|
1 /* vim: set ts=8 sw=8 noexpandtab: */ |
|
2 // qcms |
|
3 // Copyright (C) 2009 Mozilla Foundation |
|
4 // Copyright (C) 1998-2007 Marti Maria |
|
5 // |
|
6 // Permission is hereby granted, free of charge, to any person obtaining |
|
7 // a copy of this software and associated documentation files (the "Software"), |
|
8 // to deal in the Software without restriction, including without limitation |
|
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
|
10 // and/or sell copies of the Software, and to permit persons to whom the Software |
|
11 // is furnished to do so, subject to the following conditions: |
|
12 // |
|
13 // The above copyright notice and this permission notice shall be included in |
|
14 // all copies or substantial portions of the Software. |
|
15 // |
|
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
|
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
|
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
|
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
|
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
|
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
|
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
23 |
|
24 #include <math.h> |
|
25 #include <assert.h> |
|
26 #include <stdlib.h> |
|
27 #include <string.h> //memset |
|
28 #include "qcmsint.h" |
|
29 |
|
30 /* It might be worth having a unified limit on content controlled |
|
31 * allocation per profile. This would remove the need for many |
|
32 * of the arbitrary limits that we used */ |
|
33 |
|
34 typedef uint32_t be32; |
|
35 typedef uint16_t be16; |
|
36 |
|
37 static be32 cpu_to_be32(uint32_t v) |
|
38 { |
|
39 #ifdef IS_LITTLE_ENDIAN |
|
40 return ((v & 0xff) << 24) | ((v & 0xff00) << 8) | ((v & 0xff0000) >> 8) | ((v & 0xff000000) >> 24); |
|
41 #else |
|
42 return v; |
|
43 #endif |
|
44 } |
|
45 |
|
46 static be16 cpu_to_be16(uint16_t v) |
|
47 { |
|
48 #ifdef IS_LITTLE_ENDIAN |
|
49 return ((v & 0xff) << 8) | ((v & 0xff00) >> 8); |
|
50 #else |
|
51 return v; |
|
52 #endif |
|
53 } |
|
54 |
|
55 static uint32_t be32_to_cpu(be32 v) |
|
56 { |
|
57 #ifdef IS_LITTLE_ENDIAN |
|
58 return ((v & 0xff) << 24) | ((v & 0xff00) << 8) | ((v & 0xff0000) >> 8) | ((v & 0xff000000) >> 24); |
|
59 //return __builtin_bswap32(v); |
|
60 #else |
|
61 return v; |
|
62 #endif |
|
63 } |
|
64 |
|
65 static uint16_t be16_to_cpu(be16 v) |
|
66 { |
|
67 #ifdef IS_LITTLE_ENDIAN |
|
68 return ((v & 0xff) << 8) | ((v & 0xff00) >> 8); |
|
69 #else |
|
70 return v; |
|
71 #endif |
|
72 } |
|
73 |
|
74 /* a wrapper around the memory that we are going to parse |
|
75 * into a qcms_profile */ |
|
76 struct mem_source |
|
77 { |
|
78 const unsigned char *buf; |
|
79 size_t size; |
|
80 qcms_bool valid; |
|
81 const char *invalid_reason; |
|
82 }; |
|
83 |
|
84 static void invalid_source(struct mem_source *mem, const char *reason) |
|
85 { |
|
86 mem->valid = false; |
|
87 mem->invalid_reason = reason; |
|
88 } |
|
89 |
|
90 static uint32_t read_u32(struct mem_source *mem, size_t offset) |
|
91 { |
|
92 /* Subtract from mem->size instead of the more intuitive adding to offset. |
|
93 * This avoids overflowing offset. The subtraction is safe because |
|
94 * mem->size is guaranteed to be > 4 */ |
|
95 if (offset > mem->size - 4) { |
|
96 invalid_source(mem, "Invalid offset"); |
|
97 return 0; |
|
98 } else { |
|
99 be32 k; |
|
100 memcpy(&k, mem->buf + offset, sizeof(k)); |
|
101 return be32_to_cpu(k); |
|
102 } |
|
103 } |
|
104 |
|
105 static uint16_t read_u16(struct mem_source *mem, size_t offset) |
|
106 { |
|
107 if (offset > mem->size - 2) { |
|
108 invalid_source(mem, "Invalid offset"); |
|
109 return 0; |
|
110 } else { |
|
111 be16 k; |
|
112 memcpy(&k, mem->buf + offset, sizeof(k)); |
|
113 return be16_to_cpu(k); |
|
114 } |
|
115 } |
|
116 |
|
117 static uint8_t read_u8(struct mem_source *mem, size_t offset) |
|
118 { |
|
119 if (offset > mem->size - 1) { |
|
120 invalid_source(mem, "Invalid offset"); |
|
121 return 0; |
|
122 } else { |
|
123 return *(uint8_t*)(mem->buf + offset); |
|
124 } |
|
125 } |
|
126 |
|
127 static s15Fixed16Number read_s15Fixed16Number(struct mem_source *mem, size_t offset) |
|
128 { |
|
129 return read_u32(mem, offset); |
|
130 } |
|
131 |
|
132 static uInt8Number read_uInt8Number(struct mem_source *mem, size_t offset) |
|
133 { |
|
134 return read_u8(mem, offset); |
|
135 } |
|
136 |
|
137 static uInt16Number read_uInt16Number(struct mem_source *mem, size_t offset) |
|
138 { |
|
139 return read_u16(mem, offset); |
|
140 } |
|
141 |
|
142 static void write_u32(void *mem, size_t offset, uint32_t value) |
|
143 { |
|
144 *((uint32_t *)((unsigned char*)mem + offset)) = cpu_to_be32(value); |
|
145 } |
|
146 |
|
147 static void write_u16(void *mem, size_t offset, uint16_t value) |
|
148 { |
|
149 *((uint16_t *)((unsigned char*)mem + offset)) = cpu_to_be16(value); |
|
150 } |
|
151 |
|
152 #define BAD_VALUE_PROFILE NULL |
|
153 #define INVALID_PROFILE NULL |
|
154 #define NO_MEM_PROFILE NULL |
|
155 |
|
156 /* An arbitrary 4MB limit on profile size */ |
|
157 #define MAX_PROFILE_SIZE 1024*1024*4 |
|
158 #define MAX_TAG_COUNT 1024 |
|
159 |
|
160 static void check_CMM_type_signature(struct mem_source *src) |
|
161 { |
|
162 //uint32_t CMM_type_signature = read_u32(src, 4); |
|
163 //TODO: do the check? |
|
164 |
|
165 } |
|
166 |
|
167 static void check_profile_version(struct mem_source *src) |
|
168 { |
|
169 |
|
170 /* |
|
171 uint8_t major_revision = read_u8(src, 8 + 0); |
|
172 uint8_t minor_revision = read_u8(src, 8 + 1); |
|
173 */ |
|
174 uint8_t reserved1 = read_u8(src, 8 + 2); |
|
175 uint8_t reserved2 = read_u8(src, 8 + 3); |
|
176 /* Checking the version doesn't buy us anything |
|
177 if (major_revision != 0x4) { |
|
178 if (major_revision > 0x2) |
|
179 invalid_source(src, "Unsupported major revision"); |
|
180 if (minor_revision > 0x40) |
|
181 invalid_source(src, "Unsupported minor revision"); |
|
182 } |
|
183 */ |
|
184 if (reserved1 != 0 || reserved2 != 0) |
|
185 invalid_source(src, "Invalid reserved bytes"); |
|
186 } |
|
187 |
|
188 #define INPUT_DEVICE_PROFILE 0x73636e72 // 'scnr' |
|
189 #define DISPLAY_DEVICE_PROFILE 0x6d6e7472 // 'mntr' |
|
190 #define OUTPUT_DEVICE_PROFILE 0x70727472 // 'prtr' |
|
191 #define DEVICE_LINK_PROFILE 0x6c696e6b // 'link' |
|
192 #define COLOR_SPACE_PROFILE 0x73706163 // 'spac' |
|
193 #define ABSTRACT_PROFILE 0x61627374 // 'abst' |
|
194 #define NAMED_COLOR_PROFILE 0x6e6d636c // 'nmcl' |
|
195 |
|
196 static void read_class_signature(qcms_profile *profile, struct mem_source *mem) |
|
197 { |
|
198 profile->class = read_u32(mem, 12); |
|
199 switch (profile->class) { |
|
200 case DISPLAY_DEVICE_PROFILE: |
|
201 case INPUT_DEVICE_PROFILE: |
|
202 case OUTPUT_DEVICE_PROFILE: |
|
203 case COLOR_SPACE_PROFILE: |
|
204 break; |
|
205 default: |
|
206 invalid_source(mem, "Invalid Profile/Device Class signature"); |
|
207 } |
|
208 } |
|
209 |
|
210 static void read_color_space(qcms_profile *profile, struct mem_source *mem) |
|
211 { |
|
212 profile->color_space = read_u32(mem, 16); |
|
213 switch (profile->color_space) { |
|
214 case RGB_SIGNATURE: |
|
215 case GRAY_SIGNATURE: |
|
216 break; |
|
217 default: |
|
218 invalid_source(mem, "Unsupported colorspace"); |
|
219 } |
|
220 } |
|
221 |
|
222 static void read_pcs(qcms_profile *profile, struct mem_source *mem) |
|
223 { |
|
224 profile->pcs = read_u32(mem, 20); |
|
225 switch (profile->pcs) { |
|
226 case XYZ_SIGNATURE: |
|
227 case LAB_SIGNATURE: |
|
228 break; |
|
229 default: |
|
230 invalid_source(mem, "Unsupported pcs"); |
|
231 } |
|
232 } |
|
233 |
|
234 struct tag |
|
235 { |
|
236 uint32_t signature; |
|
237 uint32_t offset; |
|
238 uint32_t size; |
|
239 }; |
|
240 |
|
241 struct tag_index { |
|
242 uint32_t count; |
|
243 struct tag *tags; |
|
244 }; |
|
245 |
|
246 static struct tag_index read_tag_table(qcms_profile *profile, struct mem_source *mem) |
|
247 { |
|
248 struct tag_index index = {0, NULL}; |
|
249 unsigned int i; |
|
250 |
|
251 index.count = read_u32(mem, 128); |
|
252 if (index.count > MAX_TAG_COUNT) { |
|
253 invalid_source(mem, "max number of tags exceeded"); |
|
254 return index; |
|
255 } |
|
256 |
|
257 index.tags = malloc(sizeof(struct tag)*index.count); |
|
258 if (index.tags) { |
|
259 for (i = 0; i < index.count; i++) { |
|
260 index.tags[i].signature = read_u32(mem, 128 + 4 + 4*i*3); |
|
261 index.tags[i].offset = read_u32(mem, 128 + 4 + 4*i*3 + 4); |
|
262 index.tags[i].size = read_u32(mem, 128 + 4 + 4*i*3 + 8); |
|
263 } |
|
264 } |
|
265 |
|
266 return index; |
|
267 } |
|
268 |
|
269 // Checks a profile for obvious inconsistencies and returns |
|
270 // true if the profile looks bogus and should probably be |
|
271 // ignored. |
|
272 qcms_bool qcms_profile_is_bogus(qcms_profile *profile) |
|
273 { |
|
274 float sum[3], target[3], tolerance[3]; |
|
275 float rX, rY, rZ, gX, gY, gZ, bX, bY, bZ; |
|
276 bool negative; |
|
277 unsigned i; |
|
278 |
|
279 // We currently only check the bogosity of RGB profiles |
|
280 if (profile->color_space != RGB_SIGNATURE) |
|
281 return false; |
|
282 |
|
283 if (profile->A2B0 || profile->B2A0) |
|
284 return false; |
|
285 |
|
286 rX = s15Fixed16Number_to_float(profile->redColorant.X); |
|
287 rY = s15Fixed16Number_to_float(profile->redColorant.Y); |
|
288 rZ = s15Fixed16Number_to_float(profile->redColorant.Z); |
|
289 |
|
290 gX = s15Fixed16Number_to_float(profile->greenColorant.X); |
|
291 gY = s15Fixed16Number_to_float(profile->greenColorant.Y); |
|
292 gZ = s15Fixed16Number_to_float(profile->greenColorant.Z); |
|
293 |
|
294 bX = s15Fixed16Number_to_float(profile->blueColorant.X); |
|
295 bY = s15Fixed16Number_to_float(profile->blueColorant.Y); |
|
296 bZ = s15Fixed16Number_to_float(profile->blueColorant.Z); |
|
297 |
|
298 // Check if any of the XYZ values are negative (see mozilla bug 498245) |
|
299 // CIEXYZ tristimulus values cannot be negative according to the spec. |
|
300 negative = |
|
301 (rX < 0) || (rY < 0) || (rZ < 0) || |
|
302 (gX < 0) || (gY < 0) || (gZ < 0) || |
|
303 (bX < 0) || (bY < 0) || (bZ < 0); |
|
304 |
|
305 if (negative) |
|
306 return true; |
|
307 |
|
308 |
|
309 // Sum the values; they should add up to something close to white |
|
310 sum[0] = rX + gX + bX; |
|
311 sum[1] = rY + gY + bY; |
|
312 sum[2] = rZ + gZ + bZ; |
|
313 |
|
314 // Build our target vector (see mozilla bug 460629) |
|
315 target[0] = 0.96420; |
|
316 target[1] = 1.00000; |
|
317 target[2] = 0.82491; |
|
318 |
|
319 // Our tolerance vector - Recommended by Chris Murphy based on |
|
320 // conversion from the LAB space criterion of no more than 3 in any one |
|
321 // channel. This is similar to, but slightly more tolerant than Adobe's |
|
322 // criterion. |
|
323 tolerance[0] = 0.02; |
|
324 tolerance[1] = 0.02; |
|
325 tolerance[2] = 0.04; |
|
326 |
|
327 // Compare with our tolerance |
|
328 for (i = 0; i < 3; ++i) { |
|
329 if (!(((sum[i] - tolerance[i]) <= target[i]) && |
|
330 ((sum[i] + tolerance[i]) >= target[i]))) |
|
331 return true; |
|
332 } |
|
333 |
|
334 // All Good |
|
335 return false; |
|
336 } |
|
337 |
|
338 #define TAG_bXYZ 0x6258595a |
|
339 #define TAG_gXYZ 0x6758595a |
|
340 #define TAG_rXYZ 0x7258595a |
|
341 #define TAG_rTRC 0x72545243 |
|
342 #define TAG_bTRC 0x62545243 |
|
343 #define TAG_gTRC 0x67545243 |
|
344 #define TAG_kTRC 0x6b545243 |
|
345 #define TAG_A2B0 0x41324230 |
|
346 #define TAG_B2A0 0x42324130 |
|
347 #define TAG_CHAD 0x63686164 |
|
348 |
|
349 static struct tag *find_tag(struct tag_index index, uint32_t tag_id) |
|
350 { |
|
351 unsigned int i; |
|
352 struct tag *tag = NULL; |
|
353 for (i = 0; i < index.count; i++) { |
|
354 if (index.tags[i].signature == tag_id) { |
|
355 return &index.tags[i]; |
|
356 } |
|
357 } |
|
358 return tag; |
|
359 } |
|
360 |
|
361 #define XYZ_TYPE 0x58595a20 // 'XYZ ' |
|
362 #define CURVE_TYPE 0x63757276 // 'curv' |
|
363 #define PARAMETRIC_CURVE_TYPE 0x70617261 // 'para' |
|
364 #define LUT16_TYPE 0x6d667432 // 'mft2' |
|
365 #define LUT8_TYPE 0x6d667431 // 'mft1' |
|
366 #define LUT_MAB_TYPE 0x6d414220 // 'mAB ' |
|
367 #define LUT_MBA_TYPE 0x6d424120 // 'mBA ' |
|
368 #define CHROMATIC_TYPE 0x73663332 // 'sf32' |
|
369 |
|
370 static struct matrix read_tag_s15Fixed16ArrayType(struct mem_source *src, struct tag_index index, uint32_t tag_id) |
|
371 { |
|
372 struct tag *tag = find_tag(index, tag_id); |
|
373 struct matrix matrix; |
|
374 if (tag) { |
|
375 uint8_t i; |
|
376 uint32_t offset = tag->offset; |
|
377 uint32_t type = read_u32(src, offset); |
|
378 |
|
379 // Check mandatory type signature for s16Fixed16ArrayType |
|
380 if (type != CHROMATIC_TYPE) { |
|
381 invalid_source(src, "unexpected type, expected 'sf32'"); |
|
382 } |
|
383 |
|
384 for (i = 0; i < 9; i++) { |
|
385 matrix.m[i/3][i%3] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset+8+i*4)); |
|
386 } |
|
387 matrix.invalid = false; |
|
388 } else { |
|
389 matrix.invalid = true; |
|
390 invalid_source(src, "missing sf32tag"); |
|
391 } |
|
392 return matrix; |
|
393 } |
|
394 |
|
395 static struct XYZNumber read_tag_XYZType(struct mem_source *src, struct tag_index index, uint32_t tag_id) |
|
396 { |
|
397 struct XYZNumber num = {0, 0, 0}; |
|
398 struct tag *tag = find_tag(index, tag_id); |
|
399 if (tag) { |
|
400 uint32_t offset = tag->offset; |
|
401 |
|
402 uint32_t type = read_u32(src, offset); |
|
403 if (type != XYZ_TYPE) |
|
404 invalid_source(src, "unexpected type, expected XYZ"); |
|
405 num.X = read_s15Fixed16Number(src, offset+8); |
|
406 num.Y = read_s15Fixed16Number(src, offset+12); |
|
407 num.Z = read_s15Fixed16Number(src, offset+16); |
|
408 } else { |
|
409 invalid_source(src, "missing xyztag"); |
|
410 } |
|
411 return num; |
|
412 } |
|
413 |
|
414 // Read the tag at a given offset rather then the tag_index. |
|
415 // This method is used when reading mAB tags where nested curveType are |
|
416 // present that are not part of the tag_index. |
|
417 static struct curveType *read_curveType(struct mem_source *src, uint32_t offset, uint32_t *len) |
|
418 { |
|
419 static const uint32_t COUNT_TO_LENGTH[5] = {1, 3, 4, 5, 7}; |
|
420 struct curveType *curve = NULL; |
|
421 uint32_t type = read_u32(src, offset); |
|
422 uint32_t count; |
|
423 uint32_t i; |
|
424 |
|
425 if (type != CURVE_TYPE && type != PARAMETRIC_CURVE_TYPE) { |
|
426 invalid_source(src, "unexpected type, expected CURV or PARA"); |
|
427 return NULL; |
|
428 } |
|
429 |
|
430 if (type == CURVE_TYPE) { |
|
431 count = read_u32(src, offset+8); |
|
432 |
|
433 #define MAX_CURVE_ENTRIES 40000 //arbitrary |
|
434 if (count > MAX_CURVE_ENTRIES) { |
|
435 invalid_source(src, "curve size too large"); |
|
436 return NULL; |
|
437 } |
|
438 curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*count); |
|
439 if (!curve) |
|
440 return NULL; |
|
441 |
|
442 curve->count = count; |
|
443 curve->type = CURVE_TYPE; |
|
444 |
|
445 for (i=0; i<count; i++) { |
|
446 curve->data[i] = read_u16(src, offset + 12 + i*2); |
|
447 } |
|
448 *len = 12 + count * 2; |
|
449 } else { //PARAMETRIC_CURVE_TYPE |
|
450 count = read_u16(src, offset+8); |
|
451 |
|
452 if (count > 4) { |
|
453 invalid_source(src, "parametric function type not supported."); |
|
454 return NULL; |
|
455 } |
|
456 |
|
457 curve = malloc(sizeof(struct curveType)); |
|
458 if (!curve) |
|
459 return NULL; |
|
460 |
|
461 curve->count = count; |
|
462 curve->type = PARAMETRIC_CURVE_TYPE; |
|
463 |
|
464 for (i=0; i < COUNT_TO_LENGTH[count]; i++) { |
|
465 curve->parameter[i] = s15Fixed16Number_to_float(read_s15Fixed16Number(src, offset + 12 + i*4)); |
|
466 } |
|
467 *len = 12 + COUNT_TO_LENGTH[count] * 4; |
|
468 |
|
469 if ((count == 1 || count == 2)) { |
|
470 /* we have a type 1 or type 2 function that has a division by 'a' */ |
|
471 float a = curve->parameter[1]; |
|
472 if (a == 0.f) |
|
473 invalid_source(src, "parametricCurve definition causes division by zero."); |
|
474 } |
|
475 } |
|
476 |
|
477 return curve; |
|
478 } |
|
479 |
|
480 static struct curveType *read_tag_curveType(struct mem_source *src, struct tag_index index, uint32_t tag_id) |
|
481 { |
|
482 struct tag *tag = find_tag(index, tag_id); |
|
483 struct curveType *curve = NULL; |
|
484 if (tag) { |
|
485 uint32_t len; |
|
486 return read_curveType(src, tag->offset, &len); |
|
487 } else { |
|
488 invalid_source(src, "missing curvetag"); |
|
489 } |
|
490 |
|
491 return curve; |
|
492 } |
|
493 |
|
494 #define MAX_CLUT_SIZE 500000 // arbitrary |
|
495 #define MAX_CHANNELS 10 // arbitrary |
|
496 static void read_nested_curveType(struct mem_source *src, struct curveType *(*curveArray)[MAX_CHANNELS], uint8_t num_channels, uint32_t curve_offset) |
|
497 { |
|
498 uint32_t channel_offset = 0; |
|
499 int i; |
|
500 for (i = 0; i < num_channels; i++) { |
|
501 uint32_t tag_len; |
|
502 |
|
503 (*curveArray)[i] = read_curveType(src, curve_offset + channel_offset, &tag_len); |
|
504 if (!(*curveArray)[i]) { |
|
505 invalid_source(src, "invalid nested curveType curve"); |
|
506 } |
|
507 |
|
508 channel_offset += tag_len; |
|
509 // 4 byte aligned |
|
510 if ((tag_len % 4) != 0) |
|
511 channel_offset += 4 - (tag_len % 4); |
|
512 } |
|
513 |
|
514 } |
|
515 |
|
516 static void mAB_release(struct lutmABType *lut) |
|
517 { |
|
518 uint8_t i; |
|
519 |
|
520 for (i = 0; i < lut->num_in_channels; i++){ |
|
521 free(lut->a_curves[i]); |
|
522 } |
|
523 for (i = 0; i < lut->num_out_channels; i++){ |
|
524 free(lut->b_curves[i]); |
|
525 free(lut->m_curves[i]); |
|
526 } |
|
527 free(lut); |
|
528 } |
|
529 |
|
530 /* See section 10.10 for specs */ |
|
531 static struct lutmABType *read_tag_lutmABType(struct mem_source *src, struct tag_index index, uint32_t tag_id) |
|
532 { |
|
533 struct tag *tag = find_tag(index, tag_id); |
|
534 uint32_t offset = tag->offset; |
|
535 uint32_t a_curve_offset, b_curve_offset, m_curve_offset; |
|
536 uint32_t matrix_offset; |
|
537 uint32_t clut_offset; |
|
538 uint32_t clut_size = 1; |
|
539 uint8_t clut_precision; |
|
540 uint32_t type = read_u32(src, offset); |
|
541 uint8_t num_in_channels, num_out_channels; |
|
542 struct lutmABType *lut; |
|
543 uint32_t i; |
|
544 |
|
545 if (type != LUT_MAB_TYPE && type != LUT_MBA_TYPE) { |
|
546 return NULL; |
|
547 } |
|
548 |
|
549 num_in_channels = read_u8(src, offset + 8); |
|
550 num_out_channels = read_u8(src, offset + 8); |
|
551 if (num_in_channels > MAX_CHANNELS || num_out_channels > MAX_CHANNELS) |
|
552 return NULL; |
|
553 |
|
554 // We require 3in/out channels since we only support RGB->XYZ (or RGB->LAB) |
|
555 // XXX: If we remove this restriction make sure that the number of channels |
|
556 // is less or equal to the maximum number of mAB curves in qcmsint.h |
|
557 // also check for clut_size overflow. |
|
558 if (num_in_channels != 3 || num_out_channels != 3) |
|
559 return NULL; |
|
560 |
|
561 // some of this data is optional and is denoted by a zero offset |
|
562 // we also use this to track their existance |
|
563 a_curve_offset = read_u32(src, offset + 28); |
|
564 clut_offset = read_u32(src, offset + 24); |
|
565 m_curve_offset = read_u32(src, offset + 20); |
|
566 matrix_offset = read_u32(src, offset + 16); |
|
567 b_curve_offset = read_u32(src, offset + 12); |
|
568 |
|
569 // Convert offsets relative to the tag to relative to the profile |
|
570 // preserve zero for optional fields |
|
571 if (a_curve_offset) |
|
572 a_curve_offset += offset; |
|
573 if (clut_offset) |
|
574 clut_offset += offset; |
|
575 if (m_curve_offset) |
|
576 m_curve_offset += offset; |
|
577 if (matrix_offset) |
|
578 matrix_offset += offset; |
|
579 if (b_curve_offset) |
|
580 b_curve_offset += offset; |
|
581 |
|
582 if (clut_offset) { |
|
583 assert (num_in_channels == 3); |
|
584 // clut_size can not overflow since lg(256^num_in_channels) = 24 bits. |
|
585 for (i = 0; i < num_in_channels; i++) { |
|
586 clut_size *= read_u8(src, clut_offset + i); |
|
587 } |
|
588 } else { |
|
589 clut_size = 0; |
|
590 } |
|
591 |
|
592 // 24bits * 3 won't overflow either |
|
593 clut_size = clut_size * num_out_channels; |
|
594 |
|
595 if (clut_size > MAX_CLUT_SIZE) |
|
596 return NULL; |
|
597 |
|
598 lut = malloc(sizeof(struct lutmABType) + (clut_size) * sizeof(float)); |
|
599 if (!lut) |
|
600 return NULL; |
|
601 // we'll fill in the rest below |
|
602 memset(lut, 0, sizeof(struct lutmABType)); |
|
603 lut->clut_table = &lut->clut_table_data[0]; |
|
604 |
|
605 for (i = 0; i < num_in_channels; i++) { |
|
606 lut->num_grid_points[i] = read_u8(src, clut_offset + i); |
|
607 } |
|
608 |
|
609 // Reverse the processing of transformation elements for mBA type. |
|
610 lut->reversed = (type == LUT_MBA_TYPE); |
|
611 |
|
612 lut->num_in_channels = num_in_channels; |
|
613 lut->num_out_channels = num_out_channels; |
|
614 |
|
615 if (matrix_offset) { |
|
616 // read the matrix if we have it |
|
617 lut->e00 = read_s15Fixed16Number(src, matrix_offset+4*0); |
|
618 lut->e01 = read_s15Fixed16Number(src, matrix_offset+4*1); |
|
619 lut->e02 = read_s15Fixed16Number(src, matrix_offset+4*2); |
|
620 lut->e10 = read_s15Fixed16Number(src, matrix_offset+4*3); |
|
621 lut->e11 = read_s15Fixed16Number(src, matrix_offset+4*4); |
|
622 lut->e12 = read_s15Fixed16Number(src, matrix_offset+4*5); |
|
623 lut->e20 = read_s15Fixed16Number(src, matrix_offset+4*6); |
|
624 lut->e21 = read_s15Fixed16Number(src, matrix_offset+4*7); |
|
625 lut->e22 = read_s15Fixed16Number(src, matrix_offset+4*8); |
|
626 lut->e03 = read_s15Fixed16Number(src, matrix_offset+4*9); |
|
627 lut->e13 = read_s15Fixed16Number(src, matrix_offset+4*10); |
|
628 lut->e23 = read_s15Fixed16Number(src, matrix_offset+4*11); |
|
629 } |
|
630 |
|
631 if (a_curve_offset) { |
|
632 read_nested_curveType(src, &lut->a_curves, num_in_channels, a_curve_offset); |
|
633 } |
|
634 if (m_curve_offset) { |
|
635 read_nested_curveType(src, &lut->m_curves, num_out_channels, m_curve_offset); |
|
636 } |
|
637 if (b_curve_offset) { |
|
638 read_nested_curveType(src, &lut->b_curves, num_out_channels, b_curve_offset); |
|
639 } else { |
|
640 invalid_source(src, "B curves required"); |
|
641 } |
|
642 |
|
643 if (clut_offset) { |
|
644 clut_precision = read_u8(src, clut_offset + 16); |
|
645 if (clut_precision == 1) { |
|
646 for (i = 0; i < clut_size; i++) { |
|
647 lut->clut_table[i] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + 20 + i*1)); |
|
648 } |
|
649 } else if (clut_precision == 2) { |
|
650 for (i = 0; i < clut_size; i++) { |
|
651 lut->clut_table[i] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + 20 + i*2)); |
|
652 } |
|
653 } else { |
|
654 invalid_source(src, "Invalid clut precision"); |
|
655 } |
|
656 } |
|
657 |
|
658 if (!src->valid) { |
|
659 mAB_release(lut); |
|
660 return NULL; |
|
661 } |
|
662 |
|
663 return lut; |
|
664 } |
|
665 |
|
666 static struct lutType *read_tag_lutType(struct mem_source *src, struct tag_index index, uint32_t tag_id) |
|
667 { |
|
668 struct tag *tag = find_tag(index, tag_id); |
|
669 uint32_t offset = tag->offset; |
|
670 uint32_t type = read_u32(src, offset); |
|
671 uint16_t num_input_table_entries; |
|
672 uint16_t num_output_table_entries; |
|
673 uint8_t in_chan, grid_points, out_chan; |
|
674 uint32_t clut_offset, output_offset; |
|
675 uint32_t clut_size; |
|
676 size_t entry_size; |
|
677 struct lutType *lut; |
|
678 uint32_t i; |
|
679 |
|
680 /* I'm not sure why the spec specifies a fixed number of entries for LUT8 tables even though |
|
681 * they have room for the num_entries fields */ |
|
682 if (type == LUT8_TYPE) { |
|
683 num_input_table_entries = 256; |
|
684 num_output_table_entries = 256; |
|
685 entry_size = 1; |
|
686 } else if (type == LUT16_TYPE) { |
|
687 num_input_table_entries = read_u16(src, offset + 48); |
|
688 num_output_table_entries = read_u16(src, offset + 50); |
|
689 entry_size = 2; |
|
690 } else { |
|
691 assert(0); // the caller checks that this doesn't happen |
|
692 invalid_source(src, "Unexpected lut type"); |
|
693 return NULL; |
|
694 } |
|
695 |
|
696 in_chan = read_u8(src, offset + 8); |
|
697 out_chan = read_u8(src, offset + 9); |
|
698 grid_points = read_u8(src, offset + 10); |
|
699 |
|
700 clut_size = pow(grid_points, in_chan); |
|
701 if (clut_size > MAX_CLUT_SIZE) { |
|
702 return NULL; |
|
703 } |
|
704 |
|
705 if (in_chan != 3 || out_chan != 3) { |
|
706 return NULL; |
|
707 } |
|
708 |
|
709 lut = malloc(sizeof(struct lutType) + (num_input_table_entries * in_chan + clut_size*out_chan + num_output_table_entries * out_chan)*sizeof(float)); |
|
710 if (!lut) { |
|
711 return NULL; |
|
712 } |
|
713 |
|
714 /* compute the offsets of tables */ |
|
715 lut->input_table = &lut->table_data[0]; |
|
716 lut->clut_table = &lut->table_data[in_chan*num_input_table_entries]; |
|
717 lut->output_table = &lut->table_data[in_chan*num_input_table_entries + clut_size*out_chan]; |
|
718 |
|
719 lut->num_input_table_entries = num_input_table_entries; |
|
720 lut->num_output_table_entries = num_output_table_entries; |
|
721 lut->num_input_channels = read_u8(src, offset + 8); |
|
722 lut->num_output_channels = read_u8(src, offset + 9); |
|
723 lut->num_clut_grid_points = read_u8(src, offset + 10); |
|
724 lut->e00 = read_s15Fixed16Number(src, offset+12); |
|
725 lut->e01 = read_s15Fixed16Number(src, offset+16); |
|
726 lut->e02 = read_s15Fixed16Number(src, offset+20); |
|
727 lut->e10 = read_s15Fixed16Number(src, offset+24); |
|
728 lut->e11 = read_s15Fixed16Number(src, offset+28); |
|
729 lut->e12 = read_s15Fixed16Number(src, offset+32); |
|
730 lut->e20 = read_s15Fixed16Number(src, offset+36); |
|
731 lut->e21 = read_s15Fixed16Number(src, offset+40); |
|
732 lut->e22 = read_s15Fixed16Number(src, offset+44); |
|
733 |
|
734 for (i = 0; i < lut->num_input_table_entries * in_chan; i++) { |
|
735 if (type == LUT8_TYPE) { |
|
736 lut->input_table[i] = uInt8Number_to_float(read_uInt8Number(src, offset + 52 + i * entry_size)); |
|
737 } else { |
|
738 lut->input_table[i] = uInt16Number_to_float(read_uInt16Number(src, offset + 52 + i * entry_size)); |
|
739 } |
|
740 } |
|
741 |
|
742 clut_offset = offset + 52 + lut->num_input_table_entries * in_chan * entry_size; |
|
743 for (i = 0; i < clut_size * out_chan; i+=3) { |
|
744 if (type == LUT8_TYPE) { |
|
745 lut->clut_table[i+0] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 0)); |
|
746 lut->clut_table[i+1] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 1)); |
|
747 lut->clut_table[i+2] = uInt8Number_to_float(read_uInt8Number(src, clut_offset + i*entry_size + 2)); |
|
748 } else { |
|
749 lut->clut_table[i+0] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 0)); |
|
750 lut->clut_table[i+1] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 2)); |
|
751 lut->clut_table[i+2] = uInt16Number_to_float(read_uInt16Number(src, clut_offset + i*entry_size + 4)); |
|
752 } |
|
753 } |
|
754 |
|
755 output_offset = clut_offset + clut_size * out_chan * entry_size; |
|
756 for (i = 0; i < lut->num_output_table_entries * out_chan; i++) { |
|
757 if (type == LUT8_TYPE) { |
|
758 lut->output_table[i] = uInt8Number_to_float(read_uInt8Number(src, output_offset + i*entry_size)); |
|
759 } else { |
|
760 lut->output_table[i] = uInt16Number_to_float(read_uInt16Number(src, output_offset + i*entry_size)); |
|
761 } |
|
762 } |
|
763 |
|
764 return lut; |
|
765 } |
|
766 |
|
767 static void read_rendering_intent(qcms_profile *profile, struct mem_source *src) |
|
768 { |
|
769 profile->rendering_intent = read_u32(src, 64); |
|
770 switch (profile->rendering_intent) { |
|
771 case QCMS_INTENT_PERCEPTUAL: |
|
772 case QCMS_INTENT_SATURATION: |
|
773 case QCMS_INTENT_RELATIVE_COLORIMETRIC: |
|
774 case QCMS_INTENT_ABSOLUTE_COLORIMETRIC: |
|
775 break; |
|
776 default: |
|
777 invalid_source(src, "unknown rendering intent"); |
|
778 } |
|
779 } |
|
780 |
|
781 qcms_profile *qcms_profile_create(void) |
|
782 { |
|
783 return calloc(sizeof(qcms_profile), 1); |
|
784 } |
|
785 |
|
786 |
|
787 |
|
788 /* build sRGB gamma table */ |
|
789 /* based on cmsBuildParametricGamma() */ |
|
790 static uint16_t *build_sRGB_gamma_table(int num_entries) |
|
791 { |
|
792 int i; |
|
793 /* taken from lcms: Build_sRGBGamma() */ |
|
794 double gamma = 2.4; |
|
795 double a = 1./1.055; |
|
796 double b = 0.055/1.055; |
|
797 double c = 1./12.92; |
|
798 double d = 0.04045; |
|
799 |
|
800 uint16_t *table = malloc(sizeof(uint16_t) * num_entries); |
|
801 if (!table) |
|
802 return NULL; |
|
803 |
|
804 for (i=0; i<num_entries; i++) { |
|
805 double x = (double)i / (num_entries-1); |
|
806 double y, output; |
|
807 // IEC 61966-2.1 (sRGB) |
|
808 // Y = (aX + b)^Gamma | X >= d |
|
809 // Y = cX | X < d |
|
810 if (x >= d) { |
|
811 double e = (a*x + b); |
|
812 if (e > 0) |
|
813 y = pow(e, gamma); |
|
814 else |
|
815 y = 0; |
|
816 } else { |
|
817 y = c*x; |
|
818 } |
|
819 |
|
820 // Saturate -- this could likely move to a separate function |
|
821 output = y * 65535. + .5; |
|
822 if (output > 65535.) |
|
823 output = 65535; |
|
824 if (output < 0) |
|
825 output = 0; |
|
826 table[i] = (uint16_t)floor(output); |
|
827 } |
|
828 return table; |
|
829 } |
|
830 |
|
831 static struct curveType *curve_from_table(uint16_t *table, int num_entries) |
|
832 { |
|
833 struct curveType *curve; |
|
834 int i; |
|
835 curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries); |
|
836 if (!curve) |
|
837 return NULL; |
|
838 curve->type = CURVE_TYPE; |
|
839 curve->count = num_entries; |
|
840 for (i = 0; i < num_entries; i++) { |
|
841 curve->data[i] = table[i]; |
|
842 } |
|
843 return curve; |
|
844 } |
|
845 |
|
846 static uint16_t float_to_u8Fixed8Number(float a) |
|
847 { |
|
848 if (a > (255.f + 255.f/256)) |
|
849 return 0xffff; |
|
850 else if (a < 0.f) |
|
851 return 0; |
|
852 else |
|
853 return floorf(a*256.f + .5f); |
|
854 } |
|
855 |
|
856 static struct curveType *curve_from_gamma(float gamma) |
|
857 { |
|
858 struct curveType *curve; |
|
859 int num_entries = 1; |
|
860 curve = malloc(sizeof(struct curveType) + sizeof(uInt16Number)*num_entries); |
|
861 if (!curve) |
|
862 return NULL; |
|
863 curve->count = num_entries; |
|
864 curve->data[0] = float_to_u8Fixed8Number(gamma); |
|
865 curve->type = CURVE_TYPE; |
|
866 return curve; |
|
867 } |
|
868 |
|
869 //XXX: it would be nice if we had a way of ensuring |
|
870 // everything in a profile was initialized regardless of how it was created |
|
871 |
|
872 //XXX: should this also be taking a black_point? |
|
873 /* similar to CGColorSpaceCreateCalibratedRGB */ |
|
874 qcms_profile* qcms_profile_create_rgb_with_gamma( |
|
875 qcms_CIE_xyY white_point, |
|
876 qcms_CIE_xyYTRIPLE primaries, |
|
877 float gamma) |
|
878 { |
|
879 qcms_profile* profile = qcms_profile_create(); |
|
880 if (!profile) |
|
881 return NO_MEM_PROFILE; |
|
882 |
|
883 //XXX: should store the whitepoint |
|
884 if (!set_rgb_colorants(profile, white_point, primaries)) { |
|
885 qcms_profile_release(profile); |
|
886 return INVALID_PROFILE; |
|
887 } |
|
888 |
|
889 profile->redTRC = curve_from_gamma(gamma); |
|
890 profile->blueTRC = curve_from_gamma(gamma); |
|
891 profile->greenTRC = curve_from_gamma(gamma); |
|
892 |
|
893 if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) { |
|
894 qcms_profile_release(profile); |
|
895 return NO_MEM_PROFILE; |
|
896 } |
|
897 profile->class = DISPLAY_DEVICE_PROFILE; |
|
898 profile->rendering_intent = QCMS_INTENT_PERCEPTUAL; |
|
899 profile->color_space = RGB_SIGNATURE; |
|
900 return profile; |
|
901 } |
|
902 |
|
903 qcms_profile* qcms_profile_create_rgb_with_table( |
|
904 qcms_CIE_xyY white_point, |
|
905 qcms_CIE_xyYTRIPLE primaries, |
|
906 uint16_t *table, int num_entries) |
|
907 { |
|
908 qcms_profile* profile = qcms_profile_create(); |
|
909 if (!profile) |
|
910 return NO_MEM_PROFILE; |
|
911 |
|
912 //XXX: should store the whitepoint |
|
913 if (!set_rgb_colorants(profile, white_point, primaries)) { |
|
914 qcms_profile_release(profile); |
|
915 return INVALID_PROFILE; |
|
916 } |
|
917 |
|
918 profile->redTRC = curve_from_table(table, num_entries); |
|
919 profile->blueTRC = curve_from_table(table, num_entries); |
|
920 profile->greenTRC = curve_from_table(table, num_entries); |
|
921 |
|
922 if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) { |
|
923 qcms_profile_release(profile); |
|
924 return NO_MEM_PROFILE; |
|
925 } |
|
926 profile->class = DISPLAY_DEVICE_PROFILE; |
|
927 profile->rendering_intent = QCMS_INTENT_PERCEPTUAL; |
|
928 profile->color_space = RGB_SIGNATURE; |
|
929 return profile; |
|
930 } |
|
931 |
|
932 /* from lcms: cmsWhitePointFromTemp */ |
|
933 /* tempK must be >= 4000. and <= 25000. |
|
934 * Invalid values of tempK will return |
|
935 * (x,y,Y) = (-1.0, -1.0, -1.0) |
|
936 * similar to argyll: icx_DTEMP2XYZ() */ |
|
937 static qcms_CIE_xyY white_point_from_temp(int temp_K) |
|
938 { |
|
939 qcms_CIE_xyY white_point; |
|
940 double x, y; |
|
941 double T, T2, T3; |
|
942 // double M1, M2; |
|
943 |
|
944 // No optimization provided. |
|
945 T = temp_K; |
|
946 T2 = T*T; // Square |
|
947 T3 = T2*T; // Cube |
|
948 |
|
949 // For correlated color temperature (T) between 4000K and 7000K: |
|
950 if (T >= 4000. && T <= 7000.) { |
|
951 x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063; |
|
952 } else { |
|
953 // or for correlated color temperature (T) between 7000K and 25000K: |
|
954 if (T > 7000.0 && T <= 25000.0) { |
|
955 x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040; |
|
956 } else { |
|
957 // Invalid tempK |
|
958 white_point.x = -1.0; |
|
959 white_point.y = -1.0; |
|
960 white_point.Y = -1.0; |
|
961 |
|
962 assert(0 && "invalid temp"); |
|
963 |
|
964 return white_point; |
|
965 } |
|
966 } |
|
967 |
|
968 // Obtain y(x) |
|
969 |
|
970 y = -3.000*(x*x) + 2.870*x - 0.275; |
|
971 |
|
972 // wave factors (not used, but here for futures extensions) |
|
973 |
|
974 // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y); |
|
975 // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y); |
|
976 |
|
977 // Fill white_point struct |
|
978 white_point.x = x; |
|
979 white_point.y = y; |
|
980 white_point.Y = 1.0; |
|
981 |
|
982 return white_point; |
|
983 } |
|
984 |
|
985 qcms_profile* qcms_profile_sRGB(void) |
|
986 { |
|
987 qcms_profile *profile; |
|
988 uint16_t *table; |
|
989 |
|
990 qcms_CIE_xyYTRIPLE Rec709Primaries = { |
|
991 {0.6400, 0.3300, 1.0}, |
|
992 {0.3000, 0.6000, 1.0}, |
|
993 {0.1500, 0.0600, 1.0} |
|
994 }; |
|
995 qcms_CIE_xyY D65; |
|
996 |
|
997 D65 = white_point_from_temp(6504); |
|
998 |
|
999 table = build_sRGB_gamma_table(1024); |
|
1000 |
|
1001 if (!table) |
|
1002 return NO_MEM_PROFILE; |
|
1003 |
|
1004 profile = qcms_profile_create_rgb_with_table(D65, Rec709Primaries, table, 1024); |
|
1005 free(table); |
|
1006 return profile; |
|
1007 } |
|
1008 |
|
1009 |
|
1010 /* qcms_profile_from_memory does not hold a reference to the memory passed in */ |
|
1011 qcms_profile* qcms_profile_from_memory(const void *mem, size_t size) |
|
1012 { |
|
1013 uint32_t length; |
|
1014 struct mem_source source; |
|
1015 struct mem_source *src = &source; |
|
1016 struct tag_index index; |
|
1017 qcms_profile *profile; |
|
1018 |
|
1019 source.buf = mem; |
|
1020 source.size = size; |
|
1021 source.valid = true; |
|
1022 |
|
1023 if (size < 4) |
|
1024 return INVALID_PROFILE; |
|
1025 |
|
1026 length = read_u32(src, 0); |
|
1027 if (length <= size) { |
|
1028 // shrink the area that we can read if appropriate |
|
1029 source.size = length; |
|
1030 } else { |
|
1031 return INVALID_PROFILE; |
|
1032 } |
|
1033 |
|
1034 /* ensure that the profile size is sane so it's easier to reason about */ |
|
1035 if (source.size <= 64 || source.size >= MAX_PROFILE_SIZE) |
|
1036 return INVALID_PROFILE; |
|
1037 |
|
1038 profile = qcms_profile_create(); |
|
1039 if (!profile) |
|
1040 return NO_MEM_PROFILE; |
|
1041 |
|
1042 check_CMM_type_signature(src); |
|
1043 check_profile_version(src); |
|
1044 read_class_signature(profile, src); |
|
1045 read_rendering_intent(profile, src); |
|
1046 read_color_space(profile, src); |
|
1047 read_pcs(profile, src); |
|
1048 //TODO read rest of profile stuff |
|
1049 |
|
1050 if (!src->valid) |
|
1051 goto invalid_profile; |
|
1052 |
|
1053 index = read_tag_table(profile, src); |
|
1054 if (!src->valid || !index.tags) |
|
1055 goto invalid_tag_table; |
|
1056 |
|
1057 if (find_tag(index, TAG_CHAD)) { |
|
1058 profile->chromaticAdaption = read_tag_s15Fixed16ArrayType(src, index, TAG_CHAD); |
|
1059 } else { |
|
1060 profile->chromaticAdaption.invalid = true; //Signal the data is not present |
|
1061 } |
|
1062 |
|
1063 if (profile->class == DISPLAY_DEVICE_PROFILE || profile->class == INPUT_DEVICE_PROFILE || |
|
1064 profile->class == OUTPUT_DEVICE_PROFILE || profile->class == COLOR_SPACE_PROFILE) { |
|
1065 if (profile->color_space == RGB_SIGNATURE) { |
|
1066 if (find_tag(index, TAG_A2B0)) { |
|
1067 if (read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT8_TYPE || |
|
1068 read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT16_TYPE) { |
|
1069 profile->A2B0 = read_tag_lutType(src, index, TAG_A2B0); |
|
1070 } else if (read_u32(src, find_tag(index, TAG_A2B0)->offset) == LUT_MAB_TYPE) { |
|
1071 profile->mAB = read_tag_lutmABType(src, index, TAG_A2B0); |
|
1072 } |
|
1073 } |
|
1074 if (find_tag(index, TAG_B2A0)) { |
|
1075 if (read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT8_TYPE || |
|
1076 read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT16_TYPE) { |
|
1077 profile->B2A0 = read_tag_lutType(src, index, TAG_B2A0); |
|
1078 } else if (read_u32(src, find_tag(index, TAG_B2A0)->offset) == LUT_MBA_TYPE) { |
|
1079 profile->mBA = read_tag_lutmABType(src, index, TAG_B2A0); |
|
1080 } |
|
1081 } |
|
1082 if (find_tag(index, TAG_rXYZ) || !qcms_supports_iccv4) { |
|
1083 profile->redColorant = read_tag_XYZType(src, index, TAG_rXYZ); |
|
1084 profile->greenColorant = read_tag_XYZType(src, index, TAG_gXYZ); |
|
1085 profile->blueColorant = read_tag_XYZType(src, index, TAG_bXYZ); |
|
1086 } |
|
1087 |
|
1088 if (!src->valid) |
|
1089 goto invalid_tag_table; |
|
1090 |
|
1091 if (find_tag(index, TAG_rTRC) || !qcms_supports_iccv4) { |
|
1092 profile->redTRC = read_tag_curveType(src, index, TAG_rTRC); |
|
1093 profile->greenTRC = read_tag_curveType(src, index, TAG_gTRC); |
|
1094 profile->blueTRC = read_tag_curveType(src, index, TAG_bTRC); |
|
1095 |
|
1096 if (!profile->redTRC || !profile->blueTRC || !profile->greenTRC) |
|
1097 goto invalid_tag_table; |
|
1098 } |
|
1099 } else if (profile->color_space == GRAY_SIGNATURE) { |
|
1100 |
|
1101 profile->grayTRC = read_tag_curveType(src, index, TAG_kTRC); |
|
1102 if (!profile->grayTRC) |
|
1103 goto invalid_tag_table; |
|
1104 |
|
1105 } else { |
|
1106 assert(0 && "read_color_space protects against entering here"); |
|
1107 goto invalid_tag_table; |
|
1108 } |
|
1109 } else { |
|
1110 goto invalid_tag_table; |
|
1111 } |
|
1112 |
|
1113 if (!src->valid) |
|
1114 goto invalid_tag_table; |
|
1115 |
|
1116 free(index.tags); |
|
1117 |
|
1118 return profile; |
|
1119 |
|
1120 invalid_tag_table: |
|
1121 free(index.tags); |
|
1122 invalid_profile: |
|
1123 qcms_profile_release(profile); |
|
1124 return INVALID_PROFILE; |
|
1125 } |
|
1126 |
|
1127 qcms_intent qcms_profile_get_rendering_intent(qcms_profile *profile) |
|
1128 { |
|
1129 return profile->rendering_intent; |
|
1130 } |
|
1131 |
|
1132 icColorSpaceSignature |
|
1133 qcms_profile_get_color_space(qcms_profile *profile) |
|
1134 { |
|
1135 return profile->color_space; |
|
1136 } |
|
1137 |
|
1138 static void lut_release(struct lutType *lut) |
|
1139 { |
|
1140 free(lut); |
|
1141 } |
|
1142 |
|
1143 void qcms_profile_release(qcms_profile *profile) |
|
1144 { |
|
1145 if (profile->output_table_r) |
|
1146 precache_release(profile->output_table_r); |
|
1147 if (profile->output_table_g) |
|
1148 precache_release(profile->output_table_g); |
|
1149 if (profile->output_table_b) |
|
1150 precache_release(profile->output_table_b); |
|
1151 |
|
1152 if (profile->A2B0) |
|
1153 lut_release(profile->A2B0); |
|
1154 if (profile->B2A0) |
|
1155 lut_release(profile->B2A0); |
|
1156 |
|
1157 if (profile->mAB) |
|
1158 mAB_release(profile->mAB); |
|
1159 if (profile->mBA) |
|
1160 mAB_release(profile->mBA); |
|
1161 |
|
1162 free(profile->redTRC); |
|
1163 free(profile->blueTRC); |
|
1164 free(profile->greenTRC); |
|
1165 free(profile->grayTRC); |
|
1166 free(profile); |
|
1167 } |
|
1168 |
|
1169 |
|
1170 #include <stdio.h> |
|
1171 static void qcms_data_from_file(FILE *file, void **mem, size_t *size) |
|
1172 { |
|
1173 uint32_t length, remaining_length; |
|
1174 size_t read_length; |
|
1175 be32 length_be; |
|
1176 void *data; |
|
1177 |
|
1178 *mem = NULL; |
|
1179 *size = 0; |
|
1180 |
|
1181 if (fread(&length_be, 1, sizeof(length_be), file) != sizeof(length_be)) |
|
1182 return; |
|
1183 |
|
1184 length = be32_to_cpu(length_be); |
|
1185 if (length > MAX_PROFILE_SIZE || length < sizeof(length_be)) |
|
1186 return; |
|
1187 |
|
1188 /* allocate room for the entire profile */ |
|
1189 data = malloc(length); |
|
1190 if (!data) |
|
1191 return; |
|
1192 |
|
1193 /* copy in length to the front so that the buffer will contain the entire profile */ |
|
1194 *((be32*)data) = length_be; |
|
1195 remaining_length = length - sizeof(length_be); |
|
1196 |
|
1197 /* read the rest profile */ |
|
1198 read_length = fread((unsigned char*)data + sizeof(length_be), 1, remaining_length, file); |
|
1199 if (read_length != remaining_length) { |
|
1200 free(data); |
|
1201 return; |
|
1202 } |
|
1203 |
|
1204 /* successfully get the profile.*/ |
|
1205 *mem = data; |
|
1206 *size = length; |
|
1207 } |
|
1208 |
|
1209 qcms_profile* qcms_profile_from_file(FILE *file) |
|
1210 { |
|
1211 size_t length; |
|
1212 qcms_profile *profile; |
|
1213 void *data; |
|
1214 |
|
1215 qcms_data_from_file(file, &data, &length); |
|
1216 if ((data == NULL) || (length == 0)) |
|
1217 return INVALID_PROFILE; |
|
1218 |
|
1219 profile = qcms_profile_from_memory(data, length); |
|
1220 free(data); |
|
1221 return profile; |
|
1222 } |
|
1223 |
|
1224 qcms_profile* qcms_profile_from_path(const char *path) |
|
1225 { |
|
1226 qcms_profile *profile = NULL; |
|
1227 FILE *file = fopen(path, "rb"); |
|
1228 if (file) { |
|
1229 profile = qcms_profile_from_file(file); |
|
1230 fclose(file); |
|
1231 } |
|
1232 return profile; |
|
1233 } |
|
1234 |
|
1235 void qcms_data_from_path(const char *path, void **mem, size_t *size) |
|
1236 { |
|
1237 FILE *file = NULL; |
|
1238 *mem = NULL; |
|
1239 *size = 0; |
|
1240 |
|
1241 file = fopen(path, "rb"); |
|
1242 if (file) { |
|
1243 qcms_data_from_file(file, mem, size); |
|
1244 fclose(file); |
|
1245 } |
|
1246 } |
|
1247 |
|
1248 #ifdef _WIN32 |
|
1249 /* Unicode path version */ |
|
1250 qcms_profile* qcms_profile_from_unicode_path(const wchar_t *path) |
|
1251 { |
|
1252 qcms_profile *profile = NULL; |
|
1253 FILE *file = _wfopen(path, L"rb"); |
|
1254 if (file) { |
|
1255 profile = qcms_profile_from_file(file); |
|
1256 fclose(file); |
|
1257 } |
|
1258 return profile; |
|
1259 } |
|
1260 |
|
1261 void qcms_data_from_unicode_path(const wchar_t *path, void **mem, size_t *size) |
|
1262 { |
|
1263 FILE *file = NULL; |
|
1264 *mem = NULL; |
|
1265 *size = 0; |
|
1266 |
|
1267 file = _wfopen(path, L"rb"); |
|
1268 if (file) { |
|
1269 qcms_data_from_file(file, mem, size); |
|
1270 fclose(file); |
|
1271 } |
|
1272 } |
|
1273 #endif |
|
1274 |
|
1275 /* |
|
1276 * This function constructs an ICC profile memory with given header and tag data, |
|
1277 * which can be read via qcms_profile_from_memory(). that means, we must satisfy |
|
1278 * the profiler header type check (which seems not complete till now) and proper |
|
1279 * information to read data from the tag table and tag data elements memory. |
|
1280 * |
|
1281 * To construct a valid ICC profile, its divided into three steps : |
|
1282 * (1) construct the r/g/bXYZ part |
|
1283 * (2) construct the r/g/bTRC part |
|
1284 * (3) construct the profile header |
|
1285 * this is a hardcode step just for "create_rgb_with_gamma", it is the only |
|
1286 * requirement till now, maybe we can make this method more general in future, |
|
1287 * |
|
1288 * NOTE : some of the parameters below are hardcode, please refer to the ICC documentation. |
|
1289 */ |
|
1290 #define ICC_PROFILE_HEADER_LENGTH 128 |
|
1291 void qcms_data_create_rgb_with_gamma(qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries, float gamma, void **mem, size_t *size) |
|
1292 { |
|
1293 uint32_t length, offset, index, xyz_count, trc_count; |
|
1294 size_t tag_table_offset, tag_data_offset; |
|
1295 void *data; |
|
1296 struct matrix colorants; |
|
1297 |
|
1298 uint32_t TAG_XYZ[3] = {TAG_rXYZ, TAG_gXYZ, TAG_bXYZ}; |
|
1299 uint32_t TAG_TRC[3] = {TAG_rTRC, TAG_gTRC, TAG_bTRC}; |
|
1300 |
|
1301 if ((mem == NULL) || (size == NULL)) |
|
1302 return; |
|
1303 |
|
1304 *mem = NULL; |
|
1305 *size = 0; |
|
1306 |
|
1307 /* |
|
1308 * total length = icc profile header(128) + tag count(4) + |
|
1309 * (tag table item (12) * total tag (6 = 3 rTRC + 3 rXYZ)) + rTRC elements data (3 * 20) |
|
1310 * + rXYZ elements data (3*16), and all tag data elements must start at the 4-byte boundary. |
|
1311 */ |
|
1312 xyz_count = 3; // rXYZ, gXYZ, bXYZ |
|
1313 trc_count = 3; // rTRC, gTRC, bTRC |
|
1314 length = ICC_PROFILE_HEADER_LENGTH + 4 + (12 * (xyz_count + trc_count)) + (xyz_count * 20) + (trc_count * 16); |
|
1315 |
|
1316 // reserve the total memory. |
|
1317 data = malloc(length); |
|
1318 if (!data) |
|
1319 return; |
|
1320 memset(data, 0, length); |
|
1321 |
|
1322 // Part1 : write rXYZ, gXYZ and bXYZ |
|
1323 if (!get_rgb_colorants(&colorants, white_point, primaries)) { |
|
1324 free(data); |
|
1325 return; |
|
1326 } |
|
1327 |
|
1328 // the position of first tag's signature in tag table |
|
1329 tag_table_offset = ICC_PROFILE_HEADER_LENGTH + 4; |
|
1330 tag_data_offset = ICC_PROFILE_HEADER_LENGTH + 4 + |
|
1331 (12 * (xyz_count + trc_count)); // the start of tag data elements. |
|
1332 |
|
1333 for (index = 0; index < xyz_count; ++index) { |
|
1334 // tag table |
|
1335 write_u32(data, tag_table_offset, TAG_XYZ[index]); |
|
1336 write_u32(data, tag_table_offset+4, tag_data_offset); |
|
1337 write_u32(data, tag_table_offset+8, 20); // 20 bytes per TAG_(r/g/b)XYZ tag element |
|
1338 |
|
1339 // tag data element |
|
1340 write_u32(data, tag_data_offset, XYZ_TYPE); |
|
1341 // reserved 4 bytes. |
|
1342 write_u32(data, tag_data_offset+8, double_to_s15Fixed16Number(colorants.m[0][index])); |
|
1343 write_u32(data, tag_data_offset+12, double_to_s15Fixed16Number(colorants.m[1][index])); |
|
1344 write_u32(data, tag_data_offset+16, double_to_s15Fixed16Number(colorants.m[2][index])); |
|
1345 |
|
1346 tag_table_offset += 12; |
|
1347 tag_data_offset += 20; |
|
1348 } |
|
1349 |
|
1350 // Part2 : write rTRC, gTRC and bTRC |
|
1351 for (index = 0; index < trc_count; ++index) { |
|
1352 // tag table |
|
1353 write_u32(data, tag_table_offset, TAG_TRC[index]); |
|
1354 write_u32(data, tag_table_offset+4, tag_data_offset); |
|
1355 write_u32(data, tag_table_offset+8, 14); // 14 bytes per TAG_(r/g/b)TRC element |
|
1356 |
|
1357 // tag data element |
|
1358 write_u32(data, tag_data_offset, CURVE_TYPE); |
|
1359 // reserved 4 bytes. |
|
1360 write_u32(data, tag_data_offset+8, 1); // count |
|
1361 write_u16(data, tag_data_offset+12, float_to_u8Fixed8Number(gamma)); |
|
1362 |
|
1363 tag_table_offset += 12; |
|
1364 tag_data_offset += 16; |
|
1365 } |
|
1366 |
|
1367 /* Part3 : write profile header |
|
1368 * |
|
1369 * Important header fields are left empty. This generates a profile for internal use only. |
|
1370 * We should be generating: Profile version (04300000h), Profile signature (acsp), |
|
1371 * PCS illumiant field. Likewise mandatory profile tags are omitted. |
|
1372 */ |
|
1373 write_u32(data, 0, length); // the total length of this memory |
|
1374 write_u32(data, 12, DISPLAY_DEVICE_PROFILE); // profile->class |
|
1375 write_u32(data, 16, RGB_SIGNATURE); // profile->color_space |
|
1376 write_u32(data, 20, XYZ_SIGNATURE); // profile->pcs |
|
1377 write_u32(data, 64, QCMS_INTENT_PERCEPTUAL); // profile->rendering_intent |
|
1378 |
|
1379 write_u32(data, ICC_PROFILE_HEADER_LENGTH, 6); // total tag count |
|
1380 |
|
1381 // prepare the result |
|
1382 *mem = data; |
|
1383 *size = length; |
|
1384 } |