|
1 |
|
2 /* |
|
3 * Copyright 2006 The Android Open Source Project |
|
4 * |
|
5 * Use of this source code is governed by a BSD-style license that can be |
|
6 * found in the LICENSE file. |
|
7 */ |
|
8 |
|
9 |
|
10 #include <ctype.h> |
|
11 #include "SkDrawPath.h" |
|
12 #include "SkParse.h" |
|
13 #include "SkPoint.h" |
|
14 #include "SkUtils.h" |
|
15 #define QUADRATIC_APPROXIMATION 1 |
|
16 |
|
17 #if QUADRATIC_APPROXIMATION |
|
18 //////////////////////////////////////////////////////////////////////////////////// |
|
19 //functions to approximate a cubic using two quadratics |
|
20 |
|
21 // midPt sets the first argument to be the midpoint of the other two |
|
22 // it is used by quadApprox |
|
23 static inline void midPt(SkPoint& dest,const SkPoint& a,const SkPoint& b) |
|
24 { |
|
25 dest.set(SkScalarAve(a.fX, b.fX),SkScalarAve(a.fY, b.fY)); |
|
26 } |
|
27 // quadApprox - makes an approximation, which we hope is faster |
|
28 static void quadApprox(SkPath &fPath, const SkPoint &p0, const SkPoint &p1, const SkPoint &p2) |
|
29 { |
|
30 //divide the cubic up into two cubics, then convert them into quadratics |
|
31 //define our points |
|
32 SkPoint c,j,k,l,m,n,o,p,q, mid; |
|
33 fPath.getLastPt(&c); |
|
34 midPt(j, p0, c); |
|
35 midPt(k, p0, p1); |
|
36 midPt(l, p1, p2); |
|
37 midPt(o, j, k); |
|
38 midPt(p, k, l); |
|
39 midPt(q, o, p); |
|
40 //compute the first half |
|
41 m.set(SkScalarHalf(3*j.fX - c.fX), SkScalarHalf(3*j.fY - c.fY)); |
|
42 n.set(SkScalarHalf(3*o.fX -q.fX), SkScalarHalf(3*o.fY - q.fY)); |
|
43 midPt(mid,m,n); |
|
44 fPath.quadTo(mid,q); |
|
45 c = q; |
|
46 //compute the second half |
|
47 m.set(SkScalarHalf(3*p.fX - c.fX), SkScalarHalf(3*p.fY - c.fY)); |
|
48 n.set(SkScalarHalf(3*l.fX -p2.fX),SkScalarHalf(3*l.fY -p2.fY)); |
|
49 midPt(mid,m,n); |
|
50 fPath.quadTo(mid,p2); |
|
51 } |
|
52 #endif |
|
53 |
|
54 |
|
55 static inline bool is_between(int c, int min, int max) |
|
56 { |
|
57 return (unsigned)(c - min) <= (unsigned)(max - min); |
|
58 } |
|
59 |
|
60 static inline bool is_ws(int c) |
|
61 { |
|
62 return is_between(c, 1, 32); |
|
63 } |
|
64 |
|
65 static inline bool is_digit(int c) |
|
66 { |
|
67 return is_between(c, '0', '9'); |
|
68 } |
|
69 |
|
70 static inline bool is_sep(int c) |
|
71 { |
|
72 return is_ws(c) || c == ','; |
|
73 } |
|
74 |
|
75 static const char* skip_ws(const char str[]) |
|
76 { |
|
77 SkASSERT(str); |
|
78 while (is_ws(*str)) |
|
79 str++; |
|
80 return str; |
|
81 } |
|
82 |
|
83 static const char* skip_sep(const char str[]) |
|
84 { |
|
85 SkASSERT(str); |
|
86 while (is_sep(*str)) |
|
87 str++; |
|
88 return str; |
|
89 } |
|
90 |
|
91 static const char* find_points(const char str[], SkPoint value[], int count, |
|
92 bool isRelative, SkPoint* relative) |
|
93 { |
|
94 str = SkParse::FindScalars(str, &value[0].fX, count * 2); |
|
95 if (isRelative) { |
|
96 for (int index = 0; index < count; index++) { |
|
97 value[index].fX += relative->fX; |
|
98 value[index].fY += relative->fY; |
|
99 } |
|
100 } |
|
101 return str; |
|
102 } |
|
103 |
|
104 static const char* find_scalar(const char str[], SkScalar* value, |
|
105 bool isRelative, SkScalar relative) |
|
106 { |
|
107 str = SkParse::FindScalar(str, value); |
|
108 if (isRelative) |
|
109 *value += relative; |
|
110 return str; |
|
111 } |
|
112 |
|
113 void SkDrawPath::parseSVG() { |
|
114 fPath.reset(); |
|
115 const char* data = d.c_str(); |
|
116 SkPoint f = {0, 0}; |
|
117 SkPoint c = {0, 0}; |
|
118 SkPoint lastc = {0, 0}; |
|
119 SkPoint points[3]; |
|
120 char op = '\0'; |
|
121 char previousOp = '\0'; |
|
122 bool relative = false; |
|
123 do { |
|
124 data = skip_ws(data); |
|
125 if (data[0] == '\0') |
|
126 break; |
|
127 char ch = data[0]; |
|
128 if (is_digit(ch) || ch == '-' || ch == '+') { |
|
129 if (op == '\0') |
|
130 return; |
|
131 } |
|
132 else { |
|
133 op = ch; |
|
134 relative = false; |
|
135 if (islower(op)) { |
|
136 op = (char) toupper(op); |
|
137 relative = true; |
|
138 } |
|
139 data++; |
|
140 data = skip_sep(data); |
|
141 } |
|
142 switch (op) { |
|
143 case 'M': |
|
144 data = find_points(data, points, 1, relative, &c); |
|
145 fPath.moveTo(points[0]); |
|
146 op = 'L'; |
|
147 c = points[0]; |
|
148 break; |
|
149 case 'L': |
|
150 data = find_points(data, points, 1, relative, &c); |
|
151 fPath.lineTo(points[0]); |
|
152 c = points[0]; |
|
153 break; |
|
154 case 'H': { |
|
155 SkScalar x; |
|
156 data = find_scalar(data, &x, relative, c.fX); |
|
157 fPath.lineTo(x, c.fY); |
|
158 c.fX = x; |
|
159 } |
|
160 break; |
|
161 case 'V': { |
|
162 SkScalar y; |
|
163 data = find_scalar(data, &y, relative, c.fY); |
|
164 fPath.lineTo(c.fX, y); |
|
165 c.fY = y; |
|
166 } |
|
167 break; |
|
168 case 'C': |
|
169 data = find_points(data, points, 3, relative, &c); |
|
170 goto cubicCommon; |
|
171 case 'S': |
|
172 data = find_points(data, &points[1], 2, relative, &c); |
|
173 points[0] = c; |
|
174 if (previousOp == 'C' || previousOp == 'S') { |
|
175 points[0].fX -= lastc.fX - c.fX; |
|
176 points[0].fY -= lastc.fY - c.fY; |
|
177 } |
|
178 cubicCommon: |
|
179 // if (data[0] == '\0') |
|
180 // return; |
|
181 #if QUADRATIC_APPROXIMATION |
|
182 quadApprox(fPath, points[0], points[1], points[2]); |
|
183 #else //this way just does a boring, slow old cubic |
|
184 fPath.cubicTo(points[0], points[1], points[2]); |
|
185 #endif |
|
186 //if we are using the quadApprox, lastc is what it would have been if we had used |
|
187 //cubicTo |
|
188 lastc = points[1]; |
|
189 c = points[2]; |
|
190 break; |
|
191 case 'Q': // Quadratic Bezier Curve |
|
192 data = find_points(data, points, 2, relative, &c); |
|
193 goto quadraticCommon; |
|
194 case 'T': |
|
195 data = find_points(data, &points[1], 1, relative, &c); |
|
196 points[0] = points[1]; |
|
197 if (previousOp == 'Q' || previousOp == 'T') { |
|
198 points[0].fX = c.fX * 2 - lastc.fX; |
|
199 points[0].fY = c.fY * 2 - lastc.fY; |
|
200 } |
|
201 quadraticCommon: |
|
202 fPath.quadTo(points[0], points[1]); |
|
203 lastc = points[0]; |
|
204 c = points[1]; |
|
205 break; |
|
206 case 'Z': |
|
207 fPath.close(); |
|
208 #if 0 // !!! still a bug? |
|
209 if (fPath.isEmpty() && (f.fX != 0 || f.fY != 0)) { |
|
210 c.fX -= SkScalar.Epsilon; // !!! enough? |
|
211 fPath.moveTo(c); |
|
212 fPath.lineTo(f); |
|
213 fPath.close(); |
|
214 } |
|
215 #endif |
|
216 c = f; |
|
217 op = '\0'; |
|
218 break; |
|
219 case '~': { |
|
220 SkPoint args[2]; |
|
221 data = find_points(data, args, 2, false, NULL); |
|
222 fPath.moveTo(args[0].fX, args[0].fY); |
|
223 fPath.lineTo(args[1].fX, args[1].fY); |
|
224 } |
|
225 break; |
|
226 default: |
|
227 SkASSERT(0); |
|
228 return; |
|
229 } |
|
230 if (previousOp == 0) |
|
231 f = c; |
|
232 previousOp = op; |
|
233 } while (data[0] > 0); |
|
234 } |