|
1 /* |
|
2 * Copyright 2006 The Android Open Source Project |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license that can be |
|
5 * found in the LICENSE file. |
|
6 */ |
|
7 |
|
8 #ifndef SkRandom_DEFINED |
|
9 #define SkRandom_DEFINED |
|
10 |
|
11 #include "SkScalar.h" |
|
12 |
|
13 /** \class SkLCGRandom |
|
14 |
|
15 Utility class that implements pseudo random 32bit numbers using a fast |
|
16 linear equation. Unlike rand(), this class holds its own seed (initially |
|
17 set to 0), so that multiple instances can be used with no side-effects. |
|
18 */ |
|
19 class SkLCGRandom { |
|
20 public: |
|
21 SkLCGRandom() : fSeed(0) {} |
|
22 SkLCGRandom(uint32_t seed) : fSeed(seed) {} |
|
23 |
|
24 /** Return the next pseudo random number as an unsigned 32bit value. |
|
25 */ |
|
26 uint32_t nextU() { uint32_t r = fSeed * kMul + kAdd; fSeed = r; return r; } |
|
27 |
|
28 /** Return the next pseudo random number as a signed 32bit value. |
|
29 */ |
|
30 int32_t nextS() { return (int32_t)this->nextU(); } |
|
31 |
|
32 /** Return the next pseudo random number as an unsigned 16bit value. |
|
33 */ |
|
34 U16CPU nextU16() { return this->nextU() >> 16; } |
|
35 |
|
36 /** Return the next pseudo random number as a signed 16bit value. |
|
37 */ |
|
38 S16CPU nextS16() { return this->nextS() >> 16; } |
|
39 |
|
40 /** |
|
41 * Returns value [0...1) as a float |
|
42 */ |
|
43 float nextF() { |
|
44 // const is 1 / (2^32 - 1) |
|
45 return (float)(this->nextU() * 2.32830644e-10); |
|
46 } |
|
47 |
|
48 /** |
|
49 * Returns value [min...max) as a float |
|
50 */ |
|
51 float nextRangeF(float min, float max) { |
|
52 return min + this->nextF() * (max - min); |
|
53 } |
|
54 |
|
55 /** Return the next pseudo random number, as an unsigned value of |
|
56 at most bitCount bits. |
|
57 @param bitCount The maximum number of bits to be returned |
|
58 */ |
|
59 uint32_t nextBits(unsigned bitCount) { |
|
60 SkASSERT(bitCount > 0 && bitCount <= 32); |
|
61 return this->nextU() >> (32 - bitCount); |
|
62 } |
|
63 |
|
64 /** Return the next pseudo random unsigned number, mapped to lie within |
|
65 [min, max] inclusive. |
|
66 */ |
|
67 uint32_t nextRangeU(uint32_t min, uint32_t max) { |
|
68 SkASSERT(min <= max); |
|
69 uint32_t range = max - min + 1; |
|
70 if (0 == range) { |
|
71 return this->nextU(); |
|
72 } else { |
|
73 return min + this->nextU() % range; |
|
74 } |
|
75 } |
|
76 |
|
77 /** Return the next pseudo random unsigned number, mapped to lie within |
|
78 [0, count). |
|
79 */ |
|
80 uint32_t nextULessThan(uint32_t count) { |
|
81 SkASSERT(count > 0); |
|
82 return this->nextRangeU(0, count - 1); |
|
83 } |
|
84 |
|
85 /** Return the next pseudo random number expressed as an unsigned SkFixed |
|
86 in the range [0..SK_Fixed1). |
|
87 */ |
|
88 SkFixed nextUFixed1() { return this->nextU() >> 16; } |
|
89 |
|
90 /** Return the next pseudo random number expressed as a signed SkFixed |
|
91 in the range (-SK_Fixed1..SK_Fixed1). |
|
92 */ |
|
93 SkFixed nextSFixed1() { return this->nextS() >> 15; } |
|
94 |
|
95 /** Return the next pseudo random number expressed as a SkScalar |
|
96 in the range [0..SK_Scalar1). |
|
97 */ |
|
98 SkScalar nextUScalar1() { return SkFixedToScalar(this->nextUFixed1()); } |
|
99 |
|
100 /** Return the next pseudo random number expressed as a SkScalar |
|
101 in the range [min..max). |
|
102 */ |
|
103 SkScalar nextRangeScalar(SkScalar min, SkScalar max) { |
|
104 return this->nextUScalar1() * (max - min) + min; |
|
105 } |
|
106 |
|
107 /** Return the next pseudo random number expressed as a SkScalar |
|
108 in the range (-SK_Scalar1..SK_Scalar1). |
|
109 */ |
|
110 SkScalar nextSScalar1() { return SkFixedToScalar(this->nextSFixed1()); } |
|
111 |
|
112 /** Return the next pseudo random number as a bool. |
|
113 */ |
|
114 bool nextBool() { return this->nextU() >= 0x80000000; } |
|
115 |
|
116 /** A biased version of nextBool(). |
|
117 */ |
|
118 bool nextBiasedBool(SkScalar fractionTrue) { |
|
119 SkASSERT(fractionTrue >= 0 && fractionTrue <= SK_Scalar1); |
|
120 return this->nextUScalar1() <= fractionTrue; |
|
121 } |
|
122 |
|
123 /** |
|
124 * Return the next pseudo random number as a signed 64bit value. |
|
125 */ |
|
126 int64_t next64() { |
|
127 int64_t hi = this->nextS(); |
|
128 return (hi << 32) | this->nextU(); |
|
129 } |
|
130 |
|
131 /** |
|
132 * Return the current seed. This allows the caller to later reset to the |
|
133 * same seed (using setSeed) so it can generate the same sequence. |
|
134 */ |
|
135 int32_t getSeed() const { return fSeed; } |
|
136 |
|
137 /** Set the seed of the random object. The seed is initialized to 0 when the |
|
138 object is first created, and is updated each time the next pseudo random |
|
139 number is requested. |
|
140 */ |
|
141 void setSeed(int32_t seed) { fSeed = (uint32_t)seed; } |
|
142 |
|
143 private: |
|
144 // See "Numerical Recipes in C", 1992 page 284 for these constants |
|
145 enum { |
|
146 kMul = 1664525, |
|
147 kAdd = 1013904223 |
|
148 }; |
|
149 uint32_t fSeed; |
|
150 }; |
|
151 |
|
152 /** \class SkRandom |
|
153 |
|
154 Utility class that implements pseudo random 32bit numbers using Marsaglia's |
|
155 multiply-with-carry "mother of all" algorithm. Unlike rand(), this class holds |
|
156 its own state, so that multiple instances can be used with no side-effects. |
|
157 |
|
158 Has a large period and all bits are well-randomized. |
|
159 */ |
|
160 class SkRandom { |
|
161 public: |
|
162 SkRandom() { init(0); } |
|
163 SkRandom(uint32_t seed) { init(seed); } |
|
164 SkRandom(const SkRandom& rand) : fK(rand.fK), fJ(rand.fJ) {} |
|
165 |
|
166 SkRandom& operator=(const SkRandom& rand) { |
|
167 fK = rand.fK; |
|
168 fJ = rand.fJ; |
|
169 |
|
170 return *this; |
|
171 } |
|
172 |
|
173 /** Return the next pseudo random number as an unsigned 32bit value. |
|
174 */ |
|
175 uint32_t nextU() { |
|
176 fK = kKMul*(fK & 0xffff) + (fK >> 16); |
|
177 fJ = kJMul*(fJ & 0xffff) + (fJ >> 16); |
|
178 return (((fK << 16) | (fK >> 16)) + fJ); |
|
179 } |
|
180 |
|
181 /** Return the next pseudo random number as a signed 32bit value. |
|
182 */ |
|
183 int32_t nextS() { return (int32_t)this->nextU(); } |
|
184 |
|
185 /** Return the next pseudo random number as an unsigned 16bit value. |
|
186 */ |
|
187 U16CPU nextU16() { return this->nextU() >> 16; } |
|
188 |
|
189 /** Return the next pseudo random number as a signed 16bit value. |
|
190 */ |
|
191 S16CPU nextS16() { return this->nextS() >> 16; } |
|
192 |
|
193 /** |
|
194 * Returns value [0...1) as an IEEE float |
|
195 */ |
|
196 float nextF() { |
|
197 unsigned int floatint = 0x3f800000 | (this->nextU() >> 9); |
|
198 float f = SkBits2Float(floatint) - 1.0f; |
|
199 return f; |
|
200 } |
|
201 |
|
202 /** |
|
203 * Returns value [min...max) as a float |
|
204 */ |
|
205 float nextRangeF(float min, float max) { |
|
206 return min + this->nextF() * (max - min); |
|
207 } |
|
208 |
|
209 /** Return the next pseudo random number, as an unsigned value of |
|
210 at most bitCount bits. |
|
211 @param bitCount The maximum number of bits to be returned |
|
212 */ |
|
213 uint32_t nextBits(unsigned bitCount) { |
|
214 SkASSERT(bitCount > 0 && bitCount <= 32); |
|
215 return this->nextU() >> (32 - bitCount); |
|
216 } |
|
217 |
|
218 /** Return the next pseudo random unsigned number, mapped to lie within |
|
219 [min, max] inclusive. |
|
220 */ |
|
221 uint32_t nextRangeU(uint32_t min, uint32_t max) { |
|
222 SkASSERT(min <= max); |
|
223 uint32_t range = max - min + 1; |
|
224 if (0 == range) { |
|
225 return this->nextU(); |
|
226 } else { |
|
227 return min + this->nextU() % range; |
|
228 } |
|
229 } |
|
230 |
|
231 /** Return the next pseudo random unsigned number, mapped to lie within |
|
232 [0, count). |
|
233 */ |
|
234 uint32_t nextULessThan(uint32_t count) { |
|
235 SkASSERT(count > 0); |
|
236 return this->nextRangeU(0, count - 1); |
|
237 } |
|
238 |
|
239 /** Return the next pseudo random number expressed as an unsigned SkFixed |
|
240 in the range [0..SK_Fixed1). |
|
241 */ |
|
242 SkFixed nextUFixed1() { return this->nextU() >> 16; } |
|
243 |
|
244 /** Return the next pseudo random number expressed as a signed SkFixed |
|
245 in the range (-SK_Fixed1..SK_Fixed1). |
|
246 */ |
|
247 SkFixed nextSFixed1() { return this->nextS() >> 15; } |
|
248 |
|
249 /** Return the next pseudo random number expressed as a SkScalar |
|
250 in the range [0..SK_Scalar1). |
|
251 */ |
|
252 SkScalar nextUScalar1() { return SkFixedToScalar(this->nextUFixed1()); } |
|
253 |
|
254 /** Return the next pseudo random number expressed as a SkScalar |
|
255 in the range [min..max). |
|
256 */ |
|
257 SkScalar nextRangeScalar(SkScalar min, SkScalar max) { |
|
258 return this->nextUScalar1() * (max - min) + min; |
|
259 } |
|
260 |
|
261 /** Return the next pseudo random number expressed as a SkScalar |
|
262 in the range (-SK_Scalar1..SK_Scalar1). |
|
263 */ |
|
264 SkScalar nextSScalar1() { return SkFixedToScalar(this->nextSFixed1()); } |
|
265 |
|
266 /** Return the next pseudo random number as a bool. |
|
267 */ |
|
268 bool nextBool() { return this->nextU() >= 0x80000000; } |
|
269 |
|
270 /** A biased version of nextBool(). |
|
271 */ |
|
272 bool nextBiasedBool(SkScalar fractionTrue) { |
|
273 SkASSERT(fractionTrue >= 0 && fractionTrue <= SK_Scalar1); |
|
274 return this->nextUScalar1() <= fractionTrue; |
|
275 } |
|
276 |
|
277 /** |
|
278 * Return the next pseudo random number as a signed 64bit value. |
|
279 */ |
|
280 int64_t next64() { |
|
281 int64_t hi = this->nextS(); |
|
282 return (hi << 32) | this->nextU(); |
|
283 } |
|
284 |
|
285 /** Reset the random object. |
|
286 */ |
|
287 void setSeed(uint32_t seed) { init(seed); } |
|
288 |
|
289 private: |
|
290 // Initialize state variables with LCG. |
|
291 // We must ensure that both J and K are non-zero, otherwise the |
|
292 // multiply-with-carry step will forevermore return zero. |
|
293 void init(uint32_t seed) { |
|
294 fK = NextLCG(seed); |
|
295 if (0 == fK) { |
|
296 fK = NextLCG(fK); |
|
297 } |
|
298 fJ = NextLCG(fK); |
|
299 if (0 == fJ) { |
|
300 fJ = NextLCG(fJ); |
|
301 } |
|
302 SkASSERT(0 != fK && 0 != fJ); |
|
303 } |
|
304 static uint32_t NextLCG(uint32_t seed) { return kMul*seed + kAdd; } |
|
305 |
|
306 // See "Numerical Recipes in C", 1992 page 284 for these constants |
|
307 // For the LCG that sets the initial state from a seed |
|
308 enum { |
|
309 kMul = 1664525, |
|
310 kAdd = 1013904223 |
|
311 }; |
|
312 // Constants for the multiply-with-carry steps |
|
313 enum { |
|
314 kKMul = 30345, |
|
315 kJMul = 18000, |
|
316 }; |
|
317 |
|
318 uint32_t fK; |
|
319 uint32_t fJ; |
|
320 }; |
|
321 |
|
322 #endif |