|
1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
|
2 * This Source Code Form is subject to the terms of the Mozilla Public |
|
3 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
5 |
|
6 typedef float4 rect; |
|
7 |
|
8 float4x4 mLayerTransform : register(vs, c0); |
|
9 float4x4 mProjection : register(vs, c4); |
|
10 float4 vRenderTargetOffset : register(vs, c8); |
|
11 rect vTextureCoords : register(vs, c9); |
|
12 rect vLayerQuad : register(vs, c10); |
|
13 rect vMaskQuad : register(vs, c11); |
|
14 |
|
15 float4 fLayerColor : register(ps, c0); |
|
16 float fLayerOpacity : register(ps, c1); |
|
17 |
|
18 sampler sSampler : register(ps, s0); |
|
19 |
|
20 Texture2D tRGB; |
|
21 Texture2D tY; |
|
22 Texture2D tCb; |
|
23 Texture2D tCr; |
|
24 Texture2D tRGBWhite; |
|
25 // Always bind this to slot 3 since this is always available! |
|
26 Texture2D tMask : register(ps, t3); |
|
27 |
|
28 struct VS_INPUT { |
|
29 float2 vPosition : POSITION; |
|
30 }; |
|
31 |
|
32 struct VS_OUTPUT { |
|
33 float4 vPosition : SV_Position; |
|
34 float2 vTexCoords : TEXCOORD0; |
|
35 }; |
|
36 |
|
37 struct VS_MASK_OUTPUT { |
|
38 float4 vPosition : SV_Position; |
|
39 float2 vTexCoords : TEXCOORD0; |
|
40 float2 vMaskCoords : TEXCOORD1; |
|
41 }; |
|
42 |
|
43 struct VS_MASK_3D_OUTPUT { |
|
44 float4 vPosition : SV_Position; |
|
45 float2 vTexCoords : TEXCOORD0; |
|
46 float3 vMaskCoords : TEXCOORD1; |
|
47 }; |
|
48 |
|
49 struct PS_OUTPUT { |
|
50 float4 vSrc; |
|
51 float4 vAlpha; |
|
52 }; |
|
53 |
|
54 float2 TexCoords(const float2 aPosition) |
|
55 { |
|
56 float2 result; |
|
57 const float2 size = vTextureCoords.zw; |
|
58 result.x = vTextureCoords.x + aPosition.x * size.x; |
|
59 result.y = vTextureCoords.y + aPosition.y * size.y; |
|
60 |
|
61 return result; |
|
62 } |
|
63 |
|
64 SamplerState LayerTextureSamplerLinear |
|
65 { |
|
66 Filter = MIN_MAG_MIP_LINEAR; |
|
67 AddressU = Clamp; |
|
68 AddressV = Clamp; |
|
69 }; |
|
70 |
|
71 float4 TransformedPosition(float2 aInPosition) |
|
72 { |
|
73 // the current vertex's position on the quad |
|
74 float4 position = float4(0, 0, 0, 1); |
|
75 |
|
76 // We use 4 component floats to uniquely describe a rectangle, by the structure |
|
77 // of x, y, width, height. This allows us to easily generate the 4 corners |
|
78 // of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the |
|
79 // stream source for our LayerQuad vertex shader. We do this by doing: |
|
80 // Xout = x + Xin * width |
|
81 // Yout = y + Yin * height |
|
82 float2 size = vLayerQuad.zw; |
|
83 position.x = vLayerQuad.x + aInPosition.x * size.x; |
|
84 position.y = vLayerQuad.y + aInPosition.y * size.y; |
|
85 |
|
86 position = mul(mLayerTransform, position); |
|
87 |
|
88 return position; |
|
89 } |
|
90 |
|
91 float4 VertexPosition(float4 aTransformedPosition) |
|
92 { |
|
93 float4 result; |
|
94 result.w = aTransformedPosition.w; |
|
95 result.xyz = aTransformedPosition.xyz / aTransformedPosition.w; |
|
96 result -= vRenderTargetOffset; |
|
97 result.xyz *= result.w; |
|
98 |
|
99 result = mul(mProjection, result); |
|
100 |
|
101 return result; |
|
102 } |
|
103 |
|
104 VS_OUTPUT LayerQuadVS(const VS_INPUT aVertex) |
|
105 { |
|
106 VS_OUTPUT outp; |
|
107 float4 position = TransformedPosition(aVertex.vPosition); |
|
108 |
|
109 outp.vPosition = VertexPosition(position); |
|
110 outp.vTexCoords = TexCoords(aVertex.vPosition.xy); |
|
111 |
|
112 return outp; |
|
113 } |
|
114 |
|
115 VS_MASK_OUTPUT LayerQuadMaskVS(const VS_INPUT aVertex) |
|
116 { |
|
117 VS_MASK_OUTPUT outp; |
|
118 float4 position = TransformedPosition(aVertex.vPosition); |
|
119 |
|
120 outp.vPosition = VertexPosition(position); |
|
121 |
|
122 // calculate the position on the mask texture |
|
123 outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z; |
|
124 outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w; |
|
125 |
|
126 outp.vTexCoords = TexCoords(aVertex.vPosition.xy); |
|
127 |
|
128 return outp; |
|
129 } |
|
130 |
|
131 VS_MASK_3D_OUTPUT LayerQuadMask3DVS(const VS_INPUT aVertex) |
|
132 { |
|
133 VS_MASK_3D_OUTPUT outp; |
|
134 float4 position = TransformedPosition(aVertex.vPosition); |
|
135 |
|
136 outp.vPosition = VertexPosition(position); |
|
137 |
|
138 // calculate the position on the mask texture |
|
139 position.xyz /= position.w; |
|
140 outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z; |
|
141 outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w; |
|
142 // We use the w coord to do non-perspective correct interpolation: |
|
143 // the quad might be transformed in 3D, in which case it will have some |
|
144 // perspective. The graphics card will do perspective-correct interpolation |
|
145 // of the texture, but our mask is already transformed and so we require |
|
146 // linear interpolation. Therefore, we must correct the interpolation |
|
147 // ourselves, we do this by multiplying all coords by w here, and dividing by |
|
148 // w in the pixel shader (post-interpolation), we pass w in outp.vMaskCoords.z. |
|
149 // See http://en.wikipedia.org/wiki/Texture_mapping#Perspective_correctness |
|
150 outp.vMaskCoords.z = 1; |
|
151 outp.vMaskCoords *= position.w; |
|
152 |
|
153 outp.vTexCoords = TexCoords(aVertex.vPosition.xy); |
|
154 |
|
155 return outp; |
|
156 } |
|
157 |
|
158 float4 RGBAShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target |
|
159 { |
|
160 float2 maskCoords = aVertex.vMaskCoords; |
|
161 float mask = tMask.Sample(sSampler, maskCoords).a; |
|
162 return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity * mask; |
|
163 } |
|
164 |
|
165 float4 RGBAShaderMask3D(const VS_MASK_3D_OUTPUT aVertex) : SV_Target |
|
166 { |
|
167 float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z; |
|
168 float mask = tMask.Sample(LayerTextureSamplerLinear, maskCoords).a; |
|
169 return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity * mask; |
|
170 } |
|
171 |
|
172 float4 RGBShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target |
|
173 { |
|
174 float4 result; |
|
175 result = tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity; |
|
176 result.a = fLayerOpacity; |
|
177 |
|
178 float2 maskCoords = aVertex.vMaskCoords; |
|
179 float mask = tMask.Sample(sSampler, maskCoords).a; |
|
180 return result * mask; |
|
181 } |
|
182 |
|
183 float4 CalculateYCbCrColor(const float2 aTexCoords) |
|
184 { |
|
185 float4 yuv; |
|
186 float4 color; |
|
187 |
|
188 yuv.r = tCr.Sample(sSampler, aTexCoords).a - 0.5; |
|
189 yuv.g = tY.Sample(sSampler, aTexCoords).a - 0.0625; |
|
190 yuv.b = tCb.Sample(sSampler, aTexCoords).a - 0.5; |
|
191 |
|
192 color.r = yuv.g * 1.164 + yuv.r * 1.596; |
|
193 color.g = yuv.g * 1.164 - 0.813 * yuv.r - 0.391 * yuv.b; |
|
194 color.b = yuv.g * 1.164 + yuv.b * 2.018; |
|
195 color.a = 1.0f; |
|
196 |
|
197 return color; |
|
198 } |
|
199 |
|
200 float4 YCbCrShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target |
|
201 { |
|
202 float2 maskCoords = aVertex.vMaskCoords; |
|
203 float mask = tMask.Sample(sSampler, maskCoords).a; |
|
204 |
|
205 return CalculateYCbCrColor(aVertex.vTexCoords) * fLayerOpacity * mask; |
|
206 } |
|
207 |
|
208 PS_OUTPUT ComponentAlphaShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target |
|
209 { |
|
210 PS_OUTPUT result; |
|
211 |
|
212 result.vSrc = tRGB.Sample(sSampler, aVertex.vTexCoords); |
|
213 result.vAlpha = 1.0 - tRGBWhite.Sample(sSampler, aVertex.vTexCoords) + result.vSrc; |
|
214 result.vSrc.a = result.vAlpha.g; |
|
215 |
|
216 float2 maskCoords = aVertex.vMaskCoords; |
|
217 float mask = tMask.Sample(sSampler, maskCoords).a; |
|
218 result.vSrc *= fLayerOpacity * mask; |
|
219 result.vAlpha *= fLayerOpacity * mask; |
|
220 |
|
221 return result; |
|
222 } |
|
223 |
|
224 float4 SolidColorShaderMask(const VS_MASK_OUTPUT aVertex) : SV_Target |
|
225 { |
|
226 float2 maskCoords = aVertex.vMaskCoords; |
|
227 float mask = tMask.Sample(sSampler, maskCoords).a; |
|
228 return fLayerColor * mask; |
|
229 } |
|
230 |
|
231 /* |
|
232 * Un-masked versions |
|
233 ************************************************************* |
|
234 */ |
|
235 float4 RGBAShader(const VS_OUTPUT aVertex) : SV_Target |
|
236 { |
|
237 return tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity; |
|
238 } |
|
239 |
|
240 float4 RGBShader(const VS_OUTPUT aVertex) : SV_Target |
|
241 { |
|
242 float4 result; |
|
243 result = tRGB.Sample(sSampler, aVertex.vTexCoords) * fLayerOpacity; |
|
244 result.a = fLayerOpacity; |
|
245 return result; |
|
246 } |
|
247 |
|
248 float4 YCbCrShader(const VS_OUTPUT aVertex) : SV_Target |
|
249 { |
|
250 return CalculateYCbCrColor(aVertex.vTexCoords) * fLayerOpacity; |
|
251 } |
|
252 |
|
253 PS_OUTPUT ComponentAlphaShader(const VS_OUTPUT aVertex) : SV_Target |
|
254 { |
|
255 PS_OUTPUT result; |
|
256 |
|
257 result.vSrc = tRGB.Sample(sSampler, aVertex.vTexCoords); |
|
258 result.vAlpha = 1.0 - tRGBWhite.Sample(sSampler, aVertex.vTexCoords) + result.vSrc; |
|
259 result.vSrc.a = result.vAlpha.g; |
|
260 result.vSrc *= fLayerOpacity; |
|
261 result.vAlpha *= fLayerOpacity; |
|
262 return result; |
|
263 } |
|
264 |
|
265 float4 SolidColorShader(const VS_OUTPUT aVertex) : SV_Target |
|
266 { |
|
267 return fLayerColor; |
|
268 } |