Wed, 31 Dec 2014 07:22:50 +0100
Correct previous dual key logic pending first delivery installment.
michael@0 | 1 | /* |
michael@0 | 2 | * Copyright (C) 2012 The Android Open Source Project |
michael@0 | 3 | * |
michael@0 | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
michael@0 | 5 | * you may not use this file except in compliance with the License. |
michael@0 | 6 | * You may obtain a copy of the License at |
michael@0 | 7 | * |
michael@0 | 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
michael@0 | 9 | * |
michael@0 | 10 | * Unless required by applicable law or agreed to in writing, software |
michael@0 | 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
michael@0 | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
michael@0 | 13 | * See the License for the specific language governing permissions and |
michael@0 | 14 | * limitations under the License. |
michael@0 | 15 | */ |
michael@0 | 16 | |
michael@0 | 17 | #define LOG_TAG "VelocityTracker" |
michael@0 | 18 | //#define LOG_NDEBUG 0 |
michael@0 | 19 | #include "cutils_log.h" |
michael@0 | 20 | |
michael@0 | 21 | // Log debug messages about velocity tracking. |
michael@0 | 22 | #define DEBUG_VELOCITY 0 |
michael@0 | 23 | |
michael@0 | 24 | // Log debug messages about the progress of the algorithm itself. |
michael@0 | 25 | #define DEBUG_STRATEGY 0 |
michael@0 | 26 | |
michael@0 | 27 | #include <math.h> |
michael@0 | 28 | #include <limits.h> |
michael@0 | 29 | |
michael@0 | 30 | #include "VelocityTracker.h" |
michael@0 | 31 | #include <utils/BitSet.h> |
michael@0 | 32 | #include <utils/String8.h> |
michael@0 | 33 | #include <utils/Timers.h> |
michael@0 | 34 | |
michael@0 | 35 | #include <cutils/properties.h> |
michael@0 | 36 | |
michael@0 | 37 | namespace android { |
michael@0 | 38 | |
michael@0 | 39 | // Nanoseconds per milliseconds. |
michael@0 | 40 | static const nsecs_t NANOS_PER_MS = 1000000; |
michael@0 | 41 | |
michael@0 | 42 | // Threshold for determining that a pointer has stopped moving. |
michael@0 | 43 | // Some input devices do not send ACTION_MOVE events in the case where a pointer has |
michael@0 | 44 | // stopped. We need to detect this case so that we can accurately predict the |
michael@0 | 45 | // velocity after the pointer starts moving again. |
michael@0 | 46 | static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS; |
michael@0 | 47 | |
michael@0 | 48 | |
michael@0 | 49 | static float vectorDot(const float* a, const float* b, uint32_t m) { |
michael@0 | 50 | float r = 0; |
michael@0 | 51 | while (m--) { |
michael@0 | 52 | r += *(a++) * *(b++); |
michael@0 | 53 | } |
michael@0 | 54 | return r; |
michael@0 | 55 | } |
michael@0 | 56 | |
michael@0 | 57 | static float vectorNorm(const float* a, uint32_t m) { |
michael@0 | 58 | float r = 0; |
michael@0 | 59 | while (m--) { |
michael@0 | 60 | float t = *(a++); |
michael@0 | 61 | r += t * t; |
michael@0 | 62 | } |
michael@0 | 63 | return sqrtf(r); |
michael@0 | 64 | } |
michael@0 | 65 | |
michael@0 | 66 | #if DEBUG_STRATEGY || DEBUG_VELOCITY |
michael@0 | 67 | static String8 vectorToString(const float* a, uint32_t m) { |
michael@0 | 68 | String8 str; |
michael@0 | 69 | str.append("["); |
michael@0 | 70 | while (m--) { |
michael@0 | 71 | str.appendFormat(" %f", *(a++)); |
michael@0 | 72 | if (m) { |
michael@0 | 73 | str.append(","); |
michael@0 | 74 | } |
michael@0 | 75 | } |
michael@0 | 76 | str.append(" ]"); |
michael@0 | 77 | return str; |
michael@0 | 78 | } |
michael@0 | 79 | |
michael@0 | 80 | static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { |
michael@0 | 81 | String8 str; |
michael@0 | 82 | str.append("["); |
michael@0 | 83 | for (size_t i = 0; i < m; i++) { |
michael@0 | 84 | if (i) { |
michael@0 | 85 | str.append(","); |
michael@0 | 86 | } |
michael@0 | 87 | str.append(" ["); |
michael@0 | 88 | for (size_t j = 0; j < n; j++) { |
michael@0 | 89 | if (j) { |
michael@0 | 90 | str.append(","); |
michael@0 | 91 | } |
michael@0 | 92 | str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]); |
michael@0 | 93 | } |
michael@0 | 94 | str.append(" ]"); |
michael@0 | 95 | } |
michael@0 | 96 | str.append(" ]"); |
michael@0 | 97 | return str; |
michael@0 | 98 | } |
michael@0 | 99 | #endif |
michael@0 | 100 | |
michael@0 | 101 | |
michael@0 | 102 | // --- VelocityTracker --- |
michael@0 | 103 | |
michael@0 | 104 | // The default velocity tracker strategy. |
michael@0 | 105 | // Although other strategies are available for testing and comparison purposes, |
michael@0 | 106 | // this is the strategy that applications will actually use. Be very careful |
michael@0 | 107 | // when adjusting the default strategy because it can dramatically affect |
michael@0 | 108 | // (often in a bad way) the user experience. |
michael@0 | 109 | const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2"; |
michael@0 | 110 | |
michael@0 | 111 | VelocityTracker::VelocityTracker(const char* strategy) : |
michael@0 | 112 | mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) { |
michael@0 | 113 | char value[PROPERTY_VALUE_MAX]; |
michael@0 | 114 | |
michael@0 | 115 | // Allow the default strategy to be overridden using a system property for debugging. |
michael@0 | 116 | if (!strategy) { |
michael@0 | 117 | int length = property_get("debug.velocitytracker.strategy", value, NULL); |
michael@0 | 118 | if (length > 0) { |
michael@0 | 119 | strategy = value; |
michael@0 | 120 | } else { |
michael@0 | 121 | strategy = DEFAULT_STRATEGY; |
michael@0 | 122 | } |
michael@0 | 123 | } |
michael@0 | 124 | |
michael@0 | 125 | // Configure the strategy. |
michael@0 | 126 | if (!configureStrategy(strategy)) { |
michael@0 | 127 | ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy); |
michael@0 | 128 | if (!configureStrategy(DEFAULT_STRATEGY)) { |
michael@0 | 129 | LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!", |
michael@0 | 130 | strategy); |
michael@0 | 131 | } |
michael@0 | 132 | } |
michael@0 | 133 | } |
michael@0 | 134 | |
michael@0 | 135 | VelocityTracker::~VelocityTracker() { |
michael@0 | 136 | delete mStrategy; |
michael@0 | 137 | } |
michael@0 | 138 | |
michael@0 | 139 | bool VelocityTracker::configureStrategy(const char* strategy) { |
michael@0 | 140 | mStrategy = createStrategy(strategy); |
michael@0 | 141 | return mStrategy != NULL; |
michael@0 | 142 | } |
michael@0 | 143 | |
michael@0 | 144 | VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) { |
michael@0 | 145 | if (!strcmp("lsq1", strategy)) { |
michael@0 | 146 | // 1st order least squares. Quality: POOR. |
michael@0 | 147 | // Frequently underfits the touch data especially when the finger accelerates |
michael@0 | 148 | // or changes direction. Often underestimates velocity. The direction |
michael@0 | 149 | // is overly influenced by historical touch points. |
michael@0 | 150 | return new LeastSquaresVelocityTrackerStrategy(1); |
michael@0 | 151 | } |
michael@0 | 152 | if (!strcmp("lsq2", strategy)) { |
michael@0 | 153 | // 2nd order least squares. Quality: VERY GOOD. |
michael@0 | 154 | // Pretty much ideal, but can be confused by certain kinds of touch data, |
michael@0 | 155 | // particularly if the panel has a tendency to generate delayed, |
michael@0 | 156 | // duplicate or jittery touch coordinates when the finger is released. |
michael@0 | 157 | return new LeastSquaresVelocityTrackerStrategy(2); |
michael@0 | 158 | } |
michael@0 | 159 | if (!strcmp("lsq3", strategy)) { |
michael@0 | 160 | // 3rd order least squares. Quality: UNUSABLE. |
michael@0 | 161 | // Frequently overfits the touch data yielding wildly divergent estimates |
michael@0 | 162 | // of the velocity when the finger is released. |
michael@0 | 163 | return new LeastSquaresVelocityTrackerStrategy(3); |
michael@0 | 164 | } |
michael@0 | 165 | if (!strcmp("wlsq2-delta", strategy)) { |
michael@0 | 166 | // 2nd order weighted least squares, delta weighting. Quality: EXPERIMENTAL |
michael@0 | 167 | return new LeastSquaresVelocityTrackerStrategy(2, |
michael@0 | 168 | LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA); |
michael@0 | 169 | } |
michael@0 | 170 | if (!strcmp("wlsq2-central", strategy)) { |
michael@0 | 171 | // 2nd order weighted least squares, central weighting. Quality: EXPERIMENTAL |
michael@0 | 172 | return new LeastSquaresVelocityTrackerStrategy(2, |
michael@0 | 173 | LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL); |
michael@0 | 174 | } |
michael@0 | 175 | if (!strcmp("wlsq2-recent", strategy)) { |
michael@0 | 176 | // 2nd order weighted least squares, recent weighting. Quality: EXPERIMENTAL |
michael@0 | 177 | return new LeastSquaresVelocityTrackerStrategy(2, |
michael@0 | 178 | LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT); |
michael@0 | 179 | } |
michael@0 | 180 | if (!strcmp("int1", strategy)) { |
michael@0 | 181 | // 1st order integrating filter. Quality: GOOD. |
michael@0 | 182 | // Not as good as 'lsq2' because it cannot estimate acceleration but it is |
michael@0 | 183 | // more tolerant of errors. Like 'lsq1', this strategy tends to underestimate |
michael@0 | 184 | // the velocity of a fling but this strategy tends to respond to changes in |
michael@0 | 185 | // direction more quickly and accurately. |
michael@0 | 186 | return new IntegratingVelocityTrackerStrategy(1); |
michael@0 | 187 | } |
michael@0 | 188 | if (!strcmp("int2", strategy)) { |
michael@0 | 189 | // 2nd order integrating filter. Quality: EXPERIMENTAL. |
michael@0 | 190 | // For comparison purposes only. Unlike 'int1' this strategy can compensate |
michael@0 | 191 | // for acceleration but it typically overestimates the effect. |
michael@0 | 192 | return new IntegratingVelocityTrackerStrategy(2); |
michael@0 | 193 | } |
michael@0 | 194 | if (!strcmp("legacy", strategy)) { |
michael@0 | 195 | // Legacy velocity tracker algorithm. Quality: POOR. |
michael@0 | 196 | // For comparison purposes only. This algorithm is strongly influenced by |
michael@0 | 197 | // old data points, consistently underestimates velocity and takes a very long |
michael@0 | 198 | // time to adjust to changes in direction. |
michael@0 | 199 | return new LegacyVelocityTrackerStrategy(); |
michael@0 | 200 | } |
michael@0 | 201 | return NULL; |
michael@0 | 202 | } |
michael@0 | 203 | |
michael@0 | 204 | void VelocityTracker::clear() { |
michael@0 | 205 | mCurrentPointerIdBits.clear(); |
michael@0 | 206 | mActivePointerId = -1; |
michael@0 | 207 | |
michael@0 | 208 | mStrategy->clear(); |
michael@0 | 209 | } |
michael@0 | 210 | |
michael@0 | 211 | void VelocityTracker::clearPointers(BitSet32 idBits) { |
michael@0 | 212 | BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value); |
michael@0 | 213 | mCurrentPointerIdBits = remainingIdBits; |
michael@0 | 214 | |
michael@0 | 215 | if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) { |
michael@0 | 216 | mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1; |
michael@0 | 217 | } |
michael@0 | 218 | |
michael@0 | 219 | mStrategy->clearPointers(idBits); |
michael@0 | 220 | } |
michael@0 | 221 | |
michael@0 | 222 | void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) { |
michael@0 | 223 | while (idBits.count() > MAX_POINTERS) { |
michael@0 | 224 | idBits.clearLastMarkedBit(); |
michael@0 | 225 | } |
michael@0 | 226 | |
michael@0 | 227 | if ((mCurrentPointerIdBits.value & idBits.value) |
michael@0 | 228 | && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) { |
michael@0 | 229 | #if DEBUG_VELOCITY |
michael@0 | 230 | ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.", |
michael@0 | 231 | (eventTime - mLastEventTime) * 0.000001f); |
michael@0 | 232 | #endif |
michael@0 | 233 | // We have not received any movements for too long. Assume that all pointers |
michael@0 | 234 | // have stopped. |
michael@0 | 235 | mStrategy->clear(); |
michael@0 | 236 | } |
michael@0 | 237 | mLastEventTime = eventTime; |
michael@0 | 238 | |
michael@0 | 239 | mCurrentPointerIdBits = idBits; |
michael@0 | 240 | if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) { |
michael@0 | 241 | mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit(); |
michael@0 | 242 | } |
michael@0 | 243 | |
michael@0 | 244 | mStrategy->addMovement(eventTime, idBits, positions); |
michael@0 | 245 | |
michael@0 | 246 | #if DEBUG_VELOCITY |
michael@0 | 247 | ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d", |
michael@0 | 248 | eventTime, idBits.value, mActivePointerId); |
michael@0 | 249 | for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) { |
michael@0 | 250 | uint32_t id = iterBits.firstMarkedBit(); |
michael@0 | 251 | uint32_t index = idBits.getIndexOfBit(id); |
michael@0 | 252 | iterBits.clearBit(id); |
michael@0 | 253 | Estimator estimator; |
michael@0 | 254 | getEstimator(id, &estimator); |
michael@0 | 255 | ALOGD(" %d: position (%0.3f, %0.3f), " |
michael@0 | 256 | "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)", |
michael@0 | 257 | id, positions[index].x, positions[index].y, |
michael@0 | 258 | int(estimator.degree), |
michael@0 | 259 | vectorToString(estimator.xCoeff, estimator.degree + 1).string(), |
michael@0 | 260 | vectorToString(estimator.yCoeff, estimator.degree + 1).string(), |
michael@0 | 261 | estimator.confidence); |
michael@0 | 262 | } |
michael@0 | 263 | #endif |
michael@0 | 264 | } |
michael@0 | 265 | |
michael@0 | 266 | void VelocityTracker::addMovement(const MotionEvent* event) { |
michael@0 | 267 | int32_t actionMasked = event->getActionMasked(); |
michael@0 | 268 | |
michael@0 | 269 | switch (actionMasked) { |
michael@0 | 270 | case AMOTION_EVENT_ACTION_DOWN: |
michael@0 | 271 | case AMOTION_EVENT_ACTION_HOVER_ENTER: |
michael@0 | 272 | // Clear all pointers on down before adding the new movement. |
michael@0 | 273 | clear(); |
michael@0 | 274 | break; |
michael@0 | 275 | case AMOTION_EVENT_ACTION_POINTER_DOWN: { |
michael@0 | 276 | // Start a new movement trace for a pointer that just went down. |
michael@0 | 277 | // We do this on down instead of on up because the client may want to query the |
michael@0 | 278 | // final velocity for a pointer that just went up. |
michael@0 | 279 | BitSet32 downIdBits; |
michael@0 | 280 | downIdBits.markBit(event->getPointerId(event->getActionIndex())); |
michael@0 | 281 | clearPointers(downIdBits); |
michael@0 | 282 | break; |
michael@0 | 283 | } |
michael@0 | 284 | case AMOTION_EVENT_ACTION_MOVE: |
michael@0 | 285 | case AMOTION_EVENT_ACTION_HOVER_MOVE: |
michael@0 | 286 | break; |
michael@0 | 287 | default: |
michael@0 | 288 | // Ignore all other actions because they do not convey any new information about |
michael@0 | 289 | // pointer movement. We also want to preserve the last known velocity of the pointers. |
michael@0 | 290 | // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position |
michael@0 | 291 | // of the pointers that went up. ACTION_POINTER_UP does include the new position of |
michael@0 | 292 | // pointers that remained down but we will also receive an ACTION_MOVE with this |
michael@0 | 293 | // information if any of them actually moved. Since we don't know how many pointers |
michael@0 | 294 | // will be going up at once it makes sense to just wait for the following ACTION_MOVE |
michael@0 | 295 | // before adding the movement. |
michael@0 | 296 | return; |
michael@0 | 297 | } |
michael@0 | 298 | |
michael@0 | 299 | size_t pointerCount = event->getPointerCount(); |
michael@0 | 300 | if (pointerCount > MAX_POINTERS) { |
michael@0 | 301 | pointerCount = MAX_POINTERS; |
michael@0 | 302 | } |
michael@0 | 303 | |
michael@0 | 304 | BitSet32 idBits; |
michael@0 | 305 | for (size_t i = 0; i < pointerCount; i++) { |
michael@0 | 306 | idBits.markBit(event->getPointerId(i)); |
michael@0 | 307 | } |
michael@0 | 308 | |
michael@0 | 309 | uint32_t pointerIndex[MAX_POINTERS]; |
michael@0 | 310 | for (size_t i = 0; i < pointerCount; i++) { |
michael@0 | 311 | pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i)); |
michael@0 | 312 | } |
michael@0 | 313 | |
michael@0 | 314 | nsecs_t eventTime; |
michael@0 | 315 | Position positions[pointerCount]; |
michael@0 | 316 | |
michael@0 | 317 | size_t historySize = event->getHistorySize(); |
michael@0 | 318 | for (size_t h = 0; h < historySize; h++) { |
michael@0 | 319 | eventTime = event->getHistoricalEventTime(h); |
michael@0 | 320 | for (size_t i = 0; i < pointerCount; i++) { |
michael@0 | 321 | uint32_t index = pointerIndex[i]; |
michael@0 | 322 | positions[index].x = event->getHistoricalX(i, h); |
michael@0 | 323 | positions[index].y = event->getHistoricalY(i, h); |
michael@0 | 324 | } |
michael@0 | 325 | addMovement(eventTime, idBits, positions); |
michael@0 | 326 | } |
michael@0 | 327 | |
michael@0 | 328 | eventTime = event->getEventTime(); |
michael@0 | 329 | for (size_t i = 0; i < pointerCount; i++) { |
michael@0 | 330 | uint32_t index = pointerIndex[i]; |
michael@0 | 331 | positions[index].x = event->getX(i); |
michael@0 | 332 | positions[index].y = event->getY(i); |
michael@0 | 333 | } |
michael@0 | 334 | addMovement(eventTime, idBits, positions); |
michael@0 | 335 | } |
michael@0 | 336 | |
michael@0 | 337 | bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const { |
michael@0 | 338 | Estimator estimator; |
michael@0 | 339 | if (getEstimator(id, &estimator) && estimator.degree >= 1) { |
michael@0 | 340 | *outVx = estimator.xCoeff[1]; |
michael@0 | 341 | *outVy = estimator.yCoeff[1]; |
michael@0 | 342 | return true; |
michael@0 | 343 | } |
michael@0 | 344 | *outVx = 0; |
michael@0 | 345 | *outVy = 0; |
michael@0 | 346 | return false; |
michael@0 | 347 | } |
michael@0 | 348 | |
michael@0 | 349 | bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const { |
michael@0 | 350 | return mStrategy->getEstimator(id, outEstimator); |
michael@0 | 351 | } |
michael@0 | 352 | |
michael@0 | 353 | |
michael@0 | 354 | // --- LeastSquaresVelocityTrackerStrategy --- |
michael@0 | 355 | |
michael@0 | 356 | const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON; |
michael@0 | 357 | const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE; |
michael@0 | 358 | |
michael@0 | 359 | LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy( |
michael@0 | 360 | uint32_t degree, Weighting weighting) : |
michael@0 | 361 | mDegree(degree), mWeighting(weighting) { |
michael@0 | 362 | clear(); |
michael@0 | 363 | } |
michael@0 | 364 | |
michael@0 | 365 | LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() { |
michael@0 | 366 | } |
michael@0 | 367 | |
michael@0 | 368 | void LeastSquaresVelocityTrackerStrategy::clear() { |
michael@0 | 369 | mIndex = 0; |
michael@0 | 370 | mMovements[0].idBits.clear(); |
michael@0 | 371 | } |
michael@0 | 372 | |
michael@0 | 373 | void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { |
michael@0 | 374 | BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); |
michael@0 | 375 | mMovements[mIndex].idBits = remainingIdBits; |
michael@0 | 376 | } |
michael@0 | 377 | |
michael@0 | 378 | void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, |
michael@0 | 379 | const VelocityTracker::Position* positions) { |
michael@0 | 380 | if (++mIndex == HISTORY_SIZE) { |
michael@0 | 381 | mIndex = 0; |
michael@0 | 382 | } |
michael@0 | 383 | |
michael@0 | 384 | Movement& movement = mMovements[mIndex]; |
michael@0 | 385 | movement.eventTime = eventTime; |
michael@0 | 386 | movement.idBits = idBits; |
michael@0 | 387 | uint32_t count = idBits.count(); |
michael@0 | 388 | for (uint32_t i = 0; i < count; i++) { |
michael@0 | 389 | movement.positions[i] = positions[i]; |
michael@0 | 390 | } |
michael@0 | 391 | } |
michael@0 | 392 | |
michael@0 | 393 | /** |
michael@0 | 394 | * Solves a linear least squares problem to obtain a N degree polynomial that fits |
michael@0 | 395 | * the specified input data as nearly as possible. |
michael@0 | 396 | * |
michael@0 | 397 | * Returns true if a solution is found, false otherwise. |
michael@0 | 398 | * |
michael@0 | 399 | * The input consists of two vectors of data points X and Y with indices 0..m-1 |
michael@0 | 400 | * along with a weight vector W of the same size. |
michael@0 | 401 | * |
michael@0 | 402 | * The output is a vector B with indices 0..n that describes a polynomial |
michael@0 | 403 | * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i] |
michael@0 | 404 | * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized. |
michael@0 | 405 | * |
michael@0 | 406 | * Accordingly, the weight vector W should be initialized by the caller with the |
michael@0 | 407 | * reciprocal square root of the variance of the error in each input data point. |
michael@0 | 408 | * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]). |
michael@0 | 409 | * The weights express the relative importance of each data point. If the weights are |
michael@0 | 410 | * all 1, then the data points are considered to be of equal importance when fitting |
michael@0 | 411 | * the polynomial. It is a good idea to choose weights that diminish the importance |
michael@0 | 412 | * of data points that may have higher than usual error margins. |
michael@0 | 413 | * |
michael@0 | 414 | * Errors among data points are assumed to be independent. W is represented here |
michael@0 | 415 | * as a vector although in the literature it is typically taken to be a diagonal matrix. |
michael@0 | 416 | * |
michael@0 | 417 | * That is to say, the function that generated the input data can be approximated |
michael@0 | 418 | * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. |
michael@0 | 419 | * |
michael@0 | 420 | * The coefficient of determination (R^2) is also returned to describe the goodness |
michael@0 | 421 | * of fit of the model for the given data. It is a value between 0 and 1, where 1 |
michael@0 | 422 | * indicates perfect correspondence. |
michael@0 | 423 | * |
michael@0 | 424 | * This function first expands the X vector to a m by n matrix A such that |
michael@0 | 425 | * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then |
michael@0 | 426 | * multiplies it by w[i]./ |
michael@0 | 427 | * |
michael@0 | 428 | * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q |
michael@0 | 429 | * and an m by n upper triangular matrix R. Because R is upper triangular (lower |
michael@0 | 430 | * part is all zeroes), we can simplify the decomposition into an m by n matrix |
michael@0 | 431 | * Q1 and a n by n matrix R1 such that A = Q1 R1. |
michael@0 | 432 | * |
michael@0 | 433 | * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y) |
michael@0 | 434 | * to find B. |
michael@0 | 435 | * |
michael@0 | 436 | * For efficiency, we lay out A and Q column-wise in memory because we frequently |
michael@0 | 437 | * operate on the column vectors. Conversely, we lay out R row-wise. |
michael@0 | 438 | * |
michael@0 | 439 | * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares |
michael@0 | 440 | * http://en.wikipedia.org/wiki/Gram-Schmidt |
michael@0 | 441 | */ |
michael@0 | 442 | static bool solveLeastSquares(const float* x, const float* y, |
michael@0 | 443 | const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) { |
michael@0 | 444 | #if DEBUG_STRATEGY |
michael@0 | 445 | ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n), |
michael@0 | 446 | vectorToString(x, m).string(), vectorToString(y, m).string(), |
michael@0 | 447 | vectorToString(w, m).string()); |
michael@0 | 448 | #endif |
michael@0 | 449 | |
michael@0 | 450 | // Expand the X vector to a matrix A, pre-multiplied by the weights. |
michael@0 | 451 | float a[n][m]; // column-major order |
michael@0 | 452 | for (uint32_t h = 0; h < m; h++) { |
michael@0 | 453 | a[0][h] = w[h]; |
michael@0 | 454 | for (uint32_t i = 1; i < n; i++) { |
michael@0 | 455 | a[i][h] = a[i - 1][h] * x[h]; |
michael@0 | 456 | } |
michael@0 | 457 | } |
michael@0 | 458 | #if DEBUG_STRATEGY |
michael@0 | 459 | ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string()); |
michael@0 | 460 | #endif |
michael@0 | 461 | |
michael@0 | 462 | // Apply the Gram-Schmidt process to A to obtain its QR decomposition. |
michael@0 | 463 | float q[n][m]; // orthonormal basis, column-major order |
michael@0 | 464 | float r[n][n]; // upper triangular matrix, row-major order |
michael@0 | 465 | for (uint32_t j = 0; j < n; j++) { |
michael@0 | 466 | for (uint32_t h = 0; h < m; h++) { |
michael@0 | 467 | q[j][h] = a[j][h]; |
michael@0 | 468 | } |
michael@0 | 469 | for (uint32_t i = 0; i < j; i++) { |
michael@0 | 470 | float dot = vectorDot(&q[j][0], &q[i][0], m); |
michael@0 | 471 | for (uint32_t h = 0; h < m; h++) { |
michael@0 | 472 | q[j][h] -= dot * q[i][h]; |
michael@0 | 473 | } |
michael@0 | 474 | } |
michael@0 | 475 | |
michael@0 | 476 | float norm = vectorNorm(&q[j][0], m); |
michael@0 | 477 | if (norm < 0.000001f) { |
michael@0 | 478 | // vectors are linearly dependent or zero so no solution |
michael@0 | 479 | #if DEBUG_STRATEGY |
michael@0 | 480 | ALOGD(" - no solution, norm=%f", norm); |
michael@0 | 481 | #endif |
michael@0 | 482 | return false; |
michael@0 | 483 | } |
michael@0 | 484 | |
michael@0 | 485 | float invNorm = 1.0f / norm; |
michael@0 | 486 | for (uint32_t h = 0; h < m; h++) { |
michael@0 | 487 | q[j][h] *= invNorm; |
michael@0 | 488 | } |
michael@0 | 489 | for (uint32_t i = 0; i < n; i++) { |
michael@0 | 490 | r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); |
michael@0 | 491 | } |
michael@0 | 492 | } |
michael@0 | 493 | #if DEBUG_STRATEGY |
michael@0 | 494 | ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string()); |
michael@0 | 495 | ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string()); |
michael@0 | 496 | |
michael@0 | 497 | // calculate QR, if we factored A correctly then QR should equal A |
michael@0 | 498 | float qr[n][m]; |
michael@0 | 499 | for (uint32_t h = 0; h < m; h++) { |
michael@0 | 500 | for (uint32_t i = 0; i < n; i++) { |
michael@0 | 501 | qr[i][h] = 0; |
michael@0 | 502 | for (uint32_t j = 0; j < n; j++) { |
michael@0 | 503 | qr[i][h] += q[j][h] * r[j][i]; |
michael@0 | 504 | } |
michael@0 | 505 | } |
michael@0 | 506 | } |
michael@0 | 507 | ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string()); |
michael@0 | 508 | #endif |
michael@0 | 509 | |
michael@0 | 510 | // Solve R B = Qt W Y to find B. This is easy because R is upper triangular. |
michael@0 | 511 | // We just work from bottom-right to top-left calculating B's coefficients. |
michael@0 | 512 | float wy[m]; |
michael@0 | 513 | for (uint32_t h = 0; h < m; h++) { |
michael@0 | 514 | wy[h] = y[h] * w[h]; |
michael@0 | 515 | } |
michael@0 | 516 | for (uint32_t i = n; i-- != 0; ) { |
michael@0 | 517 | outB[i] = vectorDot(&q[i][0], wy, m); |
michael@0 | 518 | for (uint32_t j = n - 1; j > i; j--) { |
michael@0 | 519 | outB[i] -= r[i][j] * outB[j]; |
michael@0 | 520 | } |
michael@0 | 521 | outB[i] /= r[i][i]; |
michael@0 | 522 | } |
michael@0 | 523 | #if DEBUG_STRATEGY |
michael@0 | 524 | ALOGD(" - b=%s", vectorToString(outB, n).string()); |
michael@0 | 525 | #endif |
michael@0 | 526 | |
michael@0 | 527 | // Calculate the coefficient of determination as 1 - (SSerr / SStot) where |
michael@0 | 528 | // SSerr is the residual sum of squares (variance of the error), |
michael@0 | 529 | // and SStot is the total sum of squares (variance of the data) where each |
michael@0 | 530 | // has been weighted. |
michael@0 | 531 | float ymean = 0; |
michael@0 | 532 | for (uint32_t h = 0; h < m; h++) { |
michael@0 | 533 | ymean += y[h]; |
michael@0 | 534 | } |
michael@0 | 535 | ymean /= m; |
michael@0 | 536 | |
michael@0 | 537 | float sserr = 0; |
michael@0 | 538 | float sstot = 0; |
michael@0 | 539 | for (uint32_t h = 0; h < m; h++) { |
michael@0 | 540 | float err = y[h] - outB[0]; |
michael@0 | 541 | float term = 1; |
michael@0 | 542 | for (uint32_t i = 1; i < n; i++) { |
michael@0 | 543 | term *= x[h]; |
michael@0 | 544 | err -= term * outB[i]; |
michael@0 | 545 | } |
michael@0 | 546 | sserr += w[h] * w[h] * err * err; |
michael@0 | 547 | float var = y[h] - ymean; |
michael@0 | 548 | sstot += w[h] * w[h] * var * var; |
michael@0 | 549 | } |
michael@0 | 550 | *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; |
michael@0 | 551 | #if DEBUG_STRATEGY |
michael@0 | 552 | ALOGD(" - sserr=%f", sserr); |
michael@0 | 553 | ALOGD(" - sstot=%f", sstot); |
michael@0 | 554 | ALOGD(" - det=%f", *outDet); |
michael@0 | 555 | #endif |
michael@0 | 556 | return true; |
michael@0 | 557 | } |
michael@0 | 558 | |
michael@0 | 559 | bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id, |
michael@0 | 560 | VelocityTracker::Estimator* outEstimator) const { |
michael@0 | 561 | outEstimator->clear(); |
michael@0 | 562 | |
michael@0 | 563 | // Iterate over movement samples in reverse time order and collect samples. |
michael@0 | 564 | float x[HISTORY_SIZE]; |
michael@0 | 565 | float y[HISTORY_SIZE]; |
michael@0 | 566 | float w[HISTORY_SIZE]; |
michael@0 | 567 | float time[HISTORY_SIZE]; |
michael@0 | 568 | uint32_t m = 0; |
michael@0 | 569 | uint32_t index = mIndex; |
michael@0 | 570 | const Movement& newestMovement = mMovements[mIndex]; |
michael@0 | 571 | do { |
michael@0 | 572 | const Movement& movement = mMovements[index]; |
michael@0 | 573 | if (!movement.idBits.hasBit(id)) { |
michael@0 | 574 | break; |
michael@0 | 575 | } |
michael@0 | 576 | |
michael@0 | 577 | nsecs_t age = newestMovement.eventTime - movement.eventTime; |
michael@0 | 578 | if (age > HORIZON) { |
michael@0 | 579 | break; |
michael@0 | 580 | } |
michael@0 | 581 | |
michael@0 | 582 | const VelocityTracker::Position& position = movement.getPosition(id); |
michael@0 | 583 | x[m] = position.x; |
michael@0 | 584 | y[m] = position.y; |
michael@0 | 585 | w[m] = chooseWeight(index); |
michael@0 | 586 | time[m] = -age * 0.000000001f; |
michael@0 | 587 | index = (index == 0 ? HISTORY_SIZE : index) - 1; |
michael@0 | 588 | } while (++m < HISTORY_SIZE); |
michael@0 | 589 | |
michael@0 | 590 | if (m == 0) { |
michael@0 | 591 | return false; // no data |
michael@0 | 592 | } |
michael@0 | 593 | |
michael@0 | 594 | // Calculate a least squares polynomial fit. |
michael@0 | 595 | uint32_t degree = mDegree; |
michael@0 | 596 | if (degree > m - 1) { |
michael@0 | 597 | degree = m - 1; |
michael@0 | 598 | } |
michael@0 | 599 | if (degree >= 1) { |
michael@0 | 600 | float xdet, ydet; |
michael@0 | 601 | uint32_t n = degree + 1; |
michael@0 | 602 | if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet) |
michael@0 | 603 | && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) { |
michael@0 | 604 | outEstimator->time = newestMovement.eventTime; |
michael@0 | 605 | outEstimator->degree = degree; |
michael@0 | 606 | outEstimator->confidence = xdet * ydet; |
michael@0 | 607 | #if DEBUG_STRATEGY |
michael@0 | 608 | ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f", |
michael@0 | 609 | int(outEstimator->degree), |
michael@0 | 610 | vectorToString(outEstimator->xCoeff, n).string(), |
michael@0 | 611 | vectorToString(outEstimator->yCoeff, n).string(), |
michael@0 | 612 | outEstimator->confidence); |
michael@0 | 613 | #endif |
michael@0 | 614 | return true; |
michael@0 | 615 | } |
michael@0 | 616 | } |
michael@0 | 617 | |
michael@0 | 618 | // No velocity data available for this pointer, but we do have its current position. |
michael@0 | 619 | outEstimator->xCoeff[0] = x[0]; |
michael@0 | 620 | outEstimator->yCoeff[0] = y[0]; |
michael@0 | 621 | outEstimator->time = newestMovement.eventTime; |
michael@0 | 622 | outEstimator->degree = 0; |
michael@0 | 623 | outEstimator->confidence = 1; |
michael@0 | 624 | return true; |
michael@0 | 625 | } |
michael@0 | 626 | |
michael@0 | 627 | float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const { |
michael@0 | 628 | switch (mWeighting) { |
michael@0 | 629 | case WEIGHTING_DELTA: { |
michael@0 | 630 | // Weight points based on how much time elapsed between them and the next |
michael@0 | 631 | // point so that points that "cover" a shorter time span are weighed less. |
michael@0 | 632 | // delta 0ms: 0.5 |
michael@0 | 633 | // delta 10ms: 1.0 |
michael@0 | 634 | if (index == mIndex) { |
michael@0 | 635 | return 1.0f; |
michael@0 | 636 | } |
michael@0 | 637 | uint32_t nextIndex = (index + 1) % HISTORY_SIZE; |
michael@0 | 638 | float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime) |
michael@0 | 639 | * 0.000001f; |
michael@0 | 640 | if (deltaMillis < 0) { |
michael@0 | 641 | return 0.5f; |
michael@0 | 642 | } |
michael@0 | 643 | if (deltaMillis < 10) { |
michael@0 | 644 | return 0.5f + deltaMillis * 0.05; |
michael@0 | 645 | } |
michael@0 | 646 | return 1.0f; |
michael@0 | 647 | } |
michael@0 | 648 | |
michael@0 | 649 | case WEIGHTING_CENTRAL: { |
michael@0 | 650 | // Weight points based on their age, weighing very recent and very old points less. |
michael@0 | 651 | // age 0ms: 0.5 |
michael@0 | 652 | // age 10ms: 1.0 |
michael@0 | 653 | // age 50ms: 1.0 |
michael@0 | 654 | // age 60ms: 0.5 |
michael@0 | 655 | float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime) |
michael@0 | 656 | * 0.000001f; |
michael@0 | 657 | if (ageMillis < 0) { |
michael@0 | 658 | return 0.5f; |
michael@0 | 659 | } |
michael@0 | 660 | if (ageMillis < 10) { |
michael@0 | 661 | return 0.5f + ageMillis * 0.05; |
michael@0 | 662 | } |
michael@0 | 663 | if (ageMillis < 50) { |
michael@0 | 664 | return 1.0f; |
michael@0 | 665 | } |
michael@0 | 666 | if (ageMillis < 60) { |
michael@0 | 667 | return 0.5f + (60 - ageMillis) * 0.05; |
michael@0 | 668 | } |
michael@0 | 669 | return 0.5f; |
michael@0 | 670 | } |
michael@0 | 671 | |
michael@0 | 672 | case WEIGHTING_RECENT: { |
michael@0 | 673 | // Weight points based on their age, weighing older points less. |
michael@0 | 674 | // age 0ms: 1.0 |
michael@0 | 675 | // age 50ms: 1.0 |
michael@0 | 676 | // age 100ms: 0.5 |
michael@0 | 677 | float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime) |
michael@0 | 678 | * 0.000001f; |
michael@0 | 679 | if (ageMillis < 50) { |
michael@0 | 680 | return 1.0f; |
michael@0 | 681 | } |
michael@0 | 682 | if (ageMillis < 100) { |
michael@0 | 683 | return 0.5f + (100 - ageMillis) * 0.01f; |
michael@0 | 684 | } |
michael@0 | 685 | return 0.5f; |
michael@0 | 686 | } |
michael@0 | 687 | |
michael@0 | 688 | case WEIGHTING_NONE: |
michael@0 | 689 | default: |
michael@0 | 690 | return 1.0f; |
michael@0 | 691 | } |
michael@0 | 692 | } |
michael@0 | 693 | |
michael@0 | 694 | |
michael@0 | 695 | // --- IntegratingVelocityTrackerStrategy --- |
michael@0 | 696 | |
michael@0 | 697 | IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) : |
michael@0 | 698 | mDegree(degree) { |
michael@0 | 699 | } |
michael@0 | 700 | |
michael@0 | 701 | IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() { |
michael@0 | 702 | } |
michael@0 | 703 | |
michael@0 | 704 | void IntegratingVelocityTrackerStrategy::clear() { |
michael@0 | 705 | mPointerIdBits.clear(); |
michael@0 | 706 | } |
michael@0 | 707 | |
michael@0 | 708 | void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { |
michael@0 | 709 | mPointerIdBits.value &= ~idBits.value; |
michael@0 | 710 | } |
michael@0 | 711 | |
michael@0 | 712 | void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, |
michael@0 | 713 | const VelocityTracker::Position* positions) { |
michael@0 | 714 | uint32_t index = 0; |
michael@0 | 715 | for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) { |
michael@0 | 716 | uint32_t id = iterIdBits.clearFirstMarkedBit(); |
michael@0 | 717 | State& state = mPointerState[id]; |
michael@0 | 718 | const VelocityTracker::Position& position = positions[index++]; |
michael@0 | 719 | if (mPointerIdBits.hasBit(id)) { |
michael@0 | 720 | updateState(state, eventTime, position.x, position.y); |
michael@0 | 721 | } else { |
michael@0 | 722 | initState(state, eventTime, position.x, position.y); |
michael@0 | 723 | } |
michael@0 | 724 | } |
michael@0 | 725 | |
michael@0 | 726 | mPointerIdBits = idBits; |
michael@0 | 727 | } |
michael@0 | 728 | |
michael@0 | 729 | bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id, |
michael@0 | 730 | VelocityTracker::Estimator* outEstimator) const { |
michael@0 | 731 | outEstimator->clear(); |
michael@0 | 732 | |
michael@0 | 733 | if (mPointerIdBits.hasBit(id)) { |
michael@0 | 734 | const State& state = mPointerState[id]; |
michael@0 | 735 | populateEstimator(state, outEstimator); |
michael@0 | 736 | return true; |
michael@0 | 737 | } |
michael@0 | 738 | |
michael@0 | 739 | return false; |
michael@0 | 740 | } |
michael@0 | 741 | |
michael@0 | 742 | void IntegratingVelocityTrackerStrategy::initState(State& state, |
michael@0 | 743 | nsecs_t eventTime, float xpos, float ypos) const { |
michael@0 | 744 | state.updateTime = eventTime; |
michael@0 | 745 | state.degree = 0; |
michael@0 | 746 | |
michael@0 | 747 | state.xpos = xpos; |
michael@0 | 748 | state.xvel = 0; |
michael@0 | 749 | state.xaccel = 0; |
michael@0 | 750 | state.ypos = ypos; |
michael@0 | 751 | state.yvel = 0; |
michael@0 | 752 | state.yaccel = 0; |
michael@0 | 753 | } |
michael@0 | 754 | |
michael@0 | 755 | void IntegratingVelocityTrackerStrategy::updateState(State& state, |
michael@0 | 756 | nsecs_t eventTime, float xpos, float ypos) const { |
michael@0 | 757 | const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS; |
michael@0 | 758 | const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds |
michael@0 | 759 | |
michael@0 | 760 | if (eventTime <= state.updateTime + MIN_TIME_DELTA) { |
michael@0 | 761 | return; |
michael@0 | 762 | } |
michael@0 | 763 | |
michael@0 | 764 | float dt = (eventTime - state.updateTime) * 0.000000001f; |
michael@0 | 765 | state.updateTime = eventTime; |
michael@0 | 766 | |
michael@0 | 767 | float xvel = (xpos - state.xpos) / dt; |
michael@0 | 768 | float yvel = (ypos - state.ypos) / dt; |
michael@0 | 769 | if (state.degree == 0) { |
michael@0 | 770 | state.xvel = xvel; |
michael@0 | 771 | state.yvel = yvel; |
michael@0 | 772 | state.degree = 1; |
michael@0 | 773 | } else { |
michael@0 | 774 | float alpha = dt / (FILTER_TIME_CONSTANT + dt); |
michael@0 | 775 | if (mDegree == 1) { |
michael@0 | 776 | state.xvel += (xvel - state.xvel) * alpha; |
michael@0 | 777 | state.yvel += (yvel - state.yvel) * alpha; |
michael@0 | 778 | } else { |
michael@0 | 779 | float xaccel = (xvel - state.xvel) / dt; |
michael@0 | 780 | float yaccel = (yvel - state.yvel) / dt; |
michael@0 | 781 | if (state.degree == 1) { |
michael@0 | 782 | state.xaccel = xaccel; |
michael@0 | 783 | state.yaccel = yaccel; |
michael@0 | 784 | state.degree = 2; |
michael@0 | 785 | } else { |
michael@0 | 786 | state.xaccel += (xaccel - state.xaccel) * alpha; |
michael@0 | 787 | state.yaccel += (yaccel - state.yaccel) * alpha; |
michael@0 | 788 | } |
michael@0 | 789 | state.xvel += (state.xaccel * dt) * alpha; |
michael@0 | 790 | state.yvel += (state.yaccel * dt) * alpha; |
michael@0 | 791 | } |
michael@0 | 792 | } |
michael@0 | 793 | state.xpos = xpos; |
michael@0 | 794 | state.ypos = ypos; |
michael@0 | 795 | } |
michael@0 | 796 | |
michael@0 | 797 | void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state, |
michael@0 | 798 | VelocityTracker::Estimator* outEstimator) const { |
michael@0 | 799 | outEstimator->time = state.updateTime; |
michael@0 | 800 | outEstimator->confidence = 1.0f; |
michael@0 | 801 | outEstimator->degree = state.degree; |
michael@0 | 802 | outEstimator->xCoeff[0] = state.xpos; |
michael@0 | 803 | outEstimator->xCoeff[1] = state.xvel; |
michael@0 | 804 | outEstimator->xCoeff[2] = state.xaccel / 2; |
michael@0 | 805 | outEstimator->yCoeff[0] = state.ypos; |
michael@0 | 806 | outEstimator->yCoeff[1] = state.yvel; |
michael@0 | 807 | outEstimator->yCoeff[2] = state.yaccel / 2; |
michael@0 | 808 | } |
michael@0 | 809 | |
michael@0 | 810 | |
michael@0 | 811 | // --- LegacyVelocityTrackerStrategy --- |
michael@0 | 812 | |
michael@0 | 813 | const nsecs_t LegacyVelocityTrackerStrategy::HORIZON; |
michael@0 | 814 | const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE; |
michael@0 | 815 | const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION; |
michael@0 | 816 | |
michael@0 | 817 | LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() { |
michael@0 | 818 | clear(); |
michael@0 | 819 | } |
michael@0 | 820 | |
michael@0 | 821 | LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() { |
michael@0 | 822 | } |
michael@0 | 823 | |
michael@0 | 824 | void LegacyVelocityTrackerStrategy::clear() { |
michael@0 | 825 | mIndex = 0; |
michael@0 | 826 | mMovements[0].idBits.clear(); |
michael@0 | 827 | } |
michael@0 | 828 | |
michael@0 | 829 | void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { |
michael@0 | 830 | BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); |
michael@0 | 831 | mMovements[mIndex].idBits = remainingIdBits; |
michael@0 | 832 | } |
michael@0 | 833 | |
michael@0 | 834 | void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, |
michael@0 | 835 | const VelocityTracker::Position* positions) { |
michael@0 | 836 | if (++mIndex == HISTORY_SIZE) { |
michael@0 | 837 | mIndex = 0; |
michael@0 | 838 | } |
michael@0 | 839 | |
michael@0 | 840 | Movement& movement = mMovements[mIndex]; |
michael@0 | 841 | movement.eventTime = eventTime; |
michael@0 | 842 | movement.idBits = idBits; |
michael@0 | 843 | uint32_t count = idBits.count(); |
michael@0 | 844 | for (uint32_t i = 0; i < count; i++) { |
michael@0 | 845 | movement.positions[i] = positions[i]; |
michael@0 | 846 | } |
michael@0 | 847 | } |
michael@0 | 848 | |
michael@0 | 849 | bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id, |
michael@0 | 850 | VelocityTracker::Estimator* outEstimator) const { |
michael@0 | 851 | outEstimator->clear(); |
michael@0 | 852 | |
michael@0 | 853 | const Movement& newestMovement = mMovements[mIndex]; |
michael@0 | 854 | if (!newestMovement.idBits.hasBit(id)) { |
michael@0 | 855 | return false; // no data |
michael@0 | 856 | } |
michael@0 | 857 | |
michael@0 | 858 | // Find the oldest sample that contains the pointer and that is not older than HORIZON. |
michael@0 | 859 | nsecs_t minTime = newestMovement.eventTime - HORIZON; |
michael@0 | 860 | uint32_t oldestIndex = mIndex; |
michael@0 | 861 | uint32_t numTouches = 1; |
michael@0 | 862 | do { |
michael@0 | 863 | uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1; |
michael@0 | 864 | const Movement& nextOldestMovement = mMovements[nextOldestIndex]; |
michael@0 | 865 | if (!nextOldestMovement.idBits.hasBit(id) |
michael@0 | 866 | || nextOldestMovement.eventTime < minTime) { |
michael@0 | 867 | break; |
michael@0 | 868 | } |
michael@0 | 869 | oldestIndex = nextOldestIndex; |
michael@0 | 870 | } while (++numTouches < HISTORY_SIZE); |
michael@0 | 871 | |
michael@0 | 872 | // Calculate an exponentially weighted moving average of the velocity estimate |
michael@0 | 873 | // at different points in time measured relative to the oldest sample. |
michael@0 | 874 | // This is essentially an IIR filter. Newer samples are weighted more heavily |
michael@0 | 875 | // than older samples. Samples at equal time points are weighted more or less |
michael@0 | 876 | // equally. |
michael@0 | 877 | // |
michael@0 | 878 | // One tricky problem is that the sample data may be poorly conditioned. |
michael@0 | 879 | // Sometimes samples arrive very close together in time which can cause us to |
michael@0 | 880 | // overestimate the velocity at that time point. Most samples might be measured |
michael@0 | 881 | // 16ms apart but some consecutive samples could be only 0.5sm apart because |
michael@0 | 882 | // the hardware or driver reports them irregularly or in bursts. |
michael@0 | 883 | float accumVx = 0; |
michael@0 | 884 | float accumVy = 0; |
michael@0 | 885 | uint32_t index = oldestIndex; |
michael@0 | 886 | uint32_t samplesUsed = 0; |
michael@0 | 887 | const Movement& oldestMovement = mMovements[oldestIndex]; |
michael@0 | 888 | const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id); |
michael@0 | 889 | nsecs_t lastDuration = 0; |
michael@0 | 890 | |
michael@0 | 891 | while (numTouches-- > 1) { |
michael@0 | 892 | if (++index == HISTORY_SIZE) { |
michael@0 | 893 | index = 0; |
michael@0 | 894 | } |
michael@0 | 895 | const Movement& movement = mMovements[index]; |
michael@0 | 896 | nsecs_t duration = movement.eventTime - oldestMovement.eventTime; |
michael@0 | 897 | |
michael@0 | 898 | // If the duration between samples is small, we may significantly overestimate |
michael@0 | 899 | // the velocity. Consequently, we impose a minimum duration constraint on the |
michael@0 | 900 | // samples that we include in the calculation. |
michael@0 | 901 | if (duration >= MIN_DURATION) { |
michael@0 | 902 | const VelocityTracker::Position& position = movement.getPosition(id); |
michael@0 | 903 | float scale = 1000000000.0f / duration; // one over time delta in seconds |
michael@0 | 904 | float vx = (position.x - oldestPosition.x) * scale; |
michael@0 | 905 | float vy = (position.y - oldestPosition.y) * scale; |
michael@0 | 906 | accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration); |
michael@0 | 907 | accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration); |
michael@0 | 908 | lastDuration = duration; |
michael@0 | 909 | samplesUsed += 1; |
michael@0 | 910 | } |
michael@0 | 911 | } |
michael@0 | 912 | |
michael@0 | 913 | // Report velocity. |
michael@0 | 914 | const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id); |
michael@0 | 915 | outEstimator->time = newestMovement.eventTime; |
michael@0 | 916 | outEstimator->confidence = 1; |
michael@0 | 917 | outEstimator->xCoeff[0] = newestPosition.x; |
michael@0 | 918 | outEstimator->yCoeff[0] = newestPosition.y; |
michael@0 | 919 | if (samplesUsed) { |
michael@0 | 920 | outEstimator->xCoeff[1] = accumVx; |
michael@0 | 921 | outEstimator->yCoeff[1] = accumVy; |
michael@0 | 922 | outEstimator->degree = 1; |
michael@0 | 923 | } else { |
michael@0 | 924 | outEstimator->degree = 0; |
michael@0 | 925 | } |
michael@0 | 926 | return true; |
michael@0 | 927 | } |
michael@0 | 928 | |
michael@0 | 929 | } // namespace android |