Wed, 31 Dec 2014 07:22:50 +0100
Correct previous dual key logic pending first delivery installment.
michael@0 | 1 | /* |
michael@0 | 2 | ****************************************************************************** |
michael@0 | 3 | * Copyright (C) 1997-2012, International Business Machines |
michael@0 | 4 | * Corporation and others. All Rights Reserved. |
michael@0 | 5 | ****************************************************************************** |
michael@0 | 6 | * file name: nfrs.cpp |
michael@0 | 7 | * encoding: US-ASCII |
michael@0 | 8 | * tab size: 8 (not used) |
michael@0 | 9 | * indentation:4 |
michael@0 | 10 | * |
michael@0 | 11 | * Modification history |
michael@0 | 12 | * Date Name Comments |
michael@0 | 13 | * 10/11/2001 Doug Ported from ICU4J |
michael@0 | 14 | */ |
michael@0 | 15 | |
michael@0 | 16 | #include "nfrs.h" |
michael@0 | 17 | |
michael@0 | 18 | #if U_HAVE_RBNF |
michael@0 | 19 | |
michael@0 | 20 | #include "unicode/uchar.h" |
michael@0 | 21 | #include "nfrule.h" |
michael@0 | 22 | #include "nfrlist.h" |
michael@0 | 23 | #include "patternprops.h" |
michael@0 | 24 | |
michael@0 | 25 | #ifdef RBNF_DEBUG |
michael@0 | 26 | #include "cmemory.h" |
michael@0 | 27 | #endif |
michael@0 | 28 | |
michael@0 | 29 | U_NAMESPACE_BEGIN |
michael@0 | 30 | |
michael@0 | 31 | #if 0 |
michael@0 | 32 | // euclid's algorithm works with doubles |
michael@0 | 33 | // note, doubles only get us up to one quadrillion or so, which |
michael@0 | 34 | // isn't as much range as we get with longs. We probably still |
michael@0 | 35 | // want either 64-bit math, or BigInteger. |
michael@0 | 36 | |
michael@0 | 37 | static int64_t |
michael@0 | 38 | util_lcm(int64_t x, int64_t y) |
michael@0 | 39 | { |
michael@0 | 40 | x.abs(); |
michael@0 | 41 | y.abs(); |
michael@0 | 42 | |
michael@0 | 43 | if (x == 0 || y == 0) { |
michael@0 | 44 | return 0; |
michael@0 | 45 | } else { |
michael@0 | 46 | do { |
michael@0 | 47 | if (x < y) { |
michael@0 | 48 | int64_t t = x; x = y; y = t; |
michael@0 | 49 | } |
michael@0 | 50 | x -= y * (x/y); |
michael@0 | 51 | } while (x != 0); |
michael@0 | 52 | |
michael@0 | 53 | return y; |
michael@0 | 54 | } |
michael@0 | 55 | } |
michael@0 | 56 | |
michael@0 | 57 | #else |
michael@0 | 58 | /** |
michael@0 | 59 | * Calculates the least common multiple of x and y. |
michael@0 | 60 | */ |
michael@0 | 61 | static int64_t |
michael@0 | 62 | util_lcm(int64_t x, int64_t y) |
michael@0 | 63 | { |
michael@0 | 64 | // binary gcd algorithm from Knuth, "The Art of Computer Programming," |
michael@0 | 65 | // vol. 2, 1st ed., pp. 298-299 |
michael@0 | 66 | int64_t x1 = x; |
michael@0 | 67 | int64_t y1 = y; |
michael@0 | 68 | |
michael@0 | 69 | int p2 = 0; |
michael@0 | 70 | while ((x1 & 1) == 0 && (y1 & 1) == 0) { |
michael@0 | 71 | ++p2; |
michael@0 | 72 | x1 >>= 1; |
michael@0 | 73 | y1 >>= 1; |
michael@0 | 74 | } |
michael@0 | 75 | |
michael@0 | 76 | int64_t t; |
michael@0 | 77 | if ((x1 & 1) == 1) { |
michael@0 | 78 | t = -y1; |
michael@0 | 79 | } else { |
michael@0 | 80 | t = x1; |
michael@0 | 81 | } |
michael@0 | 82 | |
michael@0 | 83 | while (t != 0) { |
michael@0 | 84 | while ((t & 1) == 0) { |
michael@0 | 85 | t = t >> 1; |
michael@0 | 86 | } |
michael@0 | 87 | if (t > 0) { |
michael@0 | 88 | x1 = t; |
michael@0 | 89 | } else { |
michael@0 | 90 | y1 = -t; |
michael@0 | 91 | } |
michael@0 | 92 | t = x1 - y1; |
michael@0 | 93 | } |
michael@0 | 94 | |
michael@0 | 95 | int64_t gcd = x1 << p2; |
michael@0 | 96 | |
michael@0 | 97 | // x * y == gcd(x, y) * lcm(x, y) |
michael@0 | 98 | return x / gcd * y; |
michael@0 | 99 | } |
michael@0 | 100 | #endif |
michael@0 | 101 | |
michael@0 | 102 | static const UChar gPercent = 0x0025; |
michael@0 | 103 | static const UChar gColon = 0x003a; |
michael@0 | 104 | static const UChar gSemicolon = 0x003b; |
michael@0 | 105 | static const UChar gLineFeed = 0x000a; |
michael@0 | 106 | |
michael@0 | 107 | static const UChar gFourSpaces[] = |
michael@0 | 108 | { |
michael@0 | 109 | 0x20, 0x20, 0x20, 0x20, 0 |
michael@0 | 110 | }; /* " " */ |
michael@0 | 111 | static const UChar gPercentPercent[] = |
michael@0 | 112 | { |
michael@0 | 113 | 0x25, 0x25, 0 |
michael@0 | 114 | }; /* "%%" */ |
michael@0 | 115 | |
michael@0 | 116 | static const UChar gNoparse[] = |
michael@0 | 117 | { |
michael@0 | 118 | 0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0 |
michael@0 | 119 | }; /* "@noparse" */ |
michael@0 | 120 | |
michael@0 | 121 | NFRuleSet::NFRuleSet(UnicodeString* descriptions, int32_t index, UErrorCode& status) |
michael@0 | 122 | : name() |
michael@0 | 123 | , rules(0) |
michael@0 | 124 | , negativeNumberRule(NULL) |
michael@0 | 125 | , fIsFractionRuleSet(FALSE) |
michael@0 | 126 | , fIsPublic(FALSE) |
michael@0 | 127 | , fIsParseable(TRUE) |
michael@0 | 128 | , fRecursionCount(0) |
michael@0 | 129 | { |
michael@0 | 130 | for (int i = 0; i < 3; ++i) { |
michael@0 | 131 | fractionRules[i] = NULL; |
michael@0 | 132 | } |
michael@0 | 133 | |
michael@0 | 134 | if (U_FAILURE(status)) { |
michael@0 | 135 | return; |
michael@0 | 136 | } |
michael@0 | 137 | |
michael@0 | 138 | UnicodeString& description = descriptions[index]; // !!! make sure index is valid |
michael@0 | 139 | |
michael@0 | 140 | if (description.length() == 0) { |
michael@0 | 141 | // throw new IllegalArgumentException("Empty rule set description"); |
michael@0 | 142 | status = U_PARSE_ERROR; |
michael@0 | 143 | return; |
michael@0 | 144 | } |
michael@0 | 145 | |
michael@0 | 146 | // if the description begins with a rule set name (the rule set |
michael@0 | 147 | // name can be omitted in formatter descriptions that consist |
michael@0 | 148 | // of only one rule set), copy it out into our "name" member |
michael@0 | 149 | // and delete it from the description |
michael@0 | 150 | if (description.charAt(0) == gPercent) { |
michael@0 | 151 | int32_t pos = description.indexOf(gColon); |
michael@0 | 152 | if (pos == -1) { |
michael@0 | 153 | // throw new IllegalArgumentException("Rule set name doesn't end in colon"); |
michael@0 | 154 | status = U_PARSE_ERROR; |
michael@0 | 155 | } else { |
michael@0 | 156 | name.setTo(description, 0, pos); |
michael@0 | 157 | while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) { |
michael@0 | 158 | } |
michael@0 | 159 | description.remove(0, pos); |
michael@0 | 160 | } |
michael@0 | 161 | } else { |
michael@0 | 162 | name.setTo(UNICODE_STRING_SIMPLE("%default")); |
michael@0 | 163 | } |
michael@0 | 164 | |
michael@0 | 165 | if (description.length() == 0) { |
michael@0 | 166 | // throw new IllegalArgumentException("Empty rule set description"); |
michael@0 | 167 | status = U_PARSE_ERROR; |
michael@0 | 168 | } |
michael@0 | 169 | |
michael@0 | 170 | fIsPublic = name.indexOf(gPercentPercent, 2, 0) != 0; |
michael@0 | 171 | |
michael@0 | 172 | if ( name.endsWith(gNoparse,8) ) { |
michael@0 | 173 | fIsParseable = FALSE; |
michael@0 | 174 | name.truncate(name.length()-8); // remove the @noparse from the name |
michael@0 | 175 | } |
michael@0 | 176 | |
michael@0 | 177 | // all of the other members of NFRuleSet are initialized |
michael@0 | 178 | // by parseRules() |
michael@0 | 179 | } |
michael@0 | 180 | |
michael@0 | 181 | void |
michael@0 | 182 | NFRuleSet::parseRules(UnicodeString& description, const RuleBasedNumberFormat* owner, UErrorCode& status) |
michael@0 | 183 | { |
michael@0 | 184 | // start by creating a Vector whose elements are Strings containing |
michael@0 | 185 | // the descriptions of the rules (one rule per element). The rules |
michael@0 | 186 | // are separated by semicolons (there's no escape facility: ALL |
michael@0 | 187 | // semicolons are rule delimiters) |
michael@0 | 188 | |
michael@0 | 189 | if (U_FAILURE(status)) { |
michael@0 | 190 | return; |
michael@0 | 191 | } |
michael@0 | 192 | |
michael@0 | 193 | // ensure we are starting with an empty rule list |
michael@0 | 194 | rules.deleteAll(); |
michael@0 | 195 | |
michael@0 | 196 | // dlf - the original code kept a separate description array for no reason, |
michael@0 | 197 | // so I got rid of it. The loop was too complex so I simplified it. |
michael@0 | 198 | |
michael@0 | 199 | UnicodeString currentDescription; |
michael@0 | 200 | int32_t oldP = 0; |
michael@0 | 201 | while (oldP < description.length()) { |
michael@0 | 202 | int32_t p = description.indexOf(gSemicolon, oldP); |
michael@0 | 203 | if (p == -1) { |
michael@0 | 204 | p = description.length(); |
michael@0 | 205 | } |
michael@0 | 206 | currentDescription.setTo(description, oldP, p - oldP); |
michael@0 | 207 | NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status); |
michael@0 | 208 | oldP = p + 1; |
michael@0 | 209 | } |
michael@0 | 210 | |
michael@0 | 211 | // for rules that didn't specify a base value, their base values |
michael@0 | 212 | // were initialized to 0. Make another pass through the list and |
michael@0 | 213 | // set all those rules' base values. We also remove any special |
michael@0 | 214 | // rules from the list and put them into their own member variables |
michael@0 | 215 | int64_t defaultBaseValue = 0; |
michael@0 | 216 | |
michael@0 | 217 | // (this isn't a for loop because we might be deleting items from |
michael@0 | 218 | // the vector-- we want to make sure we only increment i when |
michael@0 | 219 | // we _didn't_ delete aything from the vector) |
michael@0 | 220 | uint32_t i = 0; |
michael@0 | 221 | while (i < rules.size()) { |
michael@0 | 222 | NFRule* rule = rules[i]; |
michael@0 | 223 | |
michael@0 | 224 | switch (rule->getType()) { |
michael@0 | 225 | // if the rule's base value is 0, fill in a default |
michael@0 | 226 | // base value (this will be 1 plus the preceding |
michael@0 | 227 | // rule's base value for regular rule sets, and the |
michael@0 | 228 | // same as the preceding rule's base value in fraction |
michael@0 | 229 | // rule sets) |
michael@0 | 230 | case NFRule::kNoBase: |
michael@0 | 231 | rule->setBaseValue(defaultBaseValue, status); |
michael@0 | 232 | if (!isFractionRuleSet()) { |
michael@0 | 233 | ++defaultBaseValue; |
michael@0 | 234 | } |
michael@0 | 235 | ++i; |
michael@0 | 236 | break; |
michael@0 | 237 | |
michael@0 | 238 | // if it's the negative-number rule, copy it into its own |
michael@0 | 239 | // data member and delete it from the list |
michael@0 | 240 | case NFRule::kNegativeNumberRule: |
michael@0 | 241 | if (negativeNumberRule) { |
michael@0 | 242 | delete negativeNumberRule; |
michael@0 | 243 | } |
michael@0 | 244 | negativeNumberRule = rules.remove(i); |
michael@0 | 245 | break; |
michael@0 | 246 | |
michael@0 | 247 | // if it's the improper fraction rule, copy it into the |
michael@0 | 248 | // correct element of fractionRules |
michael@0 | 249 | case NFRule::kImproperFractionRule: |
michael@0 | 250 | if (fractionRules[0]) { |
michael@0 | 251 | delete fractionRules[0]; |
michael@0 | 252 | } |
michael@0 | 253 | fractionRules[0] = rules.remove(i); |
michael@0 | 254 | break; |
michael@0 | 255 | |
michael@0 | 256 | // if it's the proper fraction rule, copy it into the |
michael@0 | 257 | // correct element of fractionRules |
michael@0 | 258 | case NFRule::kProperFractionRule: |
michael@0 | 259 | if (fractionRules[1]) { |
michael@0 | 260 | delete fractionRules[1]; |
michael@0 | 261 | } |
michael@0 | 262 | fractionRules[1] = rules.remove(i); |
michael@0 | 263 | break; |
michael@0 | 264 | |
michael@0 | 265 | // if it's the master rule, copy it into the |
michael@0 | 266 | // correct element of fractionRules |
michael@0 | 267 | case NFRule::kMasterRule: |
michael@0 | 268 | if (fractionRules[2]) { |
michael@0 | 269 | delete fractionRules[2]; |
michael@0 | 270 | } |
michael@0 | 271 | fractionRules[2] = rules.remove(i); |
michael@0 | 272 | break; |
michael@0 | 273 | |
michael@0 | 274 | // if it's a regular rule that already knows its base value, |
michael@0 | 275 | // check to make sure the rules are in order, and update |
michael@0 | 276 | // the default base value for the next rule |
michael@0 | 277 | default: |
michael@0 | 278 | if (rule->getBaseValue() < defaultBaseValue) { |
michael@0 | 279 | // throw new IllegalArgumentException("Rules are not in order"); |
michael@0 | 280 | status = U_PARSE_ERROR; |
michael@0 | 281 | return; |
michael@0 | 282 | } |
michael@0 | 283 | defaultBaseValue = rule->getBaseValue(); |
michael@0 | 284 | if (!isFractionRuleSet()) { |
michael@0 | 285 | ++defaultBaseValue; |
michael@0 | 286 | } |
michael@0 | 287 | ++i; |
michael@0 | 288 | break; |
michael@0 | 289 | } |
michael@0 | 290 | } |
michael@0 | 291 | } |
michael@0 | 292 | |
michael@0 | 293 | NFRuleSet::~NFRuleSet() |
michael@0 | 294 | { |
michael@0 | 295 | delete negativeNumberRule; |
michael@0 | 296 | delete fractionRules[0]; |
michael@0 | 297 | delete fractionRules[1]; |
michael@0 | 298 | delete fractionRules[2]; |
michael@0 | 299 | } |
michael@0 | 300 | |
michael@0 | 301 | static UBool |
michael@0 | 302 | util_equalRules(const NFRule* rule1, const NFRule* rule2) |
michael@0 | 303 | { |
michael@0 | 304 | if (rule1) { |
michael@0 | 305 | if (rule2) { |
michael@0 | 306 | return *rule1 == *rule2; |
michael@0 | 307 | } |
michael@0 | 308 | } else if (!rule2) { |
michael@0 | 309 | return TRUE; |
michael@0 | 310 | } |
michael@0 | 311 | return FALSE; |
michael@0 | 312 | } |
michael@0 | 313 | |
michael@0 | 314 | UBool |
michael@0 | 315 | NFRuleSet::operator==(const NFRuleSet& rhs) const |
michael@0 | 316 | { |
michael@0 | 317 | if (rules.size() == rhs.rules.size() && |
michael@0 | 318 | fIsFractionRuleSet == rhs.fIsFractionRuleSet && |
michael@0 | 319 | name == rhs.name && |
michael@0 | 320 | util_equalRules(negativeNumberRule, rhs.negativeNumberRule) && |
michael@0 | 321 | util_equalRules(fractionRules[0], rhs.fractionRules[0]) && |
michael@0 | 322 | util_equalRules(fractionRules[1], rhs.fractionRules[1]) && |
michael@0 | 323 | util_equalRules(fractionRules[2], rhs.fractionRules[2])) { |
michael@0 | 324 | |
michael@0 | 325 | for (uint32_t i = 0; i < rules.size(); ++i) { |
michael@0 | 326 | if (*rules[i] != *rhs.rules[i]) { |
michael@0 | 327 | return FALSE; |
michael@0 | 328 | } |
michael@0 | 329 | } |
michael@0 | 330 | return TRUE; |
michael@0 | 331 | } |
michael@0 | 332 | return FALSE; |
michael@0 | 333 | } |
michael@0 | 334 | |
michael@0 | 335 | #define RECURSION_LIMIT 50 |
michael@0 | 336 | |
michael@0 | 337 | void |
michael@0 | 338 | NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos) const |
michael@0 | 339 | { |
michael@0 | 340 | NFRule *rule = findNormalRule(number); |
michael@0 | 341 | if (rule) { // else error, but can't report it |
michael@0 | 342 | NFRuleSet* ncThis = (NFRuleSet*)this; |
michael@0 | 343 | if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { |
michael@0 | 344 | // stop recursion |
michael@0 | 345 | ncThis->fRecursionCount = 0; |
michael@0 | 346 | } else { |
michael@0 | 347 | rule->doFormat(number, toAppendTo, pos); |
michael@0 | 348 | ncThis->fRecursionCount--; |
michael@0 | 349 | } |
michael@0 | 350 | } |
michael@0 | 351 | } |
michael@0 | 352 | |
michael@0 | 353 | void |
michael@0 | 354 | NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos) const |
michael@0 | 355 | { |
michael@0 | 356 | NFRule *rule = findDoubleRule(number); |
michael@0 | 357 | if (rule) { // else error, but can't report it |
michael@0 | 358 | NFRuleSet* ncThis = (NFRuleSet*)this; |
michael@0 | 359 | if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { |
michael@0 | 360 | // stop recursion |
michael@0 | 361 | ncThis->fRecursionCount = 0; |
michael@0 | 362 | } else { |
michael@0 | 363 | rule->doFormat(number, toAppendTo, pos); |
michael@0 | 364 | ncThis->fRecursionCount--; |
michael@0 | 365 | } |
michael@0 | 366 | } |
michael@0 | 367 | } |
michael@0 | 368 | |
michael@0 | 369 | NFRule* |
michael@0 | 370 | NFRuleSet::findDoubleRule(double number) const |
michael@0 | 371 | { |
michael@0 | 372 | // if this is a fraction rule set, use findFractionRuleSetRule() |
michael@0 | 373 | if (isFractionRuleSet()) { |
michael@0 | 374 | return findFractionRuleSetRule(number); |
michael@0 | 375 | } |
michael@0 | 376 | |
michael@0 | 377 | // if the number is negative, return the negative number rule |
michael@0 | 378 | // (if there isn't a negative-number rule, we pretend it's a |
michael@0 | 379 | // positive number) |
michael@0 | 380 | if (number < 0) { |
michael@0 | 381 | if (negativeNumberRule) { |
michael@0 | 382 | return negativeNumberRule; |
michael@0 | 383 | } else { |
michael@0 | 384 | number = -number; |
michael@0 | 385 | } |
michael@0 | 386 | } |
michael@0 | 387 | |
michael@0 | 388 | // if the number isn't an integer, we use one of the fraction rules... |
michael@0 | 389 | if (number != uprv_floor(number)) { |
michael@0 | 390 | // if the number is between 0 and 1, return the proper |
michael@0 | 391 | // fraction rule |
michael@0 | 392 | if (number < 1 && fractionRules[1]) { |
michael@0 | 393 | return fractionRules[1]; |
michael@0 | 394 | } |
michael@0 | 395 | // otherwise, return the improper fraction rule |
michael@0 | 396 | else if (fractionRules[0]) { |
michael@0 | 397 | return fractionRules[0]; |
michael@0 | 398 | } |
michael@0 | 399 | } |
michael@0 | 400 | |
michael@0 | 401 | // if there's a master rule, use it to format the number |
michael@0 | 402 | if (fractionRules[2]) { |
michael@0 | 403 | return fractionRules[2]; |
michael@0 | 404 | } |
michael@0 | 405 | |
michael@0 | 406 | // and if we haven't yet returned a rule, use findNormalRule() |
michael@0 | 407 | // to find the applicable rule |
michael@0 | 408 | int64_t r = util64_fromDouble(number + 0.5); |
michael@0 | 409 | return findNormalRule(r); |
michael@0 | 410 | } |
michael@0 | 411 | |
michael@0 | 412 | NFRule * |
michael@0 | 413 | NFRuleSet::findNormalRule(int64_t number) const |
michael@0 | 414 | { |
michael@0 | 415 | // if this is a fraction rule set, use findFractionRuleSetRule() |
michael@0 | 416 | // to find the rule (we should only go into this clause if the |
michael@0 | 417 | // value is 0) |
michael@0 | 418 | if (fIsFractionRuleSet) { |
michael@0 | 419 | return findFractionRuleSetRule((double)number); |
michael@0 | 420 | } |
michael@0 | 421 | |
michael@0 | 422 | // if the number is negative, return the negative-number rule |
michael@0 | 423 | // (if there isn't one, pretend the number is positive) |
michael@0 | 424 | if (number < 0) { |
michael@0 | 425 | if (negativeNumberRule) { |
michael@0 | 426 | return negativeNumberRule; |
michael@0 | 427 | } else { |
michael@0 | 428 | number = -number; |
michael@0 | 429 | } |
michael@0 | 430 | } |
michael@0 | 431 | |
michael@0 | 432 | // we have to repeat the preceding two checks, even though we |
michael@0 | 433 | // do them in findRule(), because the version of format() that |
michael@0 | 434 | // takes a long bypasses findRule() and goes straight to this |
michael@0 | 435 | // function. This function does skip the fraction rules since |
michael@0 | 436 | // we know the value is an integer (it also skips the master |
michael@0 | 437 | // rule, since it's considered a fraction rule. Skipping the |
michael@0 | 438 | // master rule in this function is also how we avoid infinite |
michael@0 | 439 | // recursion) |
michael@0 | 440 | |
michael@0 | 441 | // {dlf} unfortunately this fails if there are no rules except |
michael@0 | 442 | // special rules. If there are no rules, use the master rule. |
michael@0 | 443 | |
michael@0 | 444 | // binary-search the rule list for the applicable rule |
michael@0 | 445 | // (a rule is used for all values from its base value to |
michael@0 | 446 | // the next rule's base value) |
michael@0 | 447 | int32_t hi = rules.size(); |
michael@0 | 448 | if (hi > 0) { |
michael@0 | 449 | int32_t lo = 0; |
michael@0 | 450 | |
michael@0 | 451 | while (lo < hi) { |
michael@0 | 452 | int32_t mid = (lo + hi) / 2; |
michael@0 | 453 | if (rules[mid]->getBaseValue() == number) { |
michael@0 | 454 | return rules[mid]; |
michael@0 | 455 | } |
michael@0 | 456 | else if (rules[mid]->getBaseValue() > number) { |
michael@0 | 457 | hi = mid; |
michael@0 | 458 | } |
michael@0 | 459 | else { |
michael@0 | 460 | lo = mid + 1; |
michael@0 | 461 | } |
michael@0 | 462 | } |
michael@0 | 463 | if (hi == 0) { // bad rule set, minimum base > 0 |
michael@0 | 464 | return NULL; // want to throw exception here |
michael@0 | 465 | } |
michael@0 | 466 | |
michael@0 | 467 | NFRule *result = rules[hi - 1]; |
michael@0 | 468 | |
michael@0 | 469 | // use shouldRollBack() to see whether we need to invoke the |
michael@0 | 470 | // rollback rule (see shouldRollBack()'s documentation for |
michael@0 | 471 | // an explanation of the rollback rule). If we do, roll back |
michael@0 | 472 | // one rule and return that one instead of the one we'd normally |
michael@0 | 473 | // return |
michael@0 | 474 | if (result->shouldRollBack((double)number)) { |
michael@0 | 475 | if (hi == 1) { // bad rule set, no prior rule to rollback to from this base |
michael@0 | 476 | return NULL; |
michael@0 | 477 | } |
michael@0 | 478 | result = rules[hi - 2]; |
michael@0 | 479 | } |
michael@0 | 480 | return result; |
michael@0 | 481 | } |
michael@0 | 482 | // else use the master rule |
michael@0 | 483 | return fractionRules[2]; |
michael@0 | 484 | } |
michael@0 | 485 | |
michael@0 | 486 | /** |
michael@0 | 487 | * If this rule is a fraction rule set, this function is used by |
michael@0 | 488 | * findRule() to select the most appropriate rule for formatting |
michael@0 | 489 | * the number. Basically, the base value of each rule in the rule |
michael@0 | 490 | * set is treated as the denominator of a fraction. Whichever |
michael@0 | 491 | * denominator can produce the fraction closest in value to the |
michael@0 | 492 | * number passed in is the result. If there's a tie, the earlier |
michael@0 | 493 | * one in the list wins. (If there are two rules in a row with the |
michael@0 | 494 | * same base value, the first one is used when the numerator of the |
michael@0 | 495 | * fraction would be 1, and the second rule is used the rest of the |
michael@0 | 496 | * time. |
michael@0 | 497 | * @param number The number being formatted (which will always be |
michael@0 | 498 | * a number between 0 and 1) |
michael@0 | 499 | * @return The rule to use to format this number |
michael@0 | 500 | */ |
michael@0 | 501 | NFRule* |
michael@0 | 502 | NFRuleSet::findFractionRuleSetRule(double number) const |
michael@0 | 503 | { |
michael@0 | 504 | // the obvious way to do this (multiply the value being formatted |
michael@0 | 505 | // by each rule's base value until you get an integral result) |
michael@0 | 506 | // doesn't work because of rounding error. This method is more |
michael@0 | 507 | // accurate |
michael@0 | 508 | |
michael@0 | 509 | // find the least common multiple of the rules' base values |
michael@0 | 510 | // and multiply this by the number being formatted. This is |
michael@0 | 511 | // all the precision we need, and we can do all of the rest |
michael@0 | 512 | // of the math using integer arithmetic |
michael@0 | 513 | int64_t leastCommonMultiple = rules[0]->getBaseValue(); |
michael@0 | 514 | int64_t numerator; |
michael@0 | 515 | { |
michael@0 | 516 | for (uint32_t i = 1; i < rules.size(); ++i) { |
michael@0 | 517 | leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue()); |
michael@0 | 518 | } |
michael@0 | 519 | numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5); |
michael@0 | 520 | } |
michael@0 | 521 | // for each rule, do the following... |
michael@0 | 522 | int64_t tempDifference; |
michael@0 | 523 | int64_t difference = util64_fromDouble(uprv_maxMantissa()); |
michael@0 | 524 | int32_t winner = 0; |
michael@0 | 525 | for (uint32_t i = 0; i < rules.size(); ++i) { |
michael@0 | 526 | // "numerator" is the numerator of the fraction if the |
michael@0 | 527 | // denominator is the LCD. The numerator if the rule's |
michael@0 | 528 | // base value is the denominator is "numerator" times the |
michael@0 | 529 | // base value divided bythe LCD. Here we check to see if |
michael@0 | 530 | // that's an integer, and if not, how close it is to being |
michael@0 | 531 | // an integer. |
michael@0 | 532 | tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple; |
michael@0 | 533 | |
michael@0 | 534 | |
michael@0 | 535 | // normalize the result of the above calculation: we want |
michael@0 | 536 | // the numerator's distance from the CLOSEST multiple |
michael@0 | 537 | // of the LCD |
michael@0 | 538 | if (leastCommonMultiple - tempDifference < tempDifference) { |
michael@0 | 539 | tempDifference = leastCommonMultiple - tempDifference; |
michael@0 | 540 | } |
michael@0 | 541 | |
michael@0 | 542 | // if this is as close as we've come, keep track of how close |
michael@0 | 543 | // that is, and the line number of the rule that did it. If |
michael@0 | 544 | // we've scored a direct hit, we don't have to look at any more |
michael@0 | 545 | // rules |
michael@0 | 546 | if (tempDifference < difference) { |
michael@0 | 547 | difference = tempDifference; |
michael@0 | 548 | winner = i; |
michael@0 | 549 | if (difference == 0) { |
michael@0 | 550 | break; |
michael@0 | 551 | } |
michael@0 | 552 | } |
michael@0 | 553 | } |
michael@0 | 554 | |
michael@0 | 555 | // if we have two successive rules that both have the winning base |
michael@0 | 556 | // value, then the first one (the one we found above) is used if |
michael@0 | 557 | // the numerator of the fraction is 1 and the second one is used if |
michael@0 | 558 | // the numerator of the fraction is anything else (this lets us |
michael@0 | 559 | // do things like "one third"/"two thirds" without haveing to define |
michael@0 | 560 | // a whole bunch of extra rule sets) |
michael@0 | 561 | if ((unsigned)(winner + 1) < rules.size() && |
michael@0 | 562 | rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) { |
michael@0 | 563 | double n = ((double)rules[winner]->getBaseValue()) * number; |
michael@0 | 564 | if (n < 0.5 || n >= 2) { |
michael@0 | 565 | ++winner; |
michael@0 | 566 | } |
michael@0 | 567 | } |
michael@0 | 568 | |
michael@0 | 569 | // finally, return the winning rule |
michael@0 | 570 | return rules[winner]; |
michael@0 | 571 | } |
michael@0 | 572 | |
michael@0 | 573 | /** |
michael@0 | 574 | * Parses a string. Matches the string to be parsed against each |
michael@0 | 575 | * of its rules (with a base value less than upperBound) and returns |
michael@0 | 576 | * the value produced by the rule that matched the most charcters |
michael@0 | 577 | * in the source string. |
michael@0 | 578 | * @param text The string to parse |
michael@0 | 579 | * @param parsePosition The initial position is ignored and assumed |
michael@0 | 580 | * to be 0. On exit, this object has been updated to point to the |
michael@0 | 581 | * first character position this rule set didn't consume. |
michael@0 | 582 | * @param upperBound Limits the rules that can be allowed to match. |
michael@0 | 583 | * Only rules whose base values are strictly less than upperBound |
michael@0 | 584 | * are considered. |
michael@0 | 585 | * @return The numerical result of parsing this string. This will |
michael@0 | 586 | * be the matching rule's base value, composed appropriately with |
michael@0 | 587 | * the results of matching any of its substitutions. The object |
michael@0 | 588 | * will be an instance of Long if it's an integral value; otherwise, |
michael@0 | 589 | * it will be an instance of Double. This function always returns |
michael@0 | 590 | * a valid object: If nothing matched the input string at all, |
michael@0 | 591 | * this function returns new Long(0), and the parse position is |
michael@0 | 592 | * left unchanged. |
michael@0 | 593 | */ |
michael@0 | 594 | #ifdef RBNF_DEBUG |
michael@0 | 595 | #include <stdio.h> |
michael@0 | 596 | |
michael@0 | 597 | static void dumpUS(FILE* f, const UnicodeString& us) { |
michael@0 | 598 | int len = us.length(); |
michael@0 | 599 | char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; |
michael@0 | 600 | if (buf != NULL) { |
michael@0 | 601 | us.extract(0, len, buf); |
michael@0 | 602 | buf[len] = 0; |
michael@0 | 603 | fprintf(f, "%s", buf); |
michael@0 | 604 | uprv_free(buf); //delete[] buf; |
michael@0 | 605 | } |
michael@0 | 606 | } |
michael@0 | 607 | #endif |
michael@0 | 608 | |
michael@0 | 609 | UBool |
michael@0 | 610 | NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, Formattable& result) const |
michael@0 | 611 | { |
michael@0 | 612 | // try matching each rule in the rule set against the text being |
michael@0 | 613 | // parsed. Whichever one matches the most characters is the one |
michael@0 | 614 | // that determines the value we return. |
michael@0 | 615 | |
michael@0 | 616 | result.setLong(0); |
michael@0 | 617 | |
michael@0 | 618 | // dump out if there's no text to parse |
michael@0 | 619 | if (text.length() == 0) { |
michael@0 | 620 | return 0; |
michael@0 | 621 | } |
michael@0 | 622 | |
michael@0 | 623 | ParsePosition highWaterMark; |
michael@0 | 624 | ParsePosition workingPos = pos; |
michael@0 | 625 | |
michael@0 | 626 | #ifdef RBNF_DEBUG |
michael@0 | 627 | fprintf(stderr, "<nfrs> %x '", this); |
michael@0 | 628 | dumpUS(stderr, name); |
michael@0 | 629 | fprintf(stderr, "' text '"); |
michael@0 | 630 | dumpUS(stderr, text); |
michael@0 | 631 | fprintf(stderr, "'\n"); |
michael@0 | 632 | fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0); |
michael@0 | 633 | #endif |
michael@0 | 634 | |
michael@0 | 635 | // start by trying the negative number rule (if there is one) |
michael@0 | 636 | if (negativeNumberRule) { |
michael@0 | 637 | Formattable tempResult; |
michael@0 | 638 | #ifdef RBNF_DEBUG |
michael@0 | 639 | fprintf(stderr, " <nfrs before negative> %x ub: %g\n", negativeNumberRule, upperBound); |
michael@0 | 640 | #endif |
michael@0 | 641 | UBool success = negativeNumberRule->doParse(text, workingPos, 0, upperBound, tempResult); |
michael@0 | 642 | #ifdef RBNF_DEBUG |
michael@0 | 643 | fprintf(stderr, " <nfrs after negative> success: %d wpi: %d\n", success, workingPos.getIndex()); |
michael@0 | 644 | #endif |
michael@0 | 645 | if (success && workingPos.getIndex() > highWaterMark.getIndex()) { |
michael@0 | 646 | result = tempResult; |
michael@0 | 647 | highWaterMark = workingPos; |
michael@0 | 648 | } |
michael@0 | 649 | workingPos = pos; |
michael@0 | 650 | } |
michael@0 | 651 | #ifdef RBNF_DEBUG |
michael@0 | 652 | fprintf(stderr, "<nfrs> continue fractional with text '"); |
michael@0 | 653 | dumpUS(stderr, text); |
michael@0 | 654 | fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); |
michael@0 | 655 | #endif |
michael@0 | 656 | // then try each of the fraction rules |
michael@0 | 657 | { |
michael@0 | 658 | for (int i = 0; i < 3; i++) { |
michael@0 | 659 | if (fractionRules[i]) { |
michael@0 | 660 | Formattable tempResult; |
michael@0 | 661 | UBool success = fractionRules[i]->doParse(text, workingPos, 0, upperBound, tempResult); |
michael@0 | 662 | if (success && (workingPos.getIndex() > highWaterMark.getIndex())) { |
michael@0 | 663 | result = tempResult; |
michael@0 | 664 | highWaterMark = workingPos; |
michael@0 | 665 | } |
michael@0 | 666 | workingPos = pos; |
michael@0 | 667 | } |
michael@0 | 668 | } |
michael@0 | 669 | } |
michael@0 | 670 | #ifdef RBNF_DEBUG |
michael@0 | 671 | fprintf(stderr, "<nfrs> continue other with text '"); |
michael@0 | 672 | dumpUS(stderr, text); |
michael@0 | 673 | fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); |
michael@0 | 674 | #endif |
michael@0 | 675 | |
michael@0 | 676 | // finally, go through the regular rules one at a time. We start |
michael@0 | 677 | // at the end of the list because we want to try matching the most |
michael@0 | 678 | // sigificant rule first (this helps ensure that we parse |
michael@0 | 679 | // "five thousand three hundred six" as |
michael@0 | 680 | // "(five thousand) (three hundred) (six)" rather than |
michael@0 | 681 | // "((five thousand three) hundred) (six)"). Skip rules whose |
michael@0 | 682 | // base values are higher than the upper bound (again, this helps |
michael@0 | 683 | // limit ambiguity by making sure the rules that match a rule's |
michael@0 | 684 | // are less significant than the rule containing the substitutions)/ |
michael@0 | 685 | { |
michael@0 | 686 | int64_t ub = util64_fromDouble(upperBound); |
michael@0 | 687 | #ifdef RBNF_DEBUG |
michael@0 | 688 | { |
michael@0 | 689 | char ubstr[64]; |
michael@0 | 690 | util64_toa(ub, ubstr, 64); |
michael@0 | 691 | char ubstrhex[64]; |
michael@0 | 692 | util64_toa(ub, ubstrhex, 64, 16); |
michael@0 | 693 | fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex); |
michael@0 | 694 | } |
michael@0 | 695 | #endif |
michael@0 | 696 | for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) { |
michael@0 | 697 | if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) { |
michael@0 | 698 | continue; |
michael@0 | 699 | } |
michael@0 | 700 | Formattable tempResult; |
michael@0 | 701 | UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, tempResult); |
michael@0 | 702 | if (success && workingPos.getIndex() > highWaterMark.getIndex()) { |
michael@0 | 703 | result = tempResult; |
michael@0 | 704 | highWaterMark = workingPos; |
michael@0 | 705 | } |
michael@0 | 706 | workingPos = pos; |
michael@0 | 707 | } |
michael@0 | 708 | } |
michael@0 | 709 | #ifdef RBNF_DEBUG |
michael@0 | 710 | fprintf(stderr, "<nfrs> exit\n"); |
michael@0 | 711 | #endif |
michael@0 | 712 | // finally, update the parse postion we were passed to point to the |
michael@0 | 713 | // first character we didn't use, and return the result that |
michael@0 | 714 | // corresponds to that string of characters |
michael@0 | 715 | pos = highWaterMark; |
michael@0 | 716 | |
michael@0 | 717 | return 1; |
michael@0 | 718 | } |
michael@0 | 719 | |
michael@0 | 720 | void |
michael@0 | 721 | NFRuleSet::appendRules(UnicodeString& result) const |
michael@0 | 722 | { |
michael@0 | 723 | // the rule set name goes first... |
michael@0 | 724 | result.append(name); |
michael@0 | 725 | result.append(gColon); |
michael@0 | 726 | result.append(gLineFeed); |
michael@0 | 727 | |
michael@0 | 728 | // followed by the regular rules... |
michael@0 | 729 | for (uint32_t i = 0; i < rules.size(); i++) { |
michael@0 | 730 | result.append(gFourSpaces, 4); |
michael@0 | 731 | rules[i]->_appendRuleText(result); |
michael@0 | 732 | result.append(gLineFeed); |
michael@0 | 733 | } |
michael@0 | 734 | |
michael@0 | 735 | // followed by the special rules (if they exist) |
michael@0 | 736 | if (negativeNumberRule) { |
michael@0 | 737 | result.append(gFourSpaces, 4); |
michael@0 | 738 | negativeNumberRule->_appendRuleText(result); |
michael@0 | 739 | result.append(gLineFeed); |
michael@0 | 740 | } |
michael@0 | 741 | |
michael@0 | 742 | { |
michael@0 | 743 | for (uint32_t i = 0; i < 3; ++i) { |
michael@0 | 744 | if (fractionRules[i]) { |
michael@0 | 745 | result.append(gFourSpaces, 4); |
michael@0 | 746 | fractionRules[i]->_appendRuleText(result); |
michael@0 | 747 | result.append(gLineFeed); |
michael@0 | 748 | } |
michael@0 | 749 | } |
michael@0 | 750 | } |
michael@0 | 751 | } |
michael@0 | 752 | |
michael@0 | 753 | // utility functions |
michael@0 | 754 | |
michael@0 | 755 | int64_t util64_fromDouble(double d) { |
michael@0 | 756 | int64_t result = 0; |
michael@0 | 757 | if (!uprv_isNaN(d)) { |
michael@0 | 758 | double mant = uprv_maxMantissa(); |
michael@0 | 759 | if (d < -mant) { |
michael@0 | 760 | d = -mant; |
michael@0 | 761 | } else if (d > mant) { |
michael@0 | 762 | d = mant; |
michael@0 | 763 | } |
michael@0 | 764 | UBool neg = d < 0; |
michael@0 | 765 | if (neg) { |
michael@0 | 766 | d = -d; |
michael@0 | 767 | } |
michael@0 | 768 | result = (int64_t)uprv_floor(d); |
michael@0 | 769 | if (neg) { |
michael@0 | 770 | result = -result; |
michael@0 | 771 | } |
michael@0 | 772 | } |
michael@0 | 773 | return result; |
michael@0 | 774 | } |
michael@0 | 775 | |
michael@0 | 776 | int64_t util64_pow(int32_t r, uint32_t e) { |
michael@0 | 777 | if (r == 0) { |
michael@0 | 778 | return 0; |
michael@0 | 779 | } else if (e == 0) { |
michael@0 | 780 | return 1; |
michael@0 | 781 | } else { |
michael@0 | 782 | int64_t n = r; |
michael@0 | 783 | while (--e > 0) { |
michael@0 | 784 | n *= r; |
michael@0 | 785 | } |
michael@0 | 786 | return n; |
michael@0 | 787 | } |
michael@0 | 788 | } |
michael@0 | 789 | |
michael@0 | 790 | static const uint8_t asciiDigits[] = { |
michael@0 | 791 | 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u, |
michael@0 | 792 | 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u, |
michael@0 | 793 | 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu, |
michael@0 | 794 | 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u, |
michael@0 | 795 | 0x77u, 0x78u, 0x79u, 0x7au, |
michael@0 | 796 | }; |
michael@0 | 797 | |
michael@0 | 798 | static const UChar kUMinus = (UChar)0x002d; |
michael@0 | 799 | |
michael@0 | 800 | #ifdef RBNF_DEBUG |
michael@0 | 801 | static const char kMinus = '-'; |
michael@0 | 802 | |
michael@0 | 803 | static const uint8_t digitInfo[] = { |
michael@0 | 804 | 0, 0, 0, 0, 0, 0, 0, 0, |
michael@0 | 805 | 0, 0, 0, 0, 0, 0, 0, 0, |
michael@0 | 806 | 0, 0, 0, 0, 0, 0, 0, 0, |
michael@0 | 807 | 0, 0, 0, 0, 0, 0, 0, 0, |
michael@0 | 808 | 0, 0, 0, 0, 0, 0, 0, 0, |
michael@0 | 809 | 0, 0, 0, 0, 0, 0, 0, 0, |
michael@0 | 810 | 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u, |
michael@0 | 811 | 0x88u, 0x89u, 0, 0, 0, 0, 0, 0, |
michael@0 | 812 | 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, |
michael@0 | 813 | 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, |
michael@0 | 814 | 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, |
michael@0 | 815 | 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, |
michael@0 | 816 | 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, |
michael@0 | 817 | 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, |
michael@0 | 818 | 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, |
michael@0 | 819 | 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, |
michael@0 | 820 | }; |
michael@0 | 821 | |
michael@0 | 822 | int64_t util64_atoi(const char* str, uint32_t radix) |
michael@0 | 823 | { |
michael@0 | 824 | if (radix > 36) { |
michael@0 | 825 | radix = 36; |
michael@0 | 826 | } else if (radix < 2) { |
michael@0 | 827 | radix = 2; |
michael@0 | 828 | } |
michael@0 | 829 | int64_t lradix = radix; |
michael@0 | 830 | |
michael@0 | 831 | int neg = 0; |
michael@0 | 832 | if (*str == kMinus) { |
michael@0 | 833 | ++str; |
michael@0 | 834 | neg = 1; |
michael@0 | 835 | } |
michael@0 | 836 | int64_t result = 0; |
michael@0 | 837 | uint8_t b; |
michael@0 | 838 | while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) { |
michael@0 | 839 | result *= lradix; |
michael@0 | 840 | result += (int32_t)b; |
michael@0 | 841 | } |
michael@0 | 842 | if (neg) { |
michael@0 | 843 | result = -result; |
michael@0 | 844 | } |
michael@0 | 845 | return result; |
michael@0 | 846 | } |
michael@0 | 847 | |
michael@0 | 848 | int64_t util64_utoi(const UChar* str, uint32_t radix) |
michael@0 | 849 | { |
michael@0 | 850 | if (radix > 36) { |
michael@0 | 851 | radix = 36; |
michael@0 | 852 | } else if (radix < 2) { |
michael@0 | 853 | radix = 2; |
michael@0 | 854 | } |
michael@0 | 855 | int64_t lradix = radix; |
michael@0 | 856 | |
michael@0 | 857 | int neg = 0; |
michael@0 | 858 | if (*str == kUMinus) { |
michael@0 | 859 | ++str; |
michael@0 | 860 | neg = 1; |
michael@0 | 861 | } |
michael@0 | 862 | int64_t result = 0; |
michael@0 | 863 | UChar c; |
michael@0 | 864 | uint8_t b; |
michael@0 | 865 | while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) { |
michael@0 | 866 | result *= lradix; |
michael@0 | 867 | result += (int32_t)b; |
michael@0 | 868 | } |
michael@0 | 869 | if (neg) { |
michael@0 | 870 | result = -result; |
michael@0 | 871 | } |
michael@0 | 872 | return result; |
michael@0 | 873 | } |
michael@0 | 874 | |
michael@0 | 875 | uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw) |
michael@0 | 876 | { |
michael@0 | 877 | if (radix > 36) { |
michael@0 | 878 | radix = 36; |
michael@0 | 879 | } else if (radix < 2) { |
michael@0 | 880 | radix = 2; |
michael@0 | 881 | } |
michael@0 | 882 | int64_t base = radix; |
michael@0 | 883 | |
michael@0 | 884 | char* p = buf; |
michael@0 | 885 | if (len && (w < 0) && (radix == 10) && !raw) { |
michael@0 | 886 | w = -w; |
michael@0 | 887 | *p++ = kMinus; |
michael@0 | 888 | --len; |
michael@0 | 889 | } else if (len && (w == 0)) { |
michael@0 | 890 | *p++ = (char)raw ? 0 : asciiDigits[0]; |
michael@0 | 891 | --len; |
michael@0 | 892 | } |
michael@0 | 893 | |
michael@0 | 894 | while (len && w != 0) { |
michael@0 | 895 | int64_t n = w / base; |
michael@0 | 896 | int64_t m = n * base; |
michael@0 | 897 | int32_t d = (int32_t)(w-m); |
michael@0 | 898 | *p++ = raw ? (char)d : asciiDigits[d]; |
michael@0 | 899 | w = n; |
michael@0 | 900 | --len; |
michael@0 | 901 | } |
michael@0 | 902 | if (len) { |
michael@0 | 903 | *p = 0; // null terminate if room for caller convenience |
michael@0 | 904 | } |
michael@0 | 905 | |
michael@0 | 906 | len = p - buf; |
michael@0 | 907 | if (*buf == kMinus) { |
michael@0 | 908 | ++buf; |
michael@0 | 909 | } |
michael@0 | 910 | while (--p > buf) { |
michael@0 | 911 | char c = *p; |
michael@0 | 912 | *p = *buf; |
michael@0 | 913 | *buf = c; |
michael@0 | 914 | ++buf; |
michael@0 | 915 | } |
michael@0 | 916 | |
michael@0 | 917 | return len; |
michael@0 | 918 | } |
michael@0 | 919 | #endif |
michael@0 | 920 | |
michael@0 | 921 | uint32_t util64_tou(int64_t w, UChar* buf, uint32_t len, uint32_t radix, UBool raw) |
michael@0 | 922 | { |
michael@0 | 923 | if (radix > 36) { |
michael@0 | 924 | radix = 36; |
michael@0 | 925 | } else if (radix < 2) { |
michael@0 | 926 | radix = 2; |
michael@0 | 927 | } |
michael@0 | 928 | int64_t base = radix; |
michael@0 | 929 | |
michael@0 | 930 | UChar* p = buf; |
michael@0 | 931 | if (len && (w < 0) && (radix == 10) && !raw) { |
michael@0 | 932 | w = -w; |
michael@0 | 933 | *p++ = kUMinus; |
michael@0 | 934 | --len; |
michael@0 | 935 | } else if (len && (w == 0)) { |
michael@0 | 936 | *p++ = (UChar)raw ? 0 : asciiDigits[0]; |
michael@0 | 937 | --len; |
michael@0 | 938 | } |
michael@0 | 939 | |
michael@0 | 940 | while (len && (w != 0)) { |
michael@0 | 941 | int64_t n = w / base; |
michael@0 | 942 | int64_t m = n * base; |
michael@0 | 943 | int32_t d = (int32_t)(w-m); |
michael@0 | 944 | *p++ = (UChar)(raw ? d : asciiDigits[d]); |
michael@0 | 945 | w = n; |
michael@0 | 946 | --len; |
michael@0 | 947 | } |
michael@0 | 948 | if (len) { |
michael@0 | 949 | *p = 0; // null terminate if room for caller convenience |
michael@0 | 950 | } |
michael@0 | 951 | |
michael@0 | 952 | len = (uint32_t)(p - buf); |
michael@0 | 953 | if (*buf == kUMinus) { |
michael@0 | 954 | ++buf; |
michael@0 | 955 | } |
michael@0 | 956 | while (--p > buf) { |
michael@0 | 957 | UChar c = *p; |
michael@0 | 958 | *p = *buf; |
michael@0 | 959 | *buf = c; |
michael@0 | 960 | ++buf; |
michael@0 | 961 | } |
michael@0 | 962 | |
michael@0 | 963 | return len; |
michael@0 | 964 | } |
michael@0 | 965 | |
michael@0 | 966 | |
michael@0 | 967 | U_NAMESPACE_END |
michael@0 | 968 | |
michael@0 | 969 | /* U_HAVE_RBNF */ |
michael@0 | 970 | #endif |
michael@0 | 971 |