Wed, 31 Dec 2014 07:22:50 +0100
Correct previous dual key logic pending first delivery installment.
michael@0 | 1 | /* |
michael@0 | 2 | ******************************************************************************* |
michael@0 | 3 | * Copyright (C) 2004 - 2008, International Business Machines Corporation and |
michael@0 | 4 | * others. All Rights Reserved. |
michael@0 | 5 | ******************************************************************************* |
michael@0 | 6 | */ |
michael@0 | 7 | |
michael@0 | 8 | #ifndef UTMSCALE_H |
michael@0 | 9 | #define UTMSCALE_H |
michael@0 | 10 | |
michael@0 | 11 | #include "unicode/utypes.h" |
michael@0 | 12 | |
michael@0 | 13 | #if !UCONFIG_NO_FORMATTING |
michael@0 | 14 | |
michael@0 | 15 | /** |
michael@0 | 16 | * \file |
michael@0 | 17 | * \brief C API: Universal Time Scale |
michael@0 | 18 | * |
michael@0 | 19 | * There are quite a few different conventions for binary datetime, depending on different |
michael@0 | 20 | * platforms and protocols. Some of these have severe drawbacks. For example, people using |
michael@0 | 21 | * Unix time (seconds since Jan 1, 1970) think that they are safe until near the year 2038. |
michael@0 | 22 | * But cases can and do arise where arithmetic manipulations causes serious problems. Consider |
michael@0 | 23 | * the computation of the average of two datetimes, for example: if one calculates them with |
michael@0 | 24 | * <code>averageTime = (time1 + time2)/2</code>, there will be overflow even with dates |
michael@0 | 25 | * around the present. Moreover, even if these problems don't occur, there is the issue of |
michael@0 | 26 | * conversion back and forth between different systems. |
michael@0 | 27 | * |
michael@0 | 28 | * <p> |
michael@0 | 29 | * Binary datetimes differ in a number of ways: the datatype, the unit, |
michael@0 | 30 | * and the epoch (origin). We'll refer to these as time scales. For example: |
michael@0 | 31 | * |
michael@0 | 32 | * <table border="1" cellspacing="0" cellpadding="4"> |
michael@0 | 33 | * <caption>Table 1: Binary Time Scales</caption> |
michael@0 | 34 | * <tr> |
michael@0 | 35 | * <th align="left">Source</th> |
michael@0 | 36 | * <th align="left">Datatype</th> |
michael@0 | 37 | * <th align="left">Unit</th> |
michael@0 | 38 | * <th align="left">Epoch</th> |
michael@0 | 39 | * </tr> |
michael@0 | 40 | * |
michael@0 | 41 | * <tr> |
michael@0 | 42 | * <td>UDTS_JAVA_TIME</td> |
michael@0 | 43 | * <td>int64_t</td> |
michael@0 | 44 | * <td>milliseconds</td> |
michael@0 | 45 | * <td>Jan 1, 1970</td> |
michael@0 | 46 | * </tr> |
michael@0 | 47 | * <tr> |
michael@0 | 48 | * |
michael@0 | 49 | * <td>UDTS_UNIX_TIME</td> |
michael@0 | 50 | * <td>int32_t or int64_t</td> |
michael@0 | 51 | * <td>seconds</td> |
michael@0 | 52 | * <td>Jan 1, 1970</td> |
michael@0 | 53 | * </tr> |
michael@0 | 54 | * <tr> |
michael@0 | 55 | * <td>UDTS_ICU4C_TIME</td> |
michael@0 | 56 | * |
michael@0 | 57 | * <td>double</td> |
michael@0 | 58 | * <td>milliseconds</td> |
michael@0 | 59 | * <td>Jan 1, 1970</td> |
michael@0 | 60 | * </tr> |
michael@0 | 61 | * <tr> |
michael@0 | 62 | * <td>UDTS_WINDOWS_FILE_TIME</td> |
michael@0 | 63 | * <td>int64_t</td> |
michael@0 | 64 | * |
michael@0 | 65 | * <td>ticks (100 nanoseconds)</td> |
michael@0 | 66 | * <td>Jan 1, 1601</td> |
michael@0 | 67 | * </tr> |
michael@0 | 68 | * <tr> |
michael@0 | 69 | * <td>UDTS_DOTNET_DATE_TIME</td> |
michael@0 | 70 | * <td>int64_t</td> |
michael@0 | 71 | * <td>ticks (100 nanoseconds)</td> |
michael@0 | 72 | * |
michael@0 | 73 | * <td>Jan 1, 0001</td> |
michael@0 | 74 | * </tr> |
michael@0 | 75 | * <tr> |
michael@0 | 76 | * <td>UDTS_MAC_OLD_TIME</td> |
michael@0 | 77 | * <td>int32_t or int64_t</td> |
michael@0 | 78 | * <td>seconds</td> |
michael@0 | 79 | * <td>Jan 1, 1904</td> |
michael@0 | 80 | * |
michael@0 | 81 | * </tr> |
michael@0 | 82 | * <tr> |
michael@0 | 83 | * <td>UDTS_MAC_TIME</td> |
michael@0 | 84 | * <td>double</td> |
michael@0 | 85 | * <td>seconds</td> |
michael@0 | 86 | * <td>Jan 1, 2001</td> |
michael@0 | 87 | * </tr> |
michael@0 | 88 | * |
michael@0 | 89 | * <tr> |
michael@0 | 90 | * <td>UDTS_EXCEL_TIME</td> |
michael@0 | 91 | * <td>?</td> |
michael@0 | 92 | * <td>days</td> |
michael@0 | 93 | * <td>Dec 31, 1899</td> |
michael@0 | 94 | * </tr> |
michael@0 | 95 | * <tr> |
michael@0 | 96 | * |
michael@0 | 97 | * <td>UDTS_DB2_TIME</td> |
michael@0 | 98 | * <td>?</td> |
michael@0 | 99 | * <td>days</td> |
michael@0 | 100 | * <td>Dec 31, 1899</td> |
michael@0 | 101 | * </tr> |
michael@0 | 102 | * |
michael@0 | 103 | * <tr> |
michael@0 | 104 | * <td>UDTS_UNIX_MICROSECONDS_TIME</td> |
michael@0 | 105 | * <td>int64_t</td> |
michael@0 | 106 | * <td>microseconds</td> |
michael@0 | 107 | * <td>Jan 1, 1970</td> |
michael@0 | 108 | * </tr> |
michael@0 | 109 | * </table> |
michael@0 | 110 | * |
michael@0 | 111 | * <p> |
michael@0 | 112 | * All of the epochs start at 00:00 am (the earliest possible time on the day in question), |
michael@0 | 113 | * and are assumed to be UTC. |
michael@0 | 114 | * |
michael@0 | 115 | * <p> |
michael@0 | 116 | * The ranges for different datatypes are given in the following table (all values in years). |
michael@0 | 117 | * The range of years includes the entire range expressible with positive and negative |
michael@0 | 118 | * values of the datatype. The range of years for double is the range that would be allowed |
michael@0 | 119 | * without losing precision to the corresponding unit. |
michael@0 | 120 | * |
michael@0 | 121 | * <table border="1" cellspacing="0" cellpadding="4"> |
michael@0 | 122 | * <tr> |
michael@0 | 123 | * <th align="left">Units</th> |
michael@0 | 124 | * <th align="left">int64_t</th> |
michael@0 | 125 | * <th align="left">double</th> |
michael@0 | 126 | * <th align="left">int32_t</th> |
michael@0 | 127 | * </tr> |
michael@0 | 128 | * |
michael@0 | 129 | * <tr> |
michael@0 | 130 | * <td>1 sec</td> |
michael@0 | 131 | * <td align="right">5.84542x10<sup>11</sup></td> |
michael@0 | 132 | * <td align="right">285,420,920.94</td> |
michael@0 | 133 | * <td align="right">136.10</td> |
michael@0 | 134 | * </tr> |
michael@0 | 135 | * <tr> |
michael@0 | 136 | * |
michael@0 | 137 | * <td>1 millisecond</td> |
michael@0 | 138 | * <td align="right">584,542,046.09</td> |
michael@0 | 139 | * <td align="right">285,420.92</td> |
michael@0 | 140 | * <td align="right">0.14</td> |
michael@0 | 141 | * </tr> |
michael@0 | 142 | * <tr> |
michael@0 | 143 | * <td>1 microsecond</td> |
michael@0 | 144 | * |
michael@0 | 145 | * <td align="right">584,542.05</td> |
michael@0 | 146 | * <td align="right">285.42</td> |
michael@0 | 147 | * <td align="right">0.00</td> |
michael@0 | 148 | * </tr> |
michael@0 | 149 | * <tr> |
michael@0 | 150 | * <td>100 nanoseconds (tick)</td> |
michael@0 | 151 | * <td align="right">58,454.20</td> |
michael@0 | 152 | * <td align="right">28.54</td> |
michael@0 | 153 | * <td align="right">0.00</td> |
michael@0 | 154 | * </tr> |
michael@0 | 155 | * <tr> |
michael@0 | 156 | * <td>1 nanosecond</td> |
michael@0 | 157 | * <td align="right">584.5420461</td> |
michael@0 | 158 | * <td align="right">0.2854</td> |
michael@0 | 159 | * <td align="right">0.00</td> |
michael@0 | 160 | * </tr> |
michael@0 | 161 | * </table> |
michael@0 | 162 | * |
michael@0 | 163 | * <p> |
michael@0 | 164 | * These functions implement a universal time scale which can be used as a 'pivot', |
michael@0 | 165 | * and provide conversion functions to and from all other major time scales. |
michael@0 | 166 | * This datetimes to be converted to the pivot time, safely manipulated, |
michael@0 | 167 | * and converted back to any other datetime time scale. |
michael@0 | 168 | * |
michael@0 | 169 | *<p> |
michael@0 | 170 | * So what to use for this pivot? Java time has plenty of range, but cannot represent |
michael@0 | 171 | * .NET <code>System.DateTime</code> values without severe loss of precision. ICU4C time addresses this by using a |
michael@0 | 172 | * <code>double</code> that is otherwise equivalent to the Java time. However, there are disadvantages |
michael@0 | 173 | * with <code>doubles</code>. They provide for much more graceful degradation in arithmetic operations. |
michael@0 | 174 | * But they only have 53 bits of accuracy, which means that they will lose precision when |
michael@0 | 175 | * converting back and forth to ticks. What would really be nice would be a |
michael@0 | 176 | * <code>long double</code> (80 bits -- 64 bit mantissa), but that is not supported on most systems. |
michael@0 | 177 | * |
michael@0 | 178 | *<p> |
michael@0 | 179 | * The Unix extended time uses a structure with two components: time in seconds and a |
michael@0 | 180 | * fractional field (microseconds). However, this is clumsy, slow, and |
michael@0 | 181 | * prone to error (you always have to keep track of overflow and underflow in the |
michael@0 | 182 | * fractional field). <code>BigDecimal</code> would allow for arbitrary precision and arbitrary range, |
michael@0 | 183 | * but we do not want to use this as the normal type, because it is slow and does not |
michael@0 | 184 | * have a fixed size. |
michael@0 | 185 | * |
michael@0 | 186 | *<p> |
michael@0 | 187 | * Because of these issues, we ended up concluding that the .NET framework's |
michael@0 | 188 | * <code>System.DateTime</code> would be the best pivot. However, we use the full range |
michael@0 | 189 | * allowed by the datatype, allowing for datetimes back to 29,000 BC and up to 29,000 AD. |
michael@0 | 190 | * This time scale is very fine grained, does not lose precision, and covers a range that |
michael@0 | 191 | * will meet almost all requirements. It will not handle the range that Java times do, |
michael@0 | 192 | * but frankly, being able to handle dates before 29,000 BC or after 29,000 AD is of very limited interest. |
michael@0 | 193 | * |
michael@0 | 194 | */ |
michael@0 | 195 | |
michael@0 | 196 | /** |
michael@0 | 197 | * <code>UDateTimeScale</code> values are used to specify the time scale used for |
michael@0 | 198 | * conversion into or out if the universal time scale. |
michael@0 | 199 | * |
michael@0 | 200 | * @stable ICU 3.2 |
michael@0 | 201 | */ |
michael@0 | 202 | typedef enum UDateTimeScale { |
michael@0 | 203 | /** |
michael@0 | 204 | * Used in the JDK. Data is a Java <code>long</code> (<code>int64_t</code>). Value |
michael@0 | 205 | * is milliseconds since January 1, 1970. |
michael@0 | 206 | * |
michael@0 | 207 | * @stable ICU 3.2 |
michael@0 | 208 | */ |
michael@0 | 209 | UDTS_JAVA_TIME = 0, |
michael@0 | 210 | |
michael@0 | 211 | /** |
michael@0 | 212 | * Used on Unix systems. Data is <code>int32_t</code> or <code>int64_t</code>. Value |
michael@0 | 213 | * is seconds since January 1, 1970. |
michael@0 | 214 | * |
michael@0 | 215 | * @stable ICU 3.2 |
michael@0 | 216 | */ |
michael@0 | 217 | UDTS_UNIX_TIME, |
michael@0 | 218 | |
michael@0 | 219 | /** |
michael@0 | 220 | * Used in IUC4C. Data is a <code>double</code>. Value |
michael@0 | 221 | * is milliseconds since January 1, 1970. |
michael@0 | 222 | * |
michael@0 | 223 | * @stable ICU 3.2 |
michael@0 | 224 | */ |
michael@0 | 225 | UDTS_ICU4C_TIME, |
michael@0 | 226 | |
michael@0 | 227 | /** |
michael@0 | 228 | * Used in Windows for file times. Data is an <code>int64_t</code>. Value |
michael@0 | 229 | * is ticks (1 tick == 100 nanoseconds) since January 1, 1601. |
michael@0 | 230 | * |
michael@0 | 231 | * @stable ICU 3.2 |
michael@0 | 232 | */ |
michael@0 | 233 | UDTS_WINDOWS_FILE_TIME, |
michael@0 | 234 | |
michael@0 | 235 | /** |
michael@0 | 236 | * Used in the .NET framework's <code>System.DateTime</code> structure. Data is an <code>int64_t</code>. Value |
michael@0 | 237 | * is ticks (1 tick == 100 nanoseconds) since January 1, 0001. |
michael@0 | 238 | * |
michael@0 | 239 | * @stable ICU 3.2 |
michael@0 | 240 | */ |
michael@0 | 241 | UDTS_DOTNET_DATE_TIME, |
michael@0 | 242 | |
michael@0 | 243 | /** |
michael@0 | 244 | * Used in older Macintosh systems. Data is <code>int32_t</code> or <code>int64_t</code>. Value |
michael@0 | 245 | * is seconds since January 1, 1904. |
michael@0 | 246 | * |
michael@0 | 247 | * @stable ICU 3.2 |
michael@0 | 248 | */ |
michael@0 | 249 | UDTS_MAC_OLD_TIME, |
michael@0 | 250 | |
michael@0 | 251 | /** |
michael@0 | 252 | * Used in newer Macintosh systems. Data is a <code>double</code>. Value |
michael@0 | 253 | * is seconds since January 1, 2001. |
michael@0 | 254 | * |
michael@0 | 255 | * @stable ICU 3.2 |
michael@0 | 256 | */ |
michael@0 | 257 | UDTS_MAC_TIME, |
michael@0 | 258 | |
michael@0 | 259 | /** |
michael@0 | 260 | * Used in Excel. Data is an <code>?unknown?</code>. Value |
michael@0 | 261 | * is days since December 31, 1899. |
michael@0 | 262 | * |
michael@0 | 263 | * @stable ICU 3.2 |
michael@0 | 264 | */ |
michael@0 | 265 | UDTS_EXCEL_TIME, |
michael@0 | 266 | |
michael@0 | 267 | /** |
michael@0 | 268 | * Used in DB2. Data is an <code>?unknown?</code>. Value |
michael@0 | 269 | * is days since December 31, 1899. |
michael@0 | 270 | * |
michael@0 | 271 | * @stable ICU 3.2 |
michael@0 | 272 | */ |
michael@0 | 273 | UDTS_DB2_TIME, |
michael@0 | 274 | |
michael@0 | 275 | /** |
michael@0 | 276 | * Data is a <code>long</code>. Value is microseconds since January 1, 1970. |
michael@0 | 277 | * Similar to Unix time (linear value from 1970) and struct timeval |
michael@0 | 278 | * (microseconds resolution). |
michael@0 | 279 | * |
michael@0 | 280 | * @stable ICU 3.8 |
michael@0 | 281 | */ |
michael@0 | 282 | UDTS_UNIX_MICROSECONDS_TIME, |
michael@0 | 283 | |
michael@0 | 284 | /** |
michael@0 | 285 | * The first unused time scale value. The limit of this enum |
michael@0 | 286 | */ |
michael@0 | 287 | UDTS_MAX_SCALE |
michael@0 | 288 | } UDateTimeScale; |
michael@0 | 289 | |
michael@0 | 290 | /** |
michael@0 | 291 | * <code>UTimeScaleValue</code> values are used to specify the time scale values |
michael@0 | 292 | * to <code>utmscale_getTimeScaleValue</code>. |
michael@0 | 293 | * |
michael@0 | 294 | * @see utmscale_getTimeScaleValue |
michael@0 | 295 | * |
michael@0 | 296 | * @stable ICU 3.2 |
michael@0 | 297 | */ |
michael@0 | 298 | typedef enum UTimeScaleValue { |
michael@0 | 299 | /** |
michael@0 | 300 | * The constant used to select the units vale |
michael@0 | 301 | * for a time scale. |
michael@0 | 302 | * |
michael@0 | 303 | * @see utmscale_getTimeScaleValue |
michael@0 | 304 | * |
michael@0 | 305 | * @stable ICU 3.2 |
michael@0 | 306 | */ |
michael@0 | 307 | UTSV_UNITS_VALUE = 0, |
michael@0 | 308 | |
michael@0 | 309 | /** |
michael@0 | 310 | * The constant used to select the epoch offset value |
michael@0 | 311 | * for a time scale. |
michael@0 | 312 | * |
michael@0 | 313 | * @see utmscale_getTimeScaleValue |
michael@0 | 314 | * |
michael@0 | 315 | * @stable ICU 3.2 |
michael@0 | 316 | */ |
michael@0 | 317 | UTSV_EPOCH_OFFSET_VALUE=1, |
michael@0 | 318 | |
michael@0 | 319 | /** |
michael@0 | 320 | * The constant used to select the minimum from value |
michael@0 | 321 | * for a time scale. |
michael@0 | 322 | * |
michael@0 | 323 | * @see utmscale_getTimeScaleValue |
michael@0 | 324 | * |
michael@0 | 325 | * @stable ICU 3.2 |
michael@0 | 326 | */ |
michael@0 | 327 | UTSV_FROM_MIN_VALUE=2, |
michael@0 | 328 | |
michael@0 | 329 | /** |
michael@0 | 330 | * The constant used to select the maximum from value |
michael@0 | 331 | * for a time scale. |
michael@0 | 332 | * |
michael@0 | 333 | * @see utmscale_getTimeScaleValue |
michael@0 | 334 | * |
michael@0 | 335 | * @stable ICU 3.2 |
michael@0 | 336 | */ |
michael@0 | 337 | UTSV_FROM_MAX_VALUE=3, |
michael@0 | 338 | |
michael@0 | 339 | /** |
michael@0 | 340 | * The constant used to select the minimum to value |
michael@0 | 341 | * for a time scale. |
michael@0 | 342 | * |
michael@0 | 343 | * @see utmscale_getTimeScaleValue |
michael@0 | 344 | * |
michael@0 | 345 | * @stable ICU 3.2 |
michael@0 | 346 | */ |
michael@0 | 347 | UTSV_TO_MIN_VALUE=4, |
michael@0 | 348 | |
michael@0 | 349 | /** |
michael@0 | 350 | * The constant used to select the maximum to value |
michael@0 | 351 | * for a time scale. |
michael@0 | 352 | * |
michael@0 | 353 | * @see utmscale_getTimeScaleValue |
michael@0 | 354 | * |
michael@0 | 355 | * @stable ICU 3.2 |
michael@0 | 356 | */ |
michael@0 | 357 | UTSV_TO_MAX_VALUE=5, |
michael@0 | 358 | |
michael@0 | 359 | #ifndef U_HIDE_INTERNAL_API |
michael@0 | 360 | /** |
michael@0 | 361 | * The constant used to select the epoch plus one value |
michael@0 | 362 | * for a time scale. |
michael@0 | 363 | * |
michael@0 | 364 | * NOTE: This is an internal value. DO NOT USE IT. May not |
michael@0 | 365 | * actually be equal to the epoch offset value plus one. |
michael@0 | 366 | * |
michael@0 | 367 | * @see utmscale_getTimeScaleValue |
michael@0 | 368 | * |
michael@0 | 369 | * @internal ICU 3.2 |
michael@0 | 370 | */ |
michael@0 | 371 | UTSV_EPOCH_OFFSET_PLUS_1_VALUE=6, |
michael@0 | 372 | |
michael@0 | 373 | /** |
michael@0 | 374 | * The constant used to select the epoch plus one value |
michael@0 | 375 | * for a time scale. |
michael@0 | 376 | * |
michael@0 | 377 | * NOTE: This is an internal value. DO NOT USE IT. May not |
michael@0 | 378 | * actually be equal to the epoch offset value plus one. |
michael@0 | 379 | * |
michael@0 | 380 | * @see utmscale_getTimeScaleValue |
michael@0 | 381 | * |
michael@0 | 382 | * @internal ICU 3.2 |
michael@0 | 383 | */ |
michael@0 | 384 | UTSV_EPOCH_OFFSET_MINUS_1_VALUE=7, |
michael@0 | 385 | |
michael@0 | 386 | /** |
michael@0 | 387 | * The constant used to select the units round value |
michael@0 | 388 | * for a time scale. |
michael@0 | 389 | * |
michael@0 | 390 | * NOTE: This is an internal value. DO NOT USE IT. |
michael@0 | 391 | * |
michael@0 | 392 | * @see utmscale_getTimeScaleValue |
michael@0 | 393 | * |
michael@0 | 394 | * @internal ICU 3.2 |
michael@0 | 395 | */ |
michael@0 | 396 | UTSV_UNITS_ROUND_VALUE=8, |
michael@0 | 397 | |
michael@0 | 398 | /** |
michael@0 | 399 | * The constant used to select the minimum safe rounding value |
michael@0 | 400 | * for a time scale. |
michael@0 | 401 | * |
michael@0 | 402 | * NOTE: This is an internal value. DO NOT USE IT. |
michael@0 | 403 | * |
michael@0 | 404 | * @see utmscale_getTimeScaleValue |
michael@0 | 405 | * |
michael@0 | 406 | * @internal ICU 3.2 |
michael@0 | 407 | */ |
michael@0 | 408 | UTSV_MIN_ROUND_VALUE=9, |
michael@0 | 409 | |
michael@0 | 410 | /** |
michael@0 | 411 | * The constant used to select the maximum safe rounding value |
michael@0 | 412 | * for a time scale. |
michael@0 | 413 | * |
michael@0 | 414 | * NOTE: This is an internal value. DO NOT USE IT. |
michael@0 | 415 | * |
michael@0 | 416 | * @see utmscale_getTimeScaleValue |
michael@0 | 417 | * |
michael@0 | 418 | * @internal ICU 3.2 |
michael@0 | 419 | */ |
michael@0 | 420 | UTSV_MAX_ROUND_VALUE=10, |
michael@0 | 421 | |
michael@0 | 422 | #endif /* U_HIDE_INTERNAL_API */ |
michael@0 | 423 | |
michael@0 | 424 | /** |
michael@0 | 425 | * The number of time scale values, in other words limit of this enum. |
michael@0 | 426 | * |
michael@0 | 427 | * @see utmscale_getTimeScaleValue |
michael@0 | 428 | */ |
michael@0 | 429 | UTSV_MAX_SCALE_VALUE=11 |
michael@0 | 430 | |
michael@0 | 431 | } UTimeScaleValue; |
michael@0 | 432 | |
michael@0 | 433 | /** |
michael@0 | 434 | * Get a value associated with a particular time scale. |
michael@0 | 435 | * |
michael@0 | 436 | * @param timeScale The time scale |
michael@0 | 437 | * @param value A constant representing the value to get |
michael@0 | 438 | * @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if arguments are invalid. |
michael@0 | 439 | * @return - the value. |
michael@0 | 440 | * |
michael@0 | 441 | * @stable ICU 3.2 |
michael@0 | 442 | */ |
michael@0 | 443 | U_STABLE int64_t U_EXPORT2 |
michael@0 | 444 | utmscale_getTimeScaleValue(UDateTimeScale timeScale, UTimeScaleValue value, UErrorCode *status); |
michael@0 | 445 | |
michael@0 | 446 | /* Conversion to 'universal time scale' */ |
michael@0 | 447 | |
michael@0 | 448 | /** |
michael@0 | 449 | * Convert a <code>int64_t</code> datetime from the given time scale to the universal time scale. |
michael@0 | 450 | * |
michael@0 | 451 | * @param otherTime The <code>int64_t</code> datetime |
michael@0 | 452 | * @param timeScale The time scale to convert from |
michael@0 | 453 | * @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if the conversion is out of range. |
michael@0 | 454 | * |
michael@0 | 455 | * @return The datetime converted to the universal time scale |
michael@0 | 456 | * |
michael@0 | 457 | * @stable ICU 3.2 |
michael@0 | 458 | */ |
michael@0 | 459 | U_STABLE int64_t U_EXPORT2 |
michael@0 | 460 | utmscale_fromInt64(int64_t otherTime, UDateTimeScale timeScale, UErrorCode *status); |
michael@0 | 461 | |
michael@0 | 462 | /* Conversion from 'universal time scale' */ |
michael@0 | 463 | |
michael@0 | 464 | /** |
michael@0 | 465 | * Convert a datetime from the universal time scale to a <code>int64_t</code> in the given time scale. |
michael@0 | 466 | * |
michael@0 | 467 | * @param universalTime The datetime in the universal time scale |
michael@0 | 468 | * @param timeScale The time scale to convert to |
michael@0 | 469 | * @param status The status code. Set to <code>U_ILLEGAL_ARGUMENT_ERROR</code> if the conversion is out of range. |
michael@0 | 470 | * |
michael@0 | 471 | * @return The datetime converted to the given time scale |
michael@0 | 472 | * |
michael@0 | 473 | * @stable ICU 3.2 |
michael@0 | 474 | */ |
michael@0 | 475 | U_STABLE int64_t U_EXPORT2 |
michael@0 | 476 | utmscale_toInt64(int64_t universalTime, UDateTimeScale timeScale, UErrorCode *status); |
michael@0 | 477 | |
michael@0 | 478 | #endif /* #if !UCONFIG_NO_FORMATTING */ |
michael@0 | 479 | |
michael@0 | 480 | #endif |
michael@0 | 481 |