef node)
michael@0 659 // to the uset node
michael@0 660 // Maintain a hash table of uset nodes, so the same one is always used
michael@0 661 // for the same string.
michael@0 662 // If a "to adopt" set is provided and we haven't seen this key before,
michael@0 663 // add the provided set to the hash table.
michael@0 664 // If the string is one (32 bit) char in length, the set contains
michael@0 665 // just one element which is the char in question.
michael@0 666 // If the string is "any", return a set containing all chars.
michael@0 667 //
michael@0 668 //------------------------------------------------------------------------------
michael@0 669 void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) {
michael@0 670
michael@0 671 RBBISetTableEl *el;
michael@0 672
michael@0 673 // First check whether we've already cached a set for this string.
michael@0 674 // If so, just use the cached set in the new node.
michael@0 675 // delete any set provided by the caller, since we own it.
michael@0 676 el = (RBBISetTableEl *)uhash_get(fSetTable, &s);
michael@0 677 if (el != NULL) {
michael@0 678 delete setToAdopt;
michael@0 679 node->fLeftChild = el->val;
michael@0 680 U_ASSERT(node->fLeftChild->fType == RBBINode::uset);
michael@0 681 return;
michael@0 682 }
michael@0 683
michael@0 684 // Haven't seen this set before.
michael@0 685 // If the caller didn't provide us with a prebuilt set,
michael@0 686 // create a new UnicodeSet now.
michael@0 687 if (setToAdopt == NULL) {
michael@0 688 if (s.compare(kAny, -1) == 0) {
michael@0 689 setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
michael@0 690 } else {
michael@0 691 UChar32 c;
michael@0 692 c = s.char32At(0);
michael@0 693 setToAdopt = new UnicodeSet(c, c);
michael@0 694 }
michael@0 695 }
michael@0 696
michael@0 697 //
michael@0 698 // Make a new uset node to refer to this UnicodeSet
michael@0 699 // This new uset node becomes the child of the caller's setReference node.
michael@0 700 //
michael@0 701 RBBINode *usetNode = new RBBINode(RBBINode::uset);
michael@0 702 if (usetNode == NULL) {
michael@0 703 error(U_MEMORY_ALLOCATION_ERROR);
michael@0 704 return;
michael@0 705 }
michael@0 706 usetNode->fInputSet = setToAdopt;
michael@0 707 usetNode->fParent = node;
michael@0 708 node->fLeftChild = usetNode;
michael@0 709 usetNode->fText = s;
michael@0 710
michael@0 711
michael@0 712 //
michael@0 713 // Add the new uset node to the list of all uset nodes.
michael@0 714 //
michael@0 715 fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus);
michael@0 716
michael@0 717
michael@0 718 //
michael@0 719 // Add the new set to the set hash table.
michael@0 720 //
michael@0 721 el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl));
michael@0 722 UnicodeString *tkey = new UnicodeString(s);
michael@0 723 if (tkey == NULL || el == NULL || setToAdopt == NULL) {
michael@0 724 // Delete to avoid memory leak
michael@0 725 delete tkey;
michael@0 726 tkey = NULL;
michael@0 727 uprv_free(el);
michael@0 728 el = NULL;
michael@0 729 delete setToAdopt;
michael@0 730 setToAdopt = NULL;
michael@0 731
michael@0 732 error(U_MEMORY_ALLOCATION_ERROR);
michael@0 733 return;
michael@0 734 }
michael@0 735 el->key = tkey;
michael@0 736 el->val = usetNode;
michael@0 737 uhash_put(fSetTable, el->key, el, fRB->fStatus);
michael@0 738
michael@0 739 return;
michael@0 740 }
michael@0 741
michael@0 742
michael@0 743
michael@0 744 //
michael@0 745 // Assorted Unicode character constants.
michael@0 746 // Numeric because there is no portable way to enter them as literals.
michael@0 747 // (Think EBCDIC).
michael@0 748 //
michael@0 749 static const UChar chCR = 0x0d; // New lines, for terminating comments.
michael@0 750 static const UChar chLF = 0x0a;
michael@0 751 static const UChar chNEL = 0x85; // NEL newline variant
michael@0 752 static const UChar chLS = 0x2028; // Unicode Line Separator
michael@0 753 static const UChar chApos = 0x27; // single quote, for quoted chars.
michael@0 754 static const UChar chPound = 0x23; // '#', introduces a comment.
michael@0 755 static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
michael@0 756 static const UChar chLParen = 0x28;
michael@0 757 static const UChar chRParen = 0x29;
michael@0 758
michael@0 759
michael@0 760 //------------------------------------------------------------------------------
michael@0 761 //
michael@0 762 // stripRules Return a rules string without unnecessary
michael@0 763 // characters.
michael@0 764 //
michael@0 765 //------------------------------------------------------------------------------
michael@0 766 UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) {
michael@0 767 UnicodeString strippedRules;
michael@0 768 int rulesLength = rules.length();
michael@0 769 for (int idx = 0; idx < rulesLength; ) {
michael@0 770 UChar ch = rules[idx++];
michael@0 771 if (ch == chPound) {
michael@0 772 while (idx < rulesLength
michael@0 773 && ch != chCR && ch != chLF && ch != chNEL)
michael@0 774 {
michael@0 775 ch = rules[idx++];
michael@0 776 }
michael@0 777 }
michael@0 778 if (!u_isISOControl(ch)) {
michael@0 779 strippedRules.append(ch);
michael@0 780 }
michael@0 781 }
michael@0 782 // strippedRules = strippedRules.unescape();
michael@0 783 return strippedRules;
michael@0 784 }
michael@0 785
michael@0 786
michael@0 787 //------------------------------------------------------------------------------
michael@0 788 //
michael@0 789 // nextCharLL Low Level Next Char from rule input source.
michael@0 790 // Get a char from the input character iterator,
michael@0 791 // keep track of input position for error reporting.
michael@0 792 //
michael@0 793 //------------------------------------------------------------------------------
michael@0 794 UChar32 RBBIRuleScanner::nextCharLL() {
michael@0 795 UChar32 ch;
michael@0 796
michael@0 797 if (fNextIndex >= fRB->fRules.length()) {
michael@0 798 return (UChar32)-1;
michael@0 799 }
michael@0 800 ch = fRB->fRules.char32At(fNextIndex);
michael@0 801 fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1);
michael@0 802
michael@0 803 if (ch == chCR ||
michael@0 804 ch == chNEL ||
michael@0 805 ch == chLS ||
michael@0 806 (ch == chLF && fLastChar != chCR)) {
michael@0 807 // Character is starting a new line. Bump up the line number, and
michael@0 808 // reset the column to 0.
michael@0 809 fLineNum++;
michael@0 810 fCharNum=0;
michael@0 811 if (fQuoteMode) {
michael@0 812 error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
michael@0 813 fQuoteMode = FALSE;
michael@0 814 }
michael@0 815 }
michael@0 816 else {
michael@0 817 // Character is not starting a new line. Except in the case of a
michael@0 818 // LF following a CR, increment the column position.
michael@0 819 if (ch != chLF) {
michael@0 820 fCharNum++;
michael@0 821 }
michael@0 822 }
michael@0 823 fLastChar = ch;
michael@0 824 return ch;
michael@0 825 }
michael@0 826
michael@0 827
michael@0 828 //------------------------------------------------------------------------------
michael@0 829 //
michael@0 830 // nextChar for rules scanning. At this level, we handle stripping
michael@0 831 // out comments and processing backslash character escapes.
michael@0 832 // The rest of the rules grammar is handled at the next level up.
michael@0 833 //
michael@0 834 //------------------------------------------------------------------------------
michael@0 835 void RBBIRuleScanner::nextChar(RBBIRuleChar &c) {
michael@0 836
michael@0 837 // Unicode Character constants needed for the processing done by nextChar(),
michael@0 838 // in hex because literals wont work on EBCDIC machines.
michael@0 839
michael@0 840 fScanIndex = fNextIndex;
michael@0 841 c.fChar = nextCharLL();
michael@0 842 c.fEscaped = FALSE;
michael@0 843
michael@0 844 //
michael@0 845 // check for '' sequence.
michael@0 846 // These are recognized in all contexts, whether in quoted text or not.
michael@0 847 //
michael@0 848 if (c.fChar == chApos) {
michael@0 849 if (fRB->fRules.char32At(fNextIndex) == chApos) {
michael@0 850 c.fChar = nextCharLL(); // get nextChar officially so character counts
michael@0 851 c.fEscaped = TRUE; // stay correct.
michael@0 852 }
michael@0 853 else
michael@0 854 {
michael@0 855 // Single quote, by itself.
michael@0 856 // Toggle quoting mode.
michael@0 857 // Return either '(' or ')', because quotes cause a grouping of the quoted text.
michael@0 858 fQuoteMode = !fQuoteMode;
michael@0 859 if (fQuoteMode == TRUE) {
michael@0 860 c.fChar = chLParen;
michael@0 861 } else {
michael@0 862 c.fChar = chRParen;
michael@0 863 }
michael@0 864 c.fEscaped = FALSE; // The paren that we return is not escaped.
michael@0 865 return;
michael@0 866 }
michael@0 867 }
michael@0 868
michael@0 869 if (fQuoteMode) {
michael@0 870 c.fEscaped = TRUE;
michael@0 871 }
michael@0 872 else
michael@0 873 {
michael@0 874 // We are not in a 'quoted region' of the source.
michael@0 875 //
michael@0 876 if (c.fChar == chPound) {
michael@0 877 // Start of a comment. Consume the rest of it.
michael@0 878 // The new-line char that terminates the comment is always returned.
michael@0 879 // It will be treated as white-space, and serves to break up anything
michael@0 880 // that might otherwise incorrectly clump together with a comment in
michael@0 881 // the middle (a variable name, for example.)
michael@0 882 for (;;) {
michael@0 883 c.fChar = nextCharLL();
michael@0 884 if (c.fChar == (UChar32)-1 || // EOF
michael@0 885 c.fChar == chCR ||
michael@0 886 c.fChar == chLF ||
michael@0 887 c.fChar == chNEL ||
michael@0 888 c.fChar == chLS) {break;}
michael@0 889 }
michael@0 890 }
michael@0 891 if (c.fChar == (UChar32)-1) {
michael@0 892 return;
michael@0 893 }
michael@0 894
michael@0 895 //
michael@0 896 // check for backslash escaped characters.
michael@0 897 // Use UnicodeString::unescapeAt() to handle them.
michael@0 898 //
michael@0 899 if (c.fChar == chBackSlash) {
michael@0 900 c.fEscaped = TRUE;
michael@0 901 int32_t startX = fNextIndex;
michael@0 902 c.fChar = fRB->fRules.unescapeAt(fNextIndex);
michael@0 903 if (fNextIndex == startX) {
michael@0 904 error(U_BRK_HEX_DIGITS_EXPECTED);
michael@0 905 }
michael@0 906 fCharNum += fNextIndex-startX;
michael@0 907 }
michael@0 908 }
michael@0 909 // putc(c.fChar, stdout);
michael@0 910 }
michael@0 911
michael@0 912 //------------------------------------------------------------------------------
michael@0 913 //
michael@0 914 // Parse RBBI rules. The state machine for rules parsing is here.
michael@0 915 // The state tables are hand-written in the file rbbirpt.txt,
michael@0 916 // and converted to the form used here by a perl
michael@0 917 // script rbbicst.pl
michael@0 918 //
michael@0 919 //------------------------------------------------------------------------------
michael@0 920 void RBBIRuleScanner::parse() {
michael@0 921 uint16_t state;
michael@0 922 const RBBIRuleTableEl *tableEl;
michael@0 923
michael@0 924 if (U_FAILURE(*fRB->fStatus)) {
michael@0 925 return;
michael@0 926 }
michael@0 927
michael@0 928 state = 1;
michael@0 929 nextChar(fC);
michael@0 930 //
michael@0 931 // Main loop for the rule parsing state machine.
michael@0 932 // Runs once per state transition.
michael@0 933 // Each time through optionally performs, depending on the state table,
michael@0 934 // - an advance to the the next input char
michael@0 935 // - an action to be performed.
michael@0 936 // - pushing or popping a state to/from the local state return stack.
michael@0 937 //
michael@0 938 for (;;) {
michael@0 939 // Bail out if anything has gone wrong.
michael@0 940 // RBBI rule file parsing stops on the first error encountered.
michael@0 941 if (U_FAILURE(*fRB->fStatus)) {
michael@0 942 break;
michael@0 943 }
michael@0 944
michael@0 945 // Quit if state == 0. This is the normal way to exit the state machine.
michael@0 946 //
michael@0 947 if (state == 0) {
michael@0 948 break;
michael@0 949 }
michael@0 950
michael@0 951 // Find the state table element that matches the input char from the rule, or the
michael@0 952 // class of the input character. Start with the first table row for this
michael@0 953 // state, then linearly scan forward until we find a row that matches the
michael@0 954 // character. The last row for each state always matches all characters, so
michael@0 955 // the search will stop there, if not before.
michael@0 956 //
michael@0 957 tableEl = &gRuleParseStateTable[state];
michael@0 958 #ifdef RBBI_DEBUG
michael@0 959 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) {
michael@0 960 RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ",
michael@0 961 fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]);
michael@0 962 }
michael@0 963 #endif
michael@0 964
michael@0 965 for (;;) {
michael@0 966 #ifdef RBBI_DEBUG
michael@0 967 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");}
michael@0 968 #endif
michael@0 969 if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) {
michael@0 970 // Table row specified an individual character, not a set, and
michael@0 971 // the input character is not escaped, and
michael@0 972 // the input character matched it.
michael@0 973 break;
michael@0 974 }
michael@0 975 if (tableEl->fCharClass == 255) {
michael@0 976 // Table row specified default, match anything character class.
michael@0 977 break;
michael@0 978 }
michael@0 979 if (tableEl->fCharClass == 254 && fC.fEscaped) {
michael@0 980 // Table row specified "escaped" and the char was escaped.
michael@0 981 break;
michael@0 982 }
michael@0 983 if (tableEl->fCharClass == 253 && fC.fEscaped &&
michael@0 984 (fC.fChar == 0x50 || fC.fChar == 0x70 )) {
michael@0 985 // Table row specified "escaped P" and the char is either 'p' or 'P'.
michael@0 986 break;
michael@0 987 }
michael@0 988 if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) {
michael@0 989 // Table row specified eof and we hit eof on the input.
michael@0 990 break;
michael@0 991 }
michael@0 992
michael@0 993 if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
michael@0 994 fC.fEscaped == FALSE && // char is not escaped &&
michael@0 995 fC.fChar != (UChar32)-1) { // char is not EOF
michael@0 996 U_ASSERT((tableEl->fCharClass-128) < LENGTHOF(fRuleSets));
michael@0 997 if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
michael@0 998 // Table row specified a character class, or set of characters,
michael@0 999 // and the current char matches it.
michael@0 1000 break;
michael@0 1001 }
michael@0 1002 }
michael@0 1003
michael@0 1004 // No match on this row, advance to the next row for this state,
michael@0 1005 tableEl++;
michael@0 1006 }
michael@0 1007 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");}
michael@0 1008
michael@0 1009 //
michael@0 1010 // We've found the row of the state table that matches the current input
michael@0 1011 // character from the rules string.
michael@0 1012 // Perform any action specified by this row in the state table.
michael@0 1013 if (doParseActions((int32_t)tableEl->fAction) == FALSE) {
michael@0 1014 // Break out of the state machine loop if the
michael@0 1015 // the action signalled some kind of error, or
michael@0 1016 // the action was to exit, occurs on normal end-of-rules-input.
michael@0 1017 break;
michael@0 1018 }
michael@0 1019
michael@0 1020 if (tableEl->fPushState != 0) {
michael@0 1021 fStackPtr++;
michael@0 1022 if (fStackPtr >= kStackSize) {
michael@0 1023 error(U_BRK_INTERNAL_ERROR);
michael@0 1024 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow.");
michael@0 1025 fStackPtr--;
michael@0 1026 }
michael@0 1027 fStack[fStackPtr] = tableEl->fPushState;
michael@0 1028 }
michael@0 1029
michael@0 1030 if (tableEl->fNextChar) {
michael@0 1031 nextChar(fC);
michael@0 1032 }
michael@0 1033
michael@0 1034 // Get the next state from the table entry, or from the
michael@0 1035 // state stack if the next state was specified as "pop".
michael@0 1036 if (tableEl->fNextState != 255) {
michael@0 1037 state = tableEl->fNextState;
michael@0 1038 } else {
michael@0 1039 state = fStack[fStackPtr];
michael@0 1040 fStackPtr--;
michael@0 1041 if (fStackPtr < 0) {
michael@0 1042 error(U_BRK_INTERNAL_ERROR);
michael@0 1043 RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow.");
michael@0 1044 fStackPtr++;
michael@0 1045 }
michael@0 1046 }
michael@0 1047
michael@0 1048 }
michael@0 1049
michael@0 1050 //
michael@0 1051 // If there were NO user specified reverse rules, set up the equivalent of ".*;"
michael@0 1052 //
michael@0 1053 if (fRB->fReverseTree == NULL) {
michael@0 1054 fRB->fReverseTree = pushNewNode(RBBINode::opStar);
michael@0 1055 RBBINode *operand = pushNewNode(RBBINode::setRef);
michael@0 1056 findSetFor(UnicodeString(TRUE, kAny, 3), operand);
michael@0 1057 fRB->fReverseTree->fLeftChild = operand;
michael@0 1058 operand->fParent = fRB->fReverseTree;
michael@0 1059 fNodeStackPtr -= 2;
michael@0 1060 }
michael@0 1061
michael@0 1062
michael@0 1063 //
michael@0 1064 // Parsing of the input RBBI rules is complete.
michael@0 1065 // We now have a parse tree for the rule expressions
michael@0 1066 // and a list of all UnicodeSets that are referenced.
michael@0 1067 //
michael@0 1068 #ifdef RBBI_DEBUG
michael@0 1069 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();}
michael@0 1070 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree"))
michael@0 1071 {
michael@0 1072 RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n");
michael@0 1073 fRB->fForwardTree->printTree(TRUE);
michael@0 1074 RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n");
michael@0 1075 fRB->fReverseTree->printTree(TRUE);
michael@0 1076 RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n");
michael@0 1077 fRB->fSafeFwdTree->printTree(TRUE);
michael@0 1078 RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n");
michael@0 1079 fRB->fSafeRevTree->printTree(TRUE);
michael@0 1080 }
michael@0 1081 #endif
michael@0 1082 }
michael@0 1083
michael@0 1084
michael@0 1085 //------------------------------------------------------------------------------
michael@0 1086 //
michael@0 1087 // printNodeStack for debugging...
michael@0 1088 //
michael@0 1089 //------------------------------------------------------------------------------
michael@0 1090 #ifdef RBBI_DEBUG
michael@0 1091 void RBBIRuleScanner::printNodeStack(const char *title) {
michael@0 1092 int i;
michael@0 1093 RBBIDebugPrintf("%s. Dumping node stack...\n", title);
michael@0 1094 for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);}
michael@0 1095 }
michael@0 1096 #endif
michael@0 1097
michael@0 1098
michael@0 1099
michael@0 1100
michael@0 1101 //------------------------------------------------------------------------------
michael@0 1102 //
michael@0 1103 // pushNewNode create a new RBBINode of the specified type and push it
michael@0 1104 // onto the stack of nodes.
michael@0 1105 //
michael@0 1106 //------------------------------------------------------------------------------
michael@0 1107 RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) {
michael@0 1108 fNodeStackPtr++;
michael@0 1109 if (fNodeStackPtr >= kStackSize) {
michael@0 1110 error(U_BRK_INTERNAL_ERROR);
michael@0 1111 RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow.");
michael@0 1112 *fRB->fStatus = U_BRK_INTERNAL_ERROR;
michael@0 1113 return NULL;
michael@0 1114 }
michael@0 1115 fNodeStack[fNodeStackPtr] = new RBBINode(t);
michael@0 1116 if (fNodeStack[fNodeStackPtr] == NULL) {
michael@0 1117 *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR;
michael@0 1118 }
michael@0 1119 return fNodeStack[fNodeStackPtr];
michael@0 1120 }
michael@0 1121
michael@0 1122
michael@0 1123
michael@0 1124 //------------------------------------------------------------------------------
michael@0 1125 //
michael@0 1126 // scanSet Construct a UnicodeSet from the text at the current scan
michael@0 1127 // position. Advance the scan position to the first character
michael@0 1128 // after the set.
michael@0 1129 //
michael@0 1130 // A new RBBI setref node referring to the set is pushed onto the node
michael@0 1131 // stack.
michael@0 1132 //
michael@0 1133 // The scan position is normally under the control of the state machine
michael@0 1134 // that controls rule parsing. UnicodeSets, however, are parsed by
michael@0 1135 // the UnicodeSet constructor, not by the RBBI rule parser.
michael@0 1136 //
michael@0 1137 //------------------------------------------------------------------------------
michael@0 1138 void RBBIRuleScanner::scanSet() {
michael@0 1139 UnicodeSet *uset;
michael@0 1140 ParsePosition pos;
michael@0 1141 int startPos;
michael@0 1142 int i;
michael@0 1143
michael@0 1144 if (U_FAILURE(*fRB->fStatus)) {
michael@0 1145 return;
michael@0 1146 }
michael@0 1147
michael@0 1148 pos.setIndex(fScanIndex);
michael@0 1149 startPos = fScanIndex;
michael@0 1150 UErrorCode localStatus = U_ZERO_ERROR;
michael@0 1151 uset = new UnicodeSet();
michael@0 1152 if (uset == NULL) {
michael@0 1153 localStatus = U_MEMORY_ALLOCATION_ERROR;
michael@0 1154 } else {
michael@0 1155 uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus);
michael@0 1156 }
michael@0 1157 if (U_FAILURE(localStatus)) {
michael@0 1158 // TODO: Get more accurate position of the error from UnicodeSet's return info.
michael@0 1159 // UnicodeSet appears to not be reporting correctly at this time.
michael@0 1160 #ifdef RBBI_DEBUG
michael@0 1161 RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
michael@0 1162 #endif
michael@0 1163 error(localStatus);
michael@0 1164 delete uset;
michael@0 1165 return;
michael@0 1166 }
michael@0 1167
michael@0 1168 // Verify that the set contains at least one code point.
michael@0 1169 //
michael@0 1170 U_ASSERT(uset!=NULL);
michael@0 1171 if (uset->isEmpty()) {
michael@0 1172 // This set is empty.
michael@0 1173 // Make it an error, because it almost certainly is not what the user wanted.
michael@0 1174 // Also, avoids having to think about corner cases in the tree manipulation code
michael@0 1175 // that occurs later on.
michael@0 1176 error(U_BRK_RULE_EMPTY_SET);
michael@0 1177 delete uset;
michael@0 1178 return;
michael@0 1179 }
michael@0 1180
michael@0 1181
michael@0 1182 // Advance the RBBI parse postion over the UnicodeSet pattern.
michael@0 1183 // Don't just set fScanIndex because the line/char positions maintained
michael@0 1184 // for error reporting would be thrown off.
michael@0 1185 i = pos.getIndex();
michael@0 1186 for (;;) {
michael@0 1187 if (fNextIndex >= i) {
michael@0 1188 break;
michael@0 1189 }
michael@0 1190 nextCharLL();
michael@0 1191 }
michael@0 1192
michael@0 1193 if (U_SUCCESS(*fRB->fStatus)) {
michael@0 1194 RBBINode *n;
michael@0 1195
michael@0 1196 n = pushNewNode(RBBINode::setRef);
michael@0 1197 n->fFirstPos = startPos;
michael@0 1198 n->fLastPos = fNextIndex;
michael@0 1199 fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
michael@0 1200 // findSetFor() serves several purposes here:
michael@0 1201 // - Adopts storage for the UnicodeSet, will be responsible for deleting.
michael@0 1202 // - Mantains collection of all sets in use, needed later for establishing
michael@0 1203 // character categories for run time engine.
michael@0 1204 // - Eliminates mulitiple instances of the same set.
michael@0 1205 // - Creates a new uset node if necessary (if this isn't a duplicate.)
michael@0 1206 findSetFor(n->fText, n, uset);
michael@0 1207 }
michael@0 1208
michael@0 1209 }
michael@0 1210
michael@0 1211 U_NAMESPACE_END
michael@0 1212
michael@0 1213 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */

mercurial