|
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
|
2 /* vim: set sw=2 ts=2 et tw=80 : */ |
|
3 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
4 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
6 |
|
7 #include "mozilla/layers/AsyncCompositionManager.h" |
|
8 #include <stdint.h> // for uint32_t |
|
9 #include "AnimationCommon.h" // for ComputedTimingFunction |
|
10 #include "CompositorParent.h" // for CompositorParent, etc |
|
11 #include "FrameMetrics.h" // for FrameMetrics |
|
12 #include "LayerManagerComposite.h" // for LayerManagerComposite, etc |
|
13 #include "Layers.h" // for Layer, ContainerLayer, etc |
|
14 #include "gfxPoint.h" // for gfxPoint, gfxSize |
|
15 #include "gfxPoint3D.h" // for gfxPoint3D |
|
16 #include "mozilla/WidgetUtils.h" // for ComputeTransformForRotation |
|
17 #include "mozilla/gfx/BaseRect.h" // for BaseRect |
|
18 #include "mozilla/gfx/Point.h" // for RoundedToInt, PointTyped |
|
19 #include "mozilla/gfx/Rect.h" // for RoundedToInt, RectTyped |
|
20 #include "mozilla/gfx/ScaleFactor.h" // for ScaleFactor |
|
21 #include "mozilla/layers/AsyncPanZoomController.h" |
|
22 #include "mozilla/layers/Compositor.h" // for Compositor |
|
23 #include "nsAnimationManager.h" // for ElementAnimations |
|
24 #include "nsCSSPropList.h" |
|
25 #include "nsCoord.h" // for NSAppUnitsToFloatPixels, etc |
|
26 #include "nsDebug.h" // for NS_ASSERTION, etc |
|
27 #include "nsDeviceContext.h" // for nsDeviceContext |
|
28 #include "nsDisplayList.h" // for nsDisplayTransform, etc |
|
29 #include "nsMathUtils.h" // for NS_round |
|
30 #include "nsPoint.h" // for nsPoint |
|
31 #include "nsRect.h" // for nsIntRect |
|
32 #include "nsRegion.h" // for nsIntRegion |
|
33 #include "nsStyleAnimation.h" // for nsStyleAnimation::Value, etc |
|
34 #include "nsTArray.h" // for nsTArray, nsTArray_Impl, etc |
|
35 #include "nsTArrayForwardDeclare.h" // for InfallibleTArray |
|
36 #if defined(MOZ_WIDGET_ANDROID) |
|
37 # include <android/log.h> |
|
38 # include "AndroidBridge.h" |
|
39 #endif |
|
40 #include "GeckoProfiler.h" |
|
41 |
|
42 struct nsCSSValueSharedList; |
|
43 |
|
44 using namespace mozilla::dom; |
|
45 using namespace mozilla::gfx; |
|
46 |
|
47 namespace mozilla { |
|
48 namespace layers { |
|
49 |
|
50 enum Op { Resolve, Detach }; |
|
51 |
|
52 static bool |
|
53 IsSameDimension(ScreenOrientation o1, ScreenOrientation o2) |
|
54 { |
|
55 bool isO1portrait = (o1 == eScreenOrientation_PortraitPrimary || o1 == eScreenOrientation_PortraitSecondary); |
|
56 bool isO2portrait = (o2 == eScreenOrientation_PortraitPrimary || o2 == eScreenOrientation_PortraitSecondary); |
|
57 return !(isO1portrait ^ isO2portrait); |
|
58 } |
|
59 |
|
60 static bool |
|
61 ContentMightReflowOnOrientationChange(const nsIntRect& rect) |
|
62 { |
|
63 return rect.width != rect.height; |
|
64 } |
|
65 |
|
66 template<Op OP> |
|
67 static void |
|
68 WalkTheTree(Layer* aLayer, |
|
69 bool& aReady, |
|
70 const TargetConfig& aTargetConfig) |
|
71 { |
|
72 if (RefLayer* ref = aLayer->AsRefLayer()) { |
|
73 if (const CompositorParent::LayerTreeState* state = CompositorParent::GetIndirectShadowTree(ref->GetReferentId())) { |
|
74 if (Layer* referent = state->mRoot) { |
|
75 if (!ref->GetVisibleRegion().IsEmpty()) { |
|
76 ScreenOrientation chromeOrientation = aTargetConfig.orientation(); |
|
77 ScreenOrientation contentOrientation = state->mTargetConfig.orientation(); |
|
78 if (!IsSameDimension(chromeOrientation, contentOrientation) && |
|
79 ContentMightReflowOnOrientationChange(aTargetConfig.clientBounds())) { |
|
80 aReady = false; |
|
81 } |
|
82 } |
|
83 |
|
84 if (OP == Resolve) { |
|
85 ref->ConnectReferentLayer(referent); |
|
86 } else { |
|
87 ref->DetachReferentLayer(referent); |
|
88 } |
|
89 } |
|
90 } |
|
91 } |
|
92 for (Layer* child = aLayer->GetFirstChild(); |
|
93 child; child = child->GetNextSibling()) { |
|
94 WalkTheTree<OP>(child, aReady, aTargetConfig); |
|
95 } |
|
96 } |
|
97 |
|
98 void |
|
99 AsyncCompositionManager::ResolveRefLayers() |
|
100 { |
|
101 if (!mLayerManager->GetRoot()) { |
|
102 return; |
|
103 } |
|
104 |
|
105 mReadyForCompose = true; |
|
106 WalkTheTree<Resolve>(mLayerManager->GetRoot(), |
|
107 mReadyForCompose, |
|
108 mTargetConfig); |
|
109 } |
|
110 |
|
111 void |
|
112 AsyncCompositionManager::DetachRefLayers() |
|
113 { |
|
114 if (!mLayerManager->GetRoot()) { |
|
115 return; |
|
116 } |
|
117 WalkTheTree<Detach>(mLayerManager->GetRoot(), |
|
118 mReadyForCompose, |
|
119 mTargetConfig); |
|
120 } |
|
121 |
|
122 void |
|
123 AsyncCompositionManager::ComputeRotation() |
|
124 { |
|
125 if (!mTargetConfig.naturalBounds().IsEmpty()) { |
|
126 mLayerManager->SetWorldTransform( |
|
127 ComputeTransformForRotation(mTargetConfig.naturalBounds(), |
|
128 mTargetConfig.rotation())); |
|
129 } |
|
130 } |
|
131 |
|
132 static bool |
|
133 GetBaseTransform2D(Layer* aLayer, Matrix* aTransform) |
|
134 { |
|
135 // Start with the animated transform if there is one |
|
136 return (aLayer->AsLayerComposite()->GetShadowTransformSetByAnimation() ? |
|
137 aLayer->GetLocalTransform() : aLayer->GetTransform()).Is2D(aTransform); |
|
138 } |
|
139 |
|
140 static void |
|
141 TranslateShadowLayer2D(Layer* aLayer, |
|
142 const gfxPoint& aTranslation) |
|
143 { |
|
144 Matrix layerTransform; |
|
145 if (!GetBaseTransform2D(aLayer, &layerTransform)) { |
|
146 return; |
|
147 } |
|
148 |
|
149 // Apply the 2D translation to the layer transform. |
|
150 layerTransform._31 += aTranslation.x; |
|
151 layerTransform._32 += aTranslation.y; |
|
152 |
|
153 // The transform already takes the resolution scale into account. Since we |
|
154 // will apply the resolution scale again when computing the effective |
|
155 // transform, we must apply the inverse resolution scale here. |
|
156 Matrix4x4 layerTransform3D = Matrix4x4::From2D(layerTransform); |
|
157 if (ContainerLayer* c = aLayer->AsContainerLayer()) { |
|
158 layerTransform3D.Scale(1.0f/c->GetPreXScale(), |
|
159 1.0f/c->GetPreYScale(), |
|
160 1); |
|
161 } |
|
162 layerTransform3D = layerTransform3D * |
|
163 Matrix4x4().Scale(1.0f/aLayer->GetPostXScale(), |
|
164 1.0f/aLayer->GetPostYScale(), |
|
165 1); |
|
166 |
|
167 LayerComposite* layerComposite = aLayer->AsLayerComposite(); |
|
168 layerComposite->SetShadowTransform(layerTransform3D); |
|
169 layerComposite->SetShadowTransformSetByAnimation(false); |
|
170 |
|
171 const nsIntRect* clipRect = aLayer->GetClipRect(); |
|
172 if (clipRect) { |
|
173 nsIntRect transformedClipRect(*clipRect); |
|
174 transformedClipRect.MoveBy(aTranslation.x, aTranslation.y); |
|
175 layerComposite->SetShadowClipRect(&transformedClipRect); |
|
176 } |
|
177 } |
|
178 |
|
179 static bool |
|
180 AccumulateLayerTransforms2D(Layer* aLayer, |
|
181 Layer* aAncestor, |
|
182 Matrix& aMatrix) |
|
183 { |
|
184 // Accumulate the transforms between this layer and the subtree root layer. |
|
185 for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) { |
|
186 Matrix l2D; |
|
187 if (!GetBaseTransform2D(l, &l2D)) { |
|
188 return false; |
|
189 } |
|
190 aMatrix *= l2D; |
|
191 } |
|
192 |
|
193 return true; |
|
194 } |
|
195 |
|
196 static LayerPoint |
|
197 GetLayerFixedMarginsOffset(Layer* aLayer, |
|
198 const LayerMargin& aFixedLayerMargins) |
|
199 { |
|
200 // Work out the necessary translation, in root scrollable layer space. |
|
201 // Because fixed layer margins are stored relative to the root scrollable |
|
202 // layer, we can just take the difference between these values. |
|
203 LayerPoint translation; |
|
204 const LayerPoint& anchor = aLayer->GetFixedPositionAnchor(); |
|
205 const LayerMargin& fixedMargins = aLayer->GetFixedPositionMargins(); |
|
206 |
|
207 if (fixedMargins.left >= 0) { |
|
208 if (anchor.x > 0) { |
|
209 translation.x -= aFixedLayerMargins.right - fixedMargins.right; |
|
210 } else { |
|
211 translation.x += aFixedLayerMargins.left - fixedMargins.left; |
|
212 } |
|
213 } |
|
214 |
|
215 if (fixedMargins.top >= 0) { |
|
216 if (anchor.y > 0) { |
|
217 translation.y -= aFixedLayerMargins.bottom - fixedMargins.bottom; |
|
218 } else { |
|
219 translation.y += aFixedLayerMargins.top - fixedMargins.top; |
|
220 } |
|
221 } |
|
222 |
|
223 return translation; |
|
224 } |
|
225 |
|
226 static gfxFloat |
|
227 IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax) |
|
228 { |
|
229 // Determine the amount of overlap between the 1D vector |aTranslation| |
|
230 // and the interval [aMin, aMax]. |
|
231 if (aTranslation > 0) { |
|
232 return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0)); |
|
233 } else { |
|
234 return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0)); |
|
235 } |
|
236 } |
|
237 |
|
238 void |
|
239 AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aLayer, |
|
240 Layer* aTransformedSubtreeRoot, |
|
241 const Matrix4x4& aPreviousTransformForRoot, |
|
242 const LayerMargin& aFixedLayerMargins) |
|
243 { |
|
244 bool isRootFixed = aLayer->GetIsFixedPosition() && |
|
245 !aLayer->GetParent()->GetIsFixedPosition(); |
|
246 bool isStickyForSubtree = aLayer->GetIsStickyPosition() && |
|
247 aTransformedSubtreeRoot->AsContainerLayer() && |
|
248 aLayer->GetStickyScrollContainerId() == |
|
249 aTransformedSubtreeRoot->AsContainerLayer()->GetFrameMetrics().GetScrollId(); |
|
250 if (aLayer != aTransformedSubtreeRoot && (isRootFixed || isStickyForSubtree)) { |
|
251 // Insert a translation so that the position of the anchor point is the same |
|
252 // before and after the change to the transform of aTransformedSubtreeRoot. |
|
253 // This currently only works for fixed layers with 2D transforms. |
|
254 |
|
255 // Accumulate the transforms between this layer and the subtree root layer. |
|
256 Matrix ancestorTransform; |
|
257 if (!AccumulateLayerTransforms2D(aLayer->GetParent(), aTransformedSubtreeRoot, |
|
258 ancestorTransform)) { |
|
259 return; |
|
260 } |
|
261 |
|
262 Matrix oldRootTransform; |
|
263 Matrix newRootTransform; |
|
264 if (!aPreviousTransformForRoot.Is2D(&oldRootTransform) || |
|
265 !aTransformedSubtreeRoot->GetLocalTransform().Is2D(&newRootTransform)) { |
|
266 return; |
|
267 } |
|
268 |
|
269 // Calculate the cumulative transforms between the subtree root with the |
|
270 // old transform and the current transform. |
|
271 Matrix oldCumulativeTransform = ancestorTransform * oldRootTransform; |
|
272 Matrix newCumulativeTransform = ancestorTransform * newRootTransform; |
|
273 if (newCumulativeTransform.IsSingular()) { |
|
274 return; |
|
275 } |
|
276 Matrix newCumulativeTransformInverse = newCumulativeTransform; |
|
277 newCumulativeTransformInverse.Invert(); |
|
278 |
|
279 // Now work out the translation necessary to make sure the layer doesn't |
|
280 // move given the new sub-tree root transform. |
|
281 Matrix layerTransform; |
|
282 if (!GetBaseTransform2D(aLayer, &layerTransform)) { |
|
283 return; |
|
284 } |
|
285 |
|
286 // Calculate any offset necessary, in previous transform sub-tree root |
|
287 // space. This is used to make sure fixed position content respects |
|
288 // content document fixed position margins. |
|
289 LayerPoint offsetInOldSubtreeLayerSpace = GetLayerFixedMarginsOffset(aLayer, aFixedLayerMargins); |
|
290 |
|
291 // Add the above offset to the anchor point so we can offset the layer by |
|
292 // and amount that's specified in old subtree layer space. |
|
293 const LayerPoint& anchorInOldSubtreeLayerSpace = aLayer->GetFixedPositionAnchor(); |
|
294 LayerPoint offsetAnchorInOldSubtreeLayerSpace = anchorInOldSubtreeLayerSpace + offsetInOldSubtreeLayerSpace; |
|
295 |
|
296 // Add the local layer transform to the two points to make the equation |
|
297 // below this section more convenient. |
|
298 Point anchor(anchorInOldSubtreeLayerSpace.x, anchorInOldSubtreeLayerSpace.y); |
|
299 Point offsetAnchor(offsetAnchorInOldSubtreeLayerSpace.x, offsetAnchorInOldSubtreeLayerSpace.y); |
|
300 Point locallyTransformedAnchor = layerTransform * anchor; |
|
301 Point locallyTransformedOffsetAnchor = layerTransform * offsetAnchor; |
|
302 |
|
303 // Transforming the locallyTransformedAnchor by oldCumulativeTransform |
|
304 // returns the layer's anchor point relative to the parent of |
|
305 // aTransformedSubtreeRoot, before the new transform was applied. |
|
306 // Then, applying newCumulativeTransformInverse maps that point relative |
|
307 // to the layer's parent, which is the same coordinate space as |
|
308 // locallyTransformedAnchor again, allowing us to subtract them and find |
|
309 // out the offset necessary to make sure the layer stays stationary. |
|
310 Point oldAnchorPositionInNewSpace = |
|
311 newCumulativeTransformInverse * (oldCumulativeTransform * locallyTransformedOffsetAnchor); |
|
312 Point translation = oldAnchorPositionInNewSpace - locallyTransformedAnchor; |
|
313 |
|
314 if (aLayer->GetIsStickyPosition()) { |
|
315 // For sticky positioned layers, the difference between the two rectangles |
|
316 // defines a pair of translation intervals in each dimension through which |
|
317 // the layer should not move relative to the scroll container. To |
|
318 // accomplish this, we limit each dimension of the |translation| to that |
|
319 // part of it which overlaps those intervals. |
|
320 const LayerRect& stickyOuter = aLayer->GetStickyScrollRangeOuter(); |
|
321 const LayerRect& stickyInner = aLayer->GetStickyScrollRangeInner(); |
|
322 |
|
323 translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) - |
|
324 IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost()); |
|
325 translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) - |
|
326 IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost()); |
|
327 } |
|
328 |
|
329 // Finally, apply the 2D translation to the layer transform. |
|
330 TranslateShadowLayer2D(aLayer, ThebesPoint(translation)); |
|
331 |
|
332 // The transform has now been applied, so there's no need to iterate over |
|
333 // child layers. |
|
334 return; |
|
335 } |
|
336 |
|
337 // Fixed layers are relative to their nearest scrollable layer, so when we |
|
338 // encounter a scrollable layer, reset the transform to that layer and remove |
|
339 // the fixed margins. |
|
340 if (aLayer->AsContainerLayer() && |
|
341 aLayer->AsContainerLayer()->GetFrameMetrics().IsScrollable() && |
|
342 aLayer != aTransformedSubtreeRoot) { |
|
343 AlignFixedAndStickyLayers(aLayer, aLayer, aLayer->GetTransform(), LayerMargin(0, 0, 0, 0)); |
|
344 return; |
|
345 } |
|
346 |
|
347 for (Layer* child = aLayer->GetFirstChild(); |
|
348 child; child = child->GetNextSibling()) { |
|
349 AlignFixedAndStickyLayers(child, aTransformedSubtreeRoot, |
|
350 aPreviousTransformForRoot, aFixedLayerMargins); |
|
351 } |
|
352 } |
|
353 |
|
354 static void |
|
355 SampleValue(float aPortion, Animation& aAnimation, nsStyleAnimation::Value& aStart, |
|
356 nsStyleAnimation::Value& aEnd, Animatable* aValue) |
|
357 { |
|
358 nsStyleAnimation::Value interpolatedValue; |
|
359 NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() || |
|
360 aStart.GetUnit() == nsStyleAnimation::eUnit_None || |
|
361 aEnd.GetUnit() == nsStyleAnimation::eUnit_None, "Must have same unit"); |
|
362 nsStyleAnimation::Interpolate(aAnimation.property(), aStart, aEnd, |
|
363 aPortion, interpolatedValue); |
|
364 if (aAnimation.property() == eCSSProperty_opacity) { |
|
365 *aValue = interpolatedValue.GetFloatValue(); |
|
366 return; |
|
367 } |
|
368 |
|
369 nsCSSValueSharedList* interpolatedList = |
|
370 interpolatedValue.GetCSSValueSharedListValue(); |
|
371 |
|
372 TransformData& data = aAnimation.data().get_TransformData(); |
|
373 nsPoint origin = data.origin(); |
|
374 // we expect all our transform data to arrive in css pixels, so here we must |
|
375 // adjust to dev pixels. |
|
376 double cssPerDev = double(nsDeviceContext::AppUnitsPerCSSPixel()) |
|
377 / double(data.appUnitsPerDevPixel()); |
|
378 gfxPoint3D transformOrigin = data.transformOrigin(); |
|
379 transformOrigin.x = transformOrigin.x * cssPerDev; |
|
380 transformOrigin.y = transformOrigin.y * cssPerDev; |
|
381 gfxPoint3D perspectiveOrigin = data.perspectiveOrigin(); |
|
382 perspectiveOrigin.x = perspectiveOrigin.x * cssPerDev; |
|
383 perspectiveOrigin.y = perspectiveOrigin.y * cssPerDev; |
|
384 nsDisplayTransform::FrameTransformProperties props(interpolatedList, |
|
385 transformOrigin, |
|
386 perspectiveOrigin, |
|
387 data.perspective()); |
|
388 gfx3DMatrix transform = |
|
389 nsDisplayTransform::GetResultingTransformMatrix(props, origin, |
|
390 data.appUnitsPerDevPixel(), |
|
391 &data.bounds()); |
|
392 gfxPoint3D scaledOrigin = |
|
393 gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, data.appUnitsPerDevPixel())), |
|
394 NS_round(NSAppUnitsToFloatPixels(origin.y, data.appUnitsPerDevPixel())), |
|
395 0.0f); |
|
396 |
|
397 transform.Translate(scaledOrigin); |
|
398 |
|
399 InfallibleTArray<TransformFunction> functions; |
|
400 Matrix4x4 realTransform; |
|
401 ToMatrix4x4(transform, realTransform); |
|
402 functions.AppendElement(TransformMatrix(realTransform)); |
|
403 *aValue = functions; |
|
404 } |
|
405 |
|
406 static bool |
|
407 SampleAnimations(Layer* aLayer, TimeStamp aPoint) |
|
408 { |
|
409 AnimationArray& animations = aLayer->GetAnimations(); |
|
410 InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData(); |
|
411 |
|
412 bool activeAnimations = false; |
|
413 |
|
414 for (uint32_t i = animations.Length(); i-- !=0; ) { |
|
415 Animation& animation = animations[i]; |
|
416 AnimData& animData = animationData[i]; |
|
417 |
|
418 activeAnimations = true; |
|
419 |
|
420 TimeDuration elapsedDuration = aPoint - animation.startTime(); |
|
421 // Skip animations that are yet to start. |
|
422 // |
|
423 // Currently, this should only happen when the refresh driver is under test |
|
424 // control and is made to produce a time in the past or is restored from |
|
425 // test control causing it to jump backwards in time. |
|
426 // |
|
427 // Since activeAnimations is true, this could mean we keep compositing |
|
428 // unnecessarily during the delay, but so long as this only happens while |
|
429 // the refresh driver is under test control that should be ok. |
|
430 if (elapsedDuration.ToSeconds() < 0) { |
|
431 continue; |
|
432 } |
|
433 |
|
434 double numIterations = animation.numIterations() != -1 ? |
|
435 animation.numIterations() : NS_IEEEPositiveInfinity(); |
|
436 double positionInIteration = |
|
437 ElementAnimations::GetPositionInIteration(elapsedDuration, |
|
438 animation.duration(), |
|
439 numIterations, |
|
440 animation.direction()); |
|
441 |
|
442 NS_ABORT_IF_FALSE(0.0 <= positionInIteration && |
|
443 positionInIteration <= 1.0, |
|
444 "position should be in [0-1]"); |
|
445 |
|
446 int segmentIndex = 0; |
|
447 AnimationSegment* segment = animation.segments().Elements(); |
|
448 while (segment->endPortion() < positionInIteration) { |
|
449 ++segment; |
|
450 ++segmentIndex; |
|
451 } |
|
452 |
|
453 double positionInSegment = (positionInIteration - segment->startPortion()) / |
|
454 (segment->endPortion() - segment->startPortion()); |
|
455 |
|
456 double portion = animData.mFunctions[segmentIndex]->GetValue(positionInSegment); |
|
457 |
|
458 // interpolate the property |
|
459 Animatable interpolatedValue; |
|
460 SampleValue(portion, animation, animData.mStartValues[segmentIndex], |
|
461 animData.mEndValues[segmentIndex], &interpolatedValue); |
|
462 LayerComposite* layerComposite = aLayer->AsLayerComposite(); |
|
463 switch (animation.property()) { |
|
464 case eCSSProperty_opacity: |
|
465 { |
|
466 layerComposite->SetShadowOpacity(interpolatedValue.get_float()); |
|
467 break; |
|
468 } |
|
469 case eCSSProperty_transform: |
|
470 { |
|
471 Matrix4x4 matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value(); |
|
472 if (ContainerLayer* c = aLayer->AsContainerLayer()) { |
|
473 matrix = matrix * Matrix4x4().Scale(c->GetInheritedXScale(), |
|
474 c->GetInheritedYScale(), |
|
475 1); |
|
476 } |
|
477 layerComposite->SetShadowTransform(matrix); |
|
478 layerComposite->SetShadowTransformSetByAnimation(true); |
|
479 break; |
|
480 } |
|
481 default: |
|
482 NS_WARNING("Unhandled animated property"); |
|
483 } |
|
484 } |
|
485 |
|
486 for (Layer* child = aLayer->GetFirstChild(); child; |
|
487 child = child->GetNextSibling()) { |
|
488 activeAnimations |= SampleAnimations(child, aPoint); |
|
489 } |
|
490 |
|
491 return activeAnimations; |
|
492 } |
|
493 |
|
494 bool |
|
495 AsyncCompositionManager::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame, |
|
496 Layer *aLayer, |
|
497 bool* aWantNextFrame) |
|
498 { |
|
499 bool appliedTransform = false; |
|
500 for (Layer* child = aLayer->GetFirstChild(); |
|
501 child; child = child->GetNextSibling()) { |
|
502 appliedTransform |= |
|
503 ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame); |
|
504 } |
|
505 |
|
506 ContainerLayer* container = aLayer->AsContainerLayer(); |
|
507 if (!container) { |
|
508 return appliedTransform; |
|
509 } |
|
510 |
|
511 if (AsyncPanZoomController* controller = container->GetAsyncPanZoomController()) { |
|
512 LayerComposite* layerComposite = aLayer->AsLayerComposite(); |
|
513 Matrix4x4 oldTransform = aLayer->GetTransform(); |
|
514 |
|
515 ViewTransform treeTransform; |
|
516 ScreenPoint scrollOffset; |
|
517 *aWantNextFrame |= |
|
518 controller->SampleContentTransformForFrame(aCurrentFrame, |
|
519 &treeTransform, |
|
520 scrollOffset); |
|
521 |
|
522 const FrameMetrics& metrics = container->GetFrameMetrics(); |
|
523 CSSToLayerScale paintScale = metrics.LayersPixelsPerCSSPixel(); |
|
524 CSSRect displayPort(metrics.mCriticalDisplayPort.IsEmpty() ? |
|
525 metrics.mDisplayPort : metrics.mCriticalDisplayPort); |
|
526 LayerMargin fixedLayerMargins(0, 0, 0, 0); |
|
527 ScreenPoint offset(0, 0); |
|
528 SyncFrameMetrics(scrollOffset, treeTransform.mScale.scale, metrics.mScrollableRect, |
|
529 mLayersUpdated, displayPort, paintScale, |
|
530 mIsFirstPaint, fixedLayerMargins, offset); |
|
531 |
|
532 mIsFirstPaint = false; |
|
533 mLayersUpdated = false; |
|
534 |
|
535 // Apply the render offset |
|
536 mLayerManager->GetCompositor()->SetScreenRenderOffset(offset); |
|
537 |
|
538 Matrix4x4 transform; |
|
539 ToMatrix4x4(gfx3DMatrix(treeTransform), transform); |
|
540 transform = transform * aLayer->GetTransform(); |
|
541 |
|
542 // GetTransform already takes the pre- and post-scale into account. Since we |
|
543 // will apply the pre- and post-scale again when computing the effective |
|
544 // transform, we must apply the inverses here. |
|
545 transform.Scale(1.0f/container->GetPreXScale(), |
|
546 1.0f/container->GetPreYScale(), |
|
547 1); |
|
548 transform = transform * Matrix4x4().Scale(1.0f/aLayer->GetPostXScale(), |
|
549 1.0f/aLayer->GetPostYScale(), |
|
550 1); |
|
551 layerComposite->SetShadowTransform(transform); |
|
552 NS_ASSERTION(!layerComposite->GetShadowTransformSetByAnimation(), |
|
553 "overwriting animated transform!"); |
|
554 |
|
555 // Apply resolution scaling to the old transform - the layer tree as it is |
|
556 // doesn't have the necessary transform to display correctly. |
|
557 LayoutDeviceToLayerScale resolution = metrics.mCumulativeResolution; |
|
558 oldTransform.Scale(resolution.scale, resolution.scale, 1); |
|
559 |
|
560 AlignFixedAndStickyLayers(aLayer, aLayer, oldTransform, fixedLayerMargins); |
|
561 |
|
562 appliedTransform = true; |
|
563 } |
|
564 |
|
565 if (container->GetScrollbarDirection() != Layer::NONE) { |
|
566 ApplyAsyncTransformToScrollbar(aCurrentFrame, container); |
|
567 } |
|
568 return appliedTransform; |
|
569 } |
|
570 |
|
571 static bool |
|
572 LayerHasNonContainerDescendants(ContainerLayer* aContainer) |
|
573 { |
|
574 for (Layer* child = aContainer->GetFirstChild(); |
|
575 child; child = child->GetNextSibling()) { |
|
576 ContainerLayer* container = child->AsContainerLayer(); |
|
577 if (!container || LayerHasNonContainerDescendants(container)) { |
|
578 return true; |
|
579 } |
|
580 } |
|
581 |
|
582 return false; |
|
583 } |
|
584 |
|
585 static bool |
|
586 LayerIsContainerForScrollbarTarget(Layer* aTarget, ContainerLayer* aScrollbar) |
|
587 { |
|
588 if (!aTarget->AsContainerLayer()) { |
|
589 return false; |
|
590 } |
|
591 AsyncPanZoomController* apzc = aTarget->AsContainerLayer()->GetAsyncPanZoomController(); |
|
592 if (!apzc) { |
|
593 return false; |
|
594 } |
|
595 const FrameMetrics& metrics = aTarget->AsContainerLayer()->GetFrameMetrics(); |
|
596 if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) { |
|
597 return false; |
|
598 } |
|
599 return true; |
|
600 } |
|
601 |
|
602 static void |
|
603 ApplyAsyncTransformToScrollbarForContent(TimeStamp aCurrentFrame, ContainerLayer* aScrollbar, |
|
604 Layer* aContent, bool aScrollbarIsChild) |
|
605 { |
|
606 ContainerLayer* content = aContent->AsContainerLayer(); |
|
607 if (!LayerHasNonContainerDescendants(content)) { |
|
608 return; |
|
609 } |
|
610 |
|
611 const FrameMetrics& metrics = content->GetFrameMetrics(); |
|
612 AsyncPanZoomController* apzc = content->GetAsyncPanZoomController(); |
|
613 |
|
614 if (aScrollbarIsChild) { |
|
615 // Because we try to apply the scrollbar transform before we apply the async transform on |
|
616 // the actual content, we need to ensure that the APZC has updated any pending animations |
|
617 // to the current frame timestamp before we extract the transforms from it. The code in this |
|
618 // block accomplishes that and throws away the temp variables. |
|
619 // TODO: it might be cleaner to do a pass through the layer tree to advance all the APZC |
|
620 // transforms before updating the layer shadow transforms. That will allow removal of this code. |
|
621 ViewTransform treeTransform; |
|
622 ScreenPoint scrollOffset; |
|
623 apzc->SampleContentTransformForFrame(aCurrentFrame, &treeTransform, scrollOffset); |
|
624 } |
|
625 |
|
626 gfx3DMatrix asyncTransform = gfx3DMatrix(apzc->GetCurrentAsyncTransform()); |
|
627 gfx3DMatrix nontransientTransform = apzc->GetNontransientAsyncTransform(); |
|
628 gfx3DMatrix transientTransform = asyncTransform * nontransientTransform.Inverse(); |
|
629 |
|
630 // |transientTransform| represents the amount by which we have scrolled and |
|
631 // zoomed since the last paint. Because the scrollbar was sized and positioned based |
|
632 // on the painted content, we need to adjust it based on transientTransform so that |
|
633 // it reflects what the user is actually seeing now. |
|
634 // - The scroll thumb needs to be scaled in the direction of scrolling by the inverse |
|
635 // of the transientTransform scale (representing the zoom). This is because zooming |
|
636 // in decreases the fraction of the whole scrollable rect that is in view. |
|
637 // - It needs to be translated in opposite direction of the transientTransform |
|
638 // translation (representing the scroll). This is because scrolling down, which |
|
639 // translates the layer content up, should result in moving the scroll thumb down. |
|
640 // The amount of the translation to the scroll thumb should be such that the ratio |
|
641 // of the translation to the size of the scroll port is the same as the ratio |
|
642 // of the scroll amount to the size of the scrollable rect. |
|
643 Matrix4x4 scrollbarTransform; |
|
644 if (aScrollbar->GetScrollbarDirection() == Layer::VERTICAL) { |
|
645 float scale = metrics.CalculateCompositedSizeInCssPixels().height / metrics.mScrollableRect.height; |
|
646 scrollbarTransform = scrollbarTransform * Matrix4x4().Scale(1.f, 1.f / transientTransform.GetYScale(), 1.f); |
|
647 scrollbarTransform = scrollbarTransform * Matrix4x4().Translate(0, -transientTransform._42 * scale, 0); |
|
648 } |
|
649 if (aScrollbar->GetScrollbarDirection() == Layer::HORIZONTAL) { |
|
650 float scale = metrics.CalculateCompositedSizeInCssPixels().width / metrics.mScrollableRect.width; |
|
651 scrollbarTransform = scrollbarTransform * Matrix4x4().Scale(1.f / transientTransform.GetXScale(), 1.f, 1.f); |
|
652 scrollbarTransform = scrollbarTransform * Matrix4x4().Translate(-transientTransform._41 * scale, 0, 0); |
|
653 } |
|
654 |
|
655 Matrix4x4 transform = scrollbarTransform * aScrollbar->GetTransform(); |
|
656 |
|
657 if (aScrollbarIsChild) { |
|
658 // If the scrollbar layer is a child of the content it is a scrollbar for, then we |
|
659 // need to do an extra untransform to cancel out the transient async transform on |
|
660 // the content. This is needed because otherwise that transient async transform is |
|
661 // part of the effective transform of this scrollbar, and the scrollbar will jitter |
|
662 // as the content scrolls. |
|
663 Matrix4x4 targetUntransform; |
|
664 ToMatrix4x4(transientTransform.Inverse(), targetUntransform); |
|
665 transform = transform * targetUntransform; |
|
666 } |
|
667 |
|
668 // GetTransform already takes the pre- and post-scale into account. Since we |
|
669 // will apply the pre- and post-scale again when computing the effective |
|
670 // transform, we must apply the inverses here. |
|
671 transform.Scale(1.0f/aScrollbar->GetPreXScale(), |
|
672 1.0f/aScrollbar->GetPreYScale(), |
|
673 1); |
|
674 transform = transform * Matrix4x4().Scale(1.0f/aScrollbar->GetPostXScale(), |
|
675 1.0f/aScrollbar->GetPostYScale(), |
|
676 1); |
|
677 aScrollbar->AsLayerComposite()->SetShadowTransform(transform); |
|
678 } |
|
679 |
|
680 void |
|
681 AsyncCompositionManager::ApplyAsyncTransformToScrollbar(TimeStamp aCurrentFrame, ContainerLayer* aLayer) |
|
682 { |
|
683 // If this layer corresponds to a scrollbar, then there should be a layer that |
|
684 // is a previous sibling or a parent that has a matching ViewID on its FrameMetrics. |
|
685 // That is the content that this scrollbar is for. We pick up the transient |
|
686 // async transform from that layer and use it to update the scrollbar position. |
|
687 // Note that it is possible that the content layer is no longer there; in |
|
688 // this case we don't need to do anything because there can't be an async |
|
689 // transform on the content. |
|
690 // We only apply the transform if the scroll-target layer has non-container |
|
691 // children (i.e. when it has some possibly-visible content). This is to |
|
692 // avoid moving scroll-bars in the situation that only a scroll information |
|
693 // layer has been built for a scroll frame, as this would result in a |
|
694 // disparity between scrollbars and visible content. |
|
695 for (Layer* scrollTarget = aLayer->GetPrevSibling(); |
|
696 scrollTarget; |
|
697 scrollTarget = scrollTarget->GetPrevSibling()) { |
|
698 if (LayerIsContainerForScrollbarTarget(scrollTarget, aLayer)) { |
|
699 // Found a sibling that matches our criteria |
|
700 ApplyAsyncTransformToScrollbarForContent(aCurrentFrame, aLayer, scrollTarget, false); |
|
701 return; |
|
702 } |
|
703 } |
|
704 |
|
705 // If we didn't find a sibling, look for a parent |
|
706 Layer* scrollTarget = aLayer->GetParent(); |
|
707 if (scrollTarget && LayerIsContainerForScrollbarTarget(scrollTarget, aLayer)) { |
|
708 ApplyAsyncTransformToScrollbarForContent(aCurrentFrame, aLayer, scrollTarget, true); |
|
709 } |
|
710 } |
|
711 |
|
712 void |
|
713 AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer) |
|
714 { |
|
715 LayerComposite* layerComposite = aLayer->AsLayerComposite(); |
|
716 ContainerLayer* container = aLayer->AsContainerLayer(); |
|
717 |
|
718 const FrameMetrics& metrics = container->GetFrameMetrics(); |
|
719 // We must apply the resolution scale before a pan/zoom transform, so we call |
|
720 // GetTransform here. |
|
721 gfx3DMatrix currentTransform; |
|
722 To3DMatrix(aLayer->GetTransform(), currentTransform); |
|
723 Matrix4x4 oldTransform = aLayer->GetTransform(); |
|
724 |
|
725 gfx3DMatrix treeTransform; |
|
726 |
|
727 CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel(); |
|
728 |
|
729 LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom); |
|
730 |
|
731 if (mIsFirstPaint) { |
|
732 mContentRect = metrics.mScrollableRect; |
|
733 SetFirstPaintViewport(scrollOffsetLayerPixels, |
|
734 geckoZoom, |
|
735 mContentRect); |
|
736 mIsFirstPaint = false; |
|
737 } else if (!metrics.mScrollableRect.IsEqualEdges(mContentRect)) { |
|
738 mContentRect = metrics.mScrollableRect; |
|
739 SetPageRect(mContentRect); |
|
740 } |
|
741 |
|
742 // We synchronise the viewport information with Java after sending the above |
|
743 // notifications, so that Java can take these into account in its response. |
|
744 // Calculate the absolute display port to send to Java |
|
745 LayerIntRect displayPort = RoundedToInt( |
|
746 (metrics.mCriticalDisplayPort.IsEmpty() |
|
747 ? metrics.mDisplayPort |
|
748 : metrics.mCriticalDisplayPort |
|
749 ) * geckoZoom); |
|
750 displayPort += scrollOffsetLayerPixels; |
|
751 |
|
752 LayerMargin fixedLayerMargins(0, 0, 0, 0); |
|
753 ScreenPoint offset(0, 0); |
|
754 |
|
755 // Ideally we would initialize userZoom to AsyncPanZoomController::CalculateResolution(metrics) |
|
756 // but this causes a reftest-ipc test to fail (see bug 883646 comment 27). The reason for this |
|
757 // appears to be that metrics.mZoom is poorly initialized in some scenarios. In these scenarios, |
|
758 // however, we can assume there is no async zooming in progress and so the following statement |
|
759 // works fine. |
|
760 CSSToScreenScale userZoom(metrics.mDevPixelsPerCSSPixel * metrics.mCumulativeResolution * LayerToScreenScale(1)); |
|
761 ScreenPoint userScroll = metrics.GetScrollOffset() * userZoom; |
|
762 SyncViewportInfo(displayPort, geckoZoom, mLayersUpdated, |
|
763 userScroll, userZoom, fixedLayerMargins, |
|
764 offset); |
|
765 mLayersUpdated = false; |
|
766 |
|
767 // Apply the render offset |
|
768 mLayerManager->GetCompositor()->SetScreenRenderOffset(offset); |
|
769 |
|
770 // Handle transformations for asynchronous panning and zooming. We determine the |
|
771 // zoom used by Gecko from the transformation set on the root layer, and we |
|
772 // determine the scroll offset used by Gecko from the frame metrics of the |
|
773 // primary scrollable layer. We compare this to the user zoom and scroll |
|
774 // offset in the view transform we obtained from Java in order to compute the |
|
775 // transformation we need to apply. |
|
776 LayerToScreenScale zoomAdjust = userZoom / geckoZoom; |
|
777 |
|
778 LayerPoint geckoScroll(0, 0); |
|
779 if (metrics.IsScrollable()) { |
|
780 geckoScroll = metrics.GetScrollOffset() * geckoZoom; |
|
781 } |
|
782 |
|
783 LayerPoint translation = (userScroll / zoomAdjust) - geckoScroll; |
|
784 treeTransform = gfx3DMatrix(ViewTransform(-translation, |
|
785 userZoom |
|
786 / metrics.mDevPixelsPerCSSPixel |
|
787 / metrics.GetParentResolution())); |
|
788 |
|
789 // The transform already takes the resolution scale into account. Since we |
|
790 // will apply the resolution scale again when computing the effective |
|
791 // transform, we must apply the inverse resolution scale here. |
|
792 gfx3DMatrix computedTransform = treeTransform * currentTransform; |
|
793 computedTransform.Scale(1.0f/container->GetPreXScale(), |
|
794 1.0f/container->GetPreYScale(), |
|
795 1); |
|
796 computedTransform.ScalePost(1.0f/container->GetPostXScale(), |
|
797 1.0f/container->GetPostYScale(), |
|
798 1); |
|
799 Matrix4x4 matrix; |
|
800 ToMatrix4x4(computedTransform, matrix); |
|
801 layerComposite->SetShadowTransform(matrix); |
|
802 NS_ASSERTION(!layerComposite->GetShadowTransformSetByAnimation(), |
|
803 "overwriting animated transform!"); |
|
804 |
|
805 // Apply resolution scaling to the old transform - the layer tree as it is |
|
806 // doesn't have the necessary transform to display correctly. |
|
807 oldTransform.Scale(metrics.mResolution.scale, metrics.mResolution.scale, 1); |
|
808 |
|
809 // Make sure that overscroll and under-zoom are represented in the old |
|
810 // transform so that fixed position content moves and scales accordingly. |
|
811 // These calculations will effectively scale and offset fixed position layers |
|
812 // in screen space when the compensatory transform is performed in |
|
813 // AlignFixedAndStickyLayers. |
|
814 ScreenRect contentScreenRect = mContentRect * userZoom; |
|
815 gfxPoint3D overscrollTranslation; |
|
816 if (userScroll.x < contentScreenRect.x) { |
|
817 overscrollTranslation.x = contentScreenRect.x - userScroll.x; |
|
818 } else if (userScroll.x + metrics.mCompositionBounds.width > contentScreenRect.XMost()) { |
|
819 overscrollTranslation.x = contentScreenRect.XMost() - |
|
820 (userScroll.x + metrics.mCompositionBounds.width); |
|
821 } |
|
822 if (userScroll.y < contentScreenRect.y) { |
|
823 overscrollTranslation.y = contentScreenRect.y - userScroll.y; |
|
824 } else if (userScroll.y + metrics.mCompositionBounds.height > contentScreenRect.YMost()) { |
|
825 overscrollTranslation.y = contentScreenRect.YMost() - |
|
826 (userScroll.y + metrics.mCompositionBounds.height); |
|
827 } |
|
828 oldTransform.Translate(overscrollTranslation.x, |
|
829 overscrollTranslation.y, |
|
830 overscrollTranslation.z); |
|
831 |
|
832 gfx::Size underZoomScale(1.0f, 1.0f); |
|
833 if (mContentRect.width * userZoom.scale < metrics.mCompositionBounds.width) { |
|
834 underZoomScale.width = (mContentRect.width * userZoom.scale) / |
|
835 metrics.mCompositionBounds.width; |
|
836 } |
|
837 if (mContentRect.height * userZoom.scale < metrics.mCompositionBounds.height) { |
|
838 underZoomScale.height = (mContentRect.height * userZoom.scale) / |
|
839 metrics.mCompositionBounds.height; |
|
840 } |
|
841 oldTransform.Scale(underZoomScale.width, underZoomScale.height, 1); |
|
842 |
|
843 // Make sure fixed position layers don't move away from their anchor points |
|
844 // when we're asynchronously panning or zooming |
|
845 AlignFixedAndStickyLayers(aLayer, aLayer, oldTransform, fixedLayerMargins); |
|
846 } |
|
847 |
|
848 bool |
|
849 AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame) |
|
850 { |
|
851 PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree"); |
|
852 Layer* root = mLayerManager->GetRoot(); |
|
853 if (!root) { |
|
854 return false; |
|
855 } |
|
856 |
|
857 // NB: we must sample animations *before* sampling pan/zoom |
|
858 // transforms. |
|
859 bool wantNextFrame = SampleAnimations(root, aCurrentFrame); |
|
860 |
|
861 // FIXME/bug 775437: unify this interface with the ~native-fennec |
|
862 // derived code |
|
863 // |
|
864 // Attempt to apply an async content transform to any layer that has |
|
865 // an async pan zoom controller (which means that it is rendered |
|
866 // async using Gecko). If this fails, fall back to transforming the |
|
867 // primary scrollable layer. "Failing" here means that we don't |
|
868 // find a frame that is async scrollable. Note that the fallback |
|
869 // code also includes Fennec which is rendered async. Fennec uses |
|
870 // its own platform-specific async rendering that is done partially |
|
871 // in Gecko and partially in Java. |
|
872 if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) { |
|
873 nsAutoTArray<Layer*,1> scrollableLayers; |
|
874 #ifdef MOZ_WIDGET_ANDROID |
|
875 scrollableLayers.AppendElement(mLayerManager->GetPrimaryScrollableLayer()); |
|
876 #else |
|
877 mLayerManager->GetScrollableLayers(scrollableLayers); |
|
878 #endif |
|
879 |
|
880 for (uint32_t i = 0; i < scrollableLayers.Length(); i++) { |
|
881 if (scrollableLayers[i]) { |
|
882 TransformScrollableLayer(scrollableLayers[i]); |
|
883 } |
|
884 } |
|
885 } |
|
886 |
|
887 return wantNextFrame; |
|
888 } |
|
889 |
|
890 void |
|
891 AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset, |
|
892 const CSSToLayerScale& aZoom, |
|
893 const CSSRect& aCssPageRect) |
|
894 { |
|
895 #ifdef MOZ_WIDGET_ANDROID |
|
896 AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect); |
|
897 #endif |
|
898 } |
|
899 |
|
900 void |
|
901 AsyncCompositionManager::SetPageRect(const CSSRect& aCssPageRect) |
|
902 { |
|
903 #ifdef MOZ_WIDGET_ANDROID |
|
904 AndroidBridge::Bridge()->SetPageRect(aCssPageRect); |
|
905 #endif |
|
906 } |
|
907 |
|
908 void |
|
909 AsyncCompositionManager::SyncViewportInfo(const LayerIntRect& aDisplayPort, |
|
910 const CSSToLayerScale& aDisplayResolution, |
|
911 bool aLayersUpdated, |
|
912 ScreenPoint& aScrollOffset, |
|
913 CSSToScreenScale& aScale, |
|
914 LayerMargin& aFixedLayerMargins, |
|
915 ScreenPoint& aOffset) |
|
916 { |
|
917 #ifdef MOZ_WIDGET_ANDROID |
|
918 AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort, |
|
919 aDisplayResolution, |
|
920 aLayersUpdated, |
|
921 aScrollOffset, |
|
922 aScale, |
|
923 aFixedLayerMargins, |
|
924 aOffset); |
|
925 #endif |
|
926 } |
|
927 |
|
928 void |
|
929 AsyncCompositionManager::SyncFrameMetrics(const ScreenPoint& aScrollOffset, |
|
930 float aZoom, |
|
931 const CSSRect& aCssPageRect, |
|
932 bool aLayersUpdated, |
|
933 const CSSRect& aDisplayPort, |
|
934 const CSSToLayerScale& aDisplayResolution, |
|
935 bool aIsFirstPaint, |
|
936 LayerMargin& aFixedLayerMargins, |
|
937 ScreenPoint& aOffset) |
|
938 { |
|
939 #ifdef MOZ_WIDGET_ANDROID |
|
940 AndroidBridge::Bridge()->SyncFrameMetrics(aScrollOffset, aZoom, aCssPageRect, |
|
941 aLayersUpdated, aDisplayPort, |
|
942 aDisplayResolution, aIsFirstPaint, |
|
943 aFixedLayerMargins, aOffset); |
|
944 #endif |
|
945 } |
|
946 |
|
947 } // namespace layers |
|
948 } // namespace mozilla |